河北省石家庄市2019-2020学年中考数学二模试卷含解析

合集下载

河北省石家庄市2019-2020学年中考数学考前模拟卷(2)含解析

河北省石家庄市2019-2020学年中考数学考前模拟卷(2)含解析

河北省石家庄市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是()A.M>N B.M=N C.M<N D.不能确定2.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.3.某中学篮球队12名队员的年龄如下表:年龄:(岁)13 14 15 16 人数 1 5 4 2 关于这12名队员的年龄,下列说法错误的是( )A.众数是14岁B.极差是3岁C.中位数是14.5岁D.平均数是14.8岁4.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.35.下列等式正确的是()A.(a+b)2=a2+b2B.3n+3n+3n=3n+1C.a3+a3=a6D.(a b)2=a626的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.下列生态环保标志中,是中心对称图形的是()A.B.C.D.8.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.71010.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %112的相反数是()A2B.2C2D.212.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同一直线的两条直线互相垂直二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_____.14.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.15.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB=26,CD=24,那么sin ∠OCE= ▲ .16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.17.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标. 20.(6分)已知:a+b =4(1)求代数式(a+1)(b+1)﹣ab 值;(2)若代数式a 2﹣2ab+b 2+2a+2b 的值等于17,求a ﹣b 的值.21.(6分)如图,已知△ABC,以A 为圆心AB 为半径作圆交AC 于E,延长BA 交圆A 于D 连DE 并延长交BC 于F, 2CE CF CB =⋅(1)判断△ABC 的形状,并证明你的结论; (2)如图1,若BE=CE=23,求⊙A 的面积; (3)如图2,若tan ∠CEF=12,求cos ∠C 的值.22.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?23.(8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =kx(x >0)的图象经过AO 的中点C ,交AB 于点D ,且AD =1.设点A 的坐标为(4,4)则点C 的坐标为 ;若点D 的坐标为(4,n). ①求反比例函数y =kx的表达式; ②求经过C ,D 两点的直线所对应的函数解析式;在(2)的条件下,设点E 是线段CD 上的动点(不与点C ,D 重合),过点E 且平行y 轴的直线l 与反比例函数的图象交于点F ,求△OEF 面积的最大值.24.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.求反比例函数和一次函数的解析式;直接写出当x>0时,的解集.点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.25.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)26.(12分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.27.(12分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】若比较M,N的大小关系,只需计算M-N的值即可.【详解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故选A.【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.2.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.3.D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选D.“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.4.D【解析】【分析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确; 故答案选D .考点:反比例系数的几何意义. 5.B 【解析】 【分析】(1)根据完全平方公式进行解答; (2)根据合并同类项进行解答; (3)根据合并同类项进行解答; (4)根据幂的乘方进行解答. 【详解】解:A 、(a+b )2=a 2+2ab+b 2,故此选项错误; B 、3n +3n +3n =3n+1,正确; C 、a 3+a 3=2a 3,故此选项错误; D 、(a b )2=a 2b ,故此选项错误; 故选B . 【点睛】本题考查整数指数幂和整式的运算,解题关键是掌握各自性质. 6.D 【解析】 【分析】寻找小于26的最大平方数和大于26的最小平方数即可. 【详解】解:小于26的最大平方数为25,大于26的最小平方数为36252636<<5266<<,故选择D.【点睛】本题考查了二次根式的相关定义.7.B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.8.B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.9.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50⨯=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.11.A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解:2的相反数是2-.故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键. 12.C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】以AB为边作等边△ABE,由题意可证△AEC≌△ABD,可得BD=CE,根据三角形三边关系,可求EC 的最大值,即可求BD的最大值.【详解】如图:以AB为边作等边△ABE,,∵△ACD,△ABE是等边三角形,∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,∴∠EAC=∠BAD,且AE=AB,AD=AC,∴△DAB≌△CAE(SAS)∴BD=CE,若点E,点B,点C不共线时,EC<BC+BE;若点E,点B,点C共线时,EC=BC+BE.∴EC≤BC+BE=3,∴EC的最大值为3,即BD的最大值为3.故答案是:3【点睛】考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键.14.AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.详解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.5 13【解析】垂径定理,勾股定理,锐角三角函数的定义。

河北省石家庄市2019-2020学年中考数学第二次调研试卷含解析

河北省石家庄市2019-2020学年中考数学第二次调研试卷含解析

河北省石家庄市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2) 2.下列等式正确的是( ) A .(a+b )2=a 2+b 2 B .3n +3n +3n =3n+1 C .a 3+a 3=a 6D .(a b )2=a3.到三角形三个顶点的距离相等的点是三角形( )的交点. A .三个内角平分线 B .三边垂直平分线 C .三条中线D .三条高4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3+16.计算﹣2+3的结果是( ) A .1B .﹣1C .﹣5D .﹣67.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .4200.5x +-420x =20B .420x -4200.5x +=20C .4200.5x --420x=20D .420420200.5x x -=- 9.方程x (x -2)+x -2=0的两个根为( ) A .10x =,22x = B .10x =,22x =- C .11x =- ,22x =D .11x =-, 22x =-10.下列事件中,属于不确定事件的是( )A .科学实验,前100次实验都失败了,第101次实验会成功B .投掷一枚骰子,朝上面出现的点数是7点C .太阳从西边升起来了D .用长度分别是3cm ,4cm ,5cm 的细木条首尾顺次相连可组成一个直角三角形 11.一个多边形的每一个外角都等于72°,这个多边形是( ) A .正三角形B .正方形C .正五边形D .正六边形12.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____.15.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则,y2=_____,第n次的运算结果y n=_____.(用含字母x和n的代数式表示).17.不等式组52130xx-≤⎧⎨+>⎩的解集是__________.18.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?20.(6分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.21.(6分)今年3 月12 日植树节期间,学校预购进A、B 两种树苗,若购进A种树苗3 棵,B 种树苗 5 棵,需2100 元,若购进 A 种树苗 4 棵,B 种树苗10棵,需3800 元.(1)求购进A、B 两种树苗的单价;(2)若该单位准备用不多于8000 元的钱购进这两种树苗共30 棵,求A 种树苗至少需购进多少棵?22.(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?23.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。

2019-2020学年最新河北省石家庄市中考模拟数学试题及答案解析

2019-2020学年最新河北省石家庄市中考模拟数学试题及答案解析

石家庄市九年级模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将答题卡收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣3的相反数是A . 3B .3-C .31 D . 31- 2.据某市统计局在网上发布的数据,2012年该地区生产总值(GDP )突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是113.下列运算正确的是4.下列计算正确的是A .21()93-= B 2=- C .0(2)1-=- D .53--=25.如图1,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC 的度数是6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是第一页7.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图2所示,那么▲、●、■这三种物体按质量从大到小排列应为A.■、●、▲B.▲、■、●C.■、▲、●D.●、▲、■8.如图3,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED 的值为9.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的平均数B10.数据21、12、18、16、20、21的众数和中位数分别是()11.绍兴市著名的桥乡,如图4,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为8m12.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图5中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为D13.如图6,在函数)0(11<x x k y =和)0(xky 22>x =的图象上,分别有A 、B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,S △AOC =23,S △BOC =227,则线段AB 的长度是A . 8 B. 9 C. 10 D. 1114.如图7,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.第二页15.定义a b c d 为二阶行列式.规定它的运算法则为a bad bc c d=-.那么二阶行列式1101x x +-=0时,x 的值是16.如图8,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需火柴根数是.卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.因式分解:xy 2﹣4x= .18.已知a+b=4,a ﹣b=3,则a 2﹣b 2= .19.掷一枚质地均匀的骰子,骰子的六个面上分别标有数字1~6,掷得朝上的一面的数字为奇数的概率是 .20.如图9,点A ,B ,C ,在⊙O 上,∠ABO=32°,∠ACO=38°,则∠BOC 等于 度。

【附5套中考模拟试卷】河北省石家庄市2019-2020学年中考数学第二次押题试卷含解析

【附5套中考模拟试卷】河北省石家庄市2019-2020学年中考数学第二次押题试卷含解析

河北省石家庄市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt △ABC 中,∠B =90º,AB =6,BC =8,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 的最小值是( )A .4B .6C .8D .102.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与C B .C 与D C .E 与F D .A 与B3.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .22C .2D .354.下列汽车标志中,不是轴对称图形的是( )A .B .C .D . 5.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,56.如图,已知△ABC 中,∠C=90°,2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A.2-2B.32C.3-1D.17.在△ABC中,∠C=90°,tanA =,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C .240 D.1208.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.1009.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.210.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF =142°,则∠C的度数为()A.38°B.39°C.42°D.48°11.在-3,12,0,-2这四个数中,最小的数是( )A.3B.12C.0 D.-212.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.23B.2 C.4 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.14.分解因式:3a2﹣12=___.15.已知扇形的弧长为 ,圆心角为45°,则扇形半径为_____.16.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC 的度数是____________.17.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.18.因式分解:a3b﹣ab3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.20.(6分)如图,一次函数y=kx+b (k 、b 为常数,k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=(n 为常数,且n≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D ,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积;(3)直接写出不等式kx+b≤的解集.21.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的45,问甲、乙两公司人均捐款各多少元? 22.(8分)先化简,再求值:2(m ﹣1)2+3(2m+1),其中m 是方程2x 2+2x ﹣1=0的根23.(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC 于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.25.(10分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.26.(12分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.27.(12分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。

河北省石家庄市2019-2020学年中考数学模拟试题含解析

河北省石家庄市2019-2020学年中考数学模拟试题含解析

河北省石家庄市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在3,0,-2,-四个数中,最小的数是()A.3 B.0 C.-2 D.-2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109B.9.29×1010C.92.9×1010D.9.29×10113.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<24.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④5.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x 6.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣2 7.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+1x=2 C.x2+1=x2﹣1 D.x(x﹣1)=08.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=12,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(52,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )A.②③④B.①②③C.①④D.①②④9.4的平方根是( )A.4 B.±4 C.±2 D.210.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE 等于()A.80°B.85°C.100°D.170°11.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.312.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC,CE=16,那么AE的长为_______14.因式分解:2m2﹣8n2= .15.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.16.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.17.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.18.将数字37000000用科学记数法表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解分式方程:33x--1=13-x20.(6分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x+与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.21.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且=AC BD,过点O作OE⊥AC于点E⊙O 的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.23.(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24.(10分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.25.(10分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)26.(12分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.27.(12分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.2.B【解析】【分析】科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11.故选B.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.4.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

2019-2020年河北省石家庄二模:石家庄2019届高三第二次模拟考试理科数学试题-附答案精品

2019-2020年河北省石家庄二模:石家庄2019届高三第二次模拟考试理科数学试题-附答案精品

青霄有路终须到,金榜无名誓不还!2019-2019年高考备考河北省石家庄市2019届第二次模拟考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知单元素集合(){}2|210A x x a x =-++=,则a =( )A . 0B . -4C . -4或1D .-4或02. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )A .6种B . 12种C .18种D .24种3. 已知函数()sin f x x x =+,若()()()23,2,log 6a f b f c f ===,则,,a b c 的大小关系是( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<4.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设,AB a AD b ==,则向量BF = ( )A .1233a b +B .1233a b -- C. 1233a b -+ D .1233a b - 5.已知抛物线2:C y x =,过点(),0P a 的直线与C 相交于,A B 两点,O 为坐标原点,若0OA OB <,则a 的取值范围是 ( )A .(),0-∞B .()0,1 C. ()1,+∞ D .{}16.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马。

河北省石家庄市42中初三数学二模数学试卷含答案(1)

河北省石家庄市42中初三数学二模数学试卷含答案(1)

D.32
10. 若关于 x 的一元二次方程 nx2 2x 1 0 无实数根,则一次函数 y (n 1)x n 的图象不经过( )
A、第一象限
B.第二象限
C.第三象限
D.第四象限
11 如图,已知MON 及其边上一点 A ,以点 A 为圆心, AO 长为半径画弧,分别交OM ,ON 于点 B 和
4.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向道可提升机 场运
行能力,跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道,如图,侧向跑道 AB 在点 O 南偏东
70°的方向上,则这条跑所在射线OB 与正北方向所成角的度数为( )
A.20° B,70° C.110° D,160° 5. 在下列图形中是轴对称图形的是()
76
75
82
70
84
86
80
他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图 2.
(1) 表中的中位数是
、众数是

(2) 求表中 BC 长度的平均数 x ;
(3) 求 A 处的垃圾量,并将图 2 补充完整;
“ A B ”,结果求出答案是 8x2 7x 10 ,那么 A B 的正确答案是多少?
21. 如图 1. A ,B ,C是郑州市二七区三个垃圾存放点,点 B ,C分别位于点 A 的正北和正东方向,AC 40 米.八位环卫工人分别测得的 BC 长度如下表:








BC (单位:m ) 84
17 如图,边长为 1 的正方形网格中: AB
-3.(填“>” “=”“<”)
18.若 x 2 1.则 x2 2x 1

河北省石家庄市42中初三数学二模数学试卷含有答案

河北省石家庄市42中初三数学二模数学试卷含有答案

1 石家庄42中2019-2020学年第二学期初三年级第二次模拟考试
数学试题
一、选择题(本大题有16个小题。

共42分1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.一种零件的直径尺寸在图纸上是0.03
0.02320+-(单位:mm ),它表示这种件的标准尺寸是20mm ,则加工要求尺寸最大不超过( )
A.0.03mm
B.0.02nn
C.20.03mm
D.19.98mm
2.将一副三角板技如图所示位置放,其中αβ∠=∠的是( )
A.①②
B.②③
C.①④
D.②④
3.在数轴上与原点的距离小于8的点对应的x 满足( )
A.88x -<<
B. 8x <-或8x >
C.8x <
D.8x >
4.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向道可提升机场运行能力,跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道,如图,侧向跑道AB 在点O 南偏东70°的方向上,则这条跑所在射线OB 与正北方向所成角的度数为( )
A.20° B ,70° C.110° D ,160°
5.在下列图形中是轴对称图形的是()
A B C. D.
6.下列事件中,属于不可能事件的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省石家庄市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对2.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A.5B.51-C.12D.13.在下列实数中,﹣3,2,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.2D.﹣1 4.下列计算正确的是()A.2x2+3x2=5x4B.2x2﹣3x2=﹣1C.2x2÷3x2=23x2D.2x2•3x2=6x45.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°6.下列计算中,正确的是( ) A .a•3a=4a 2 B .2a+3a=5a 2 C .(ab )3=a 3b 3D .7a 3÷14a 2=2a7.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10 次数 1 4 32A .8、8B .8、8.5C .8、9D .8、108.已知反比例函数y=8k x-的图象位于第一、第三象限,则k 的取值范围是( ) A .k >8B .k≥8C .k≤8D .k <89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.如图,在ABC V 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AFDB DF= C .EF DECD BC= D .AF ADBD AB= 11.如图,正方形ABCD 的边长为4,点M 是CD 的中点,动点E 从点B 出发,沿BC 运动,到点C 时停止运动,速度为每秒1个长度单位;动点F 从点M 出发,沿M→D→A 远动,速度也为每秒1个长度单位:动点G 从点D 出发,沿DA 运动,速度为每秒2个长度单位,到点A 后沿AD 返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E 的运动时间为x ,△EFG 的面积为y ,下列能表示y 与x 的函数关系的图象是( )A.B.C.D.12.3的相反数是()A.﹣3 B.3 C.13D.﹣13二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:a3﹣2a2b+ab2=_____.14.因式分解:2312x-=____________.15.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是.16.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.17.分解因式:x2–4x+4=__________.18.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x20.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.21.(6分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.22.(8分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.23.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.24.(10分)如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.(1)求证:AD平分∠BAC;(2)求AC的长.25.(10分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.26.(12分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.27.(12分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=() 603616103603π⨯-=π.故选D . 【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形. 2.B 【解析】分析:由于点P 在运动中保持∠APD=90°,所以点P 的路径是一段以AD 为直径的弧,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小,再由勾股定理可得QC 的长,再求CP 即可. 详解: 由于点P 在运动中保持∠APD=90°, ∴点P 的路径是一段以AD 为直径的弧, 设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小,在Rt △QDC 中,2=, ∴CP=QC -QP=12,故选B .点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P 的运动轨迹. 3.B 【解析】|﹣3|=3,,|0|=0,|2|=2,|﹣1|=1,∵3>2>1>0, ∴绝对值最小的数是0, 故选:B . 4.D 【解析】 【分析】先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果. 【详解】A 、2x 2+3x 2=5x 2,不符合题意;B 、2x 2﹣3x 2=﹣x 2,不符合题意;C 、2x 2÷3x 2=23,不符合题意; D 、2x 2n 3x 2=6x 4,符合题意, 故选:D . 【点睛】本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.5.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.6.C【解析】【分析】根据同底数幂的运算法则进行判断即可.【详解】解:A、a•3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a3÷14a2=12a,故原选项计算错误;故选C.【点睛】本题考点:同底数幂的混合运算.7.B【解析】【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.9.D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.10.C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠DF,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健. 11.A 【解析】 【分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 12.A 【解析】试题分析:根据相反数的概念知:1的相反数是﹣1. 故选A .【考点】相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.a (a ﹣b )1. 【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可. 【详解】原式=a (a 1﹣1ab+b 1)=a (a ﹣b )1, 故答案为a (a ﹣b )1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.3(x-2)(x+2) 【解析】 【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底. 【详解】原式=3(x 2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.1【解析】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.16.13.【解析】【分析】作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.【详解】解:过M作MN⊥AD于N,∵四边形ABCD是菱形,∴111206022DAC BAC BAD∠=∠=∠=⨯︒=︒,∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴132AN MN==,,∵AD=AB=2AE=4,∴17422 DN=-=,由勾股定理得:22227313.22DM DN MN⎛⎫⎛⎫=+=+=⎪⎪ ⎪⎝⎭⎝⎭故答案为13.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角。

相关文档
最新文档