初三数学上期末第一次模拟试题含答案
【典型题】初三数学上期末第一次模拟试题(含答案)

【典型题】初三数学上期末第一次模拟试题(含答案)一、选择题1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .13x 2=,25x 2= D .1x 4=-,2x 0=2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 4.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .512AC AB -=D .0.618≈BCAC5.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( ) A .(x ﹣1)2=6 B .(x+1)2=6 C .(x+2)2=9 D .(x ﹣2)2=9 6.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-7.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >48.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的9.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 210.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④11.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 212.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74-B 3或3C .2或3-D .2或3-74-二、填空题13.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____.16.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.17.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.18.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.19.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.20.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.三、解答题21.已知二次函数2y x bx c =++(b ,c 为常数).(1)当2b =,3c =-时,求二次函数的最小值;(2)当5c =时,若在函数值1y =的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3)当2c b =时,若在自变量x 的值满足b ≤x ≤3b +的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.22.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.23.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.24.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a(x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a(x-2)2+1=0为:方程-(x-2)2+1=0,解得:x1=0,x2=4,故选:A.【点睛】本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.2.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,B、图形是轴对称图形,C、图形是轴对称图形,也是中心对称轴图形,D、图形是轴对称图形.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.C解析:C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.4.B解析:B【解析】【详解】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:AC BCAB AC==512≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.5.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.解析:C 【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.7.B解析:B 【解析】 【分析】 【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <4. 故选B .8.C解析:C 【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案. 【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确; B 、∵﹣122b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2ba,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.9.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0;当b=a时,原式=12,故选C10.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.11.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.【点睛】本题考查了抛物线的形状与a的关系,比较简单.12.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.二、填空题13.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m 根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.16.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.4【解析】【分析】由抛物线开口向上可知a>0再由开口的大小由a的绝对值决定可求得a的取值范围【详解】解:∵抛物线y1=ax2的开口向上∴a>0又∵它的开口比抛物线y2=3x2+2的开口小∴|a|>3解析:4【解析】【分析】由抛物线开口向上可知a>0,再由开口的大小由a的绝对值决定,可求得a的取值范围.【详解】解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意【点睛】本题主要考查二次函数的性质,掌握二次函数的开口大小由a的绝对值决定是解题的关键,即|a|越大,抛物线开口越小.18.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-42 2-=∴设点A坐标为(2,m),如图所示,作AP⊥y轴于点P,作O′Q⊥直线x=2,∴∠APO=∠AQO′=90°,∴∠QAO′+∠AO′Q=90°,∵∠QAO′+∠OAQ=90°,∴∠AO′Q=∠OAQ,又∠OAQ=∠AOP,∴∠AO ′Q=∠AOP ,在△AOP 和△AO′Q 中,APO AQO AOP AO QAO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ),∴AP=AQ=2,PO=QO′=m ,则点O ′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ),解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2),故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O ′的坐标是解题的关键.19.35【解析】【分析】【详解】解:∵PC 与⊙O 相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35 解析:35【解析】【分析】【详解】解:∵PC 与⊙O 相切,∴∠OCP=90°,∴∠COP=90°-∠P=90°-20°=70°,∵OA=OC ,∴∠A=∠ACO ,∵∠A+∠ACO=∠COP ,∴∠A=35°,故答案为35.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB 的度数然后根据勾股定理即可求得AB 的长详解:连接AD AEOAOB ∵⊙O 的半径为2△ABC 内接于⊙O ∠ACB=13解析:【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题21.(1)二次函数取得最小值-4;(2)245y x x =++或245y x x =-+;(3)277y x x =++或2416y x x =-+. 【解析】【分析】(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为25y x bx =++,又因函数值y=1的情况下,只有一个自变量x 的值与其对应,说明方程251x bx ++=有两个相等的实数根,利用0∆=即可解得b 值,从而求得函数解析式.(3)当c=b 2时,二次函数的解析式为22y x bx b =++,它的图象是开口向上,对称轴为2b x =-的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b -<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b -≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b ->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式.【详解】解:(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,即2y (x 1)4=+-.∴当x=-1时,二次函数取得最小值-4.(2)当c=5时,二次函数的解析式为25y x bx =++.由题意得,方程251x bx ++=有两个相等的实数根.有2160b ∆=-=,解得124,4b b ==-,∴此时二次函数的解析式为245y x x =++或245y x x =-+.(3)当c=b 2时,二次函数的解析式为22y x bx b =++. 它的图象是开口向上,对称轴为2b x =-的抛物线. ①若2b -<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大, 故当x=b 时,2223y b b b b b =+⋅+=为最小值.∴2321b =,解得1b =2b =(舍去).②若b≤2b -≤b+3,即-2≤b≤0, 当x=2b -时,2223224b b y b b b ⎛⎫⎛⎫=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭为最小值.∴23214b =,解得1b =(舍去),2b =- ③若2b ->b+3,即b <-2, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而减小, 故当x=b+3时,222(3)(3)399y b b b b b b =++++=++为最小值.∴239921b b ++=,即2340b b +-=解得11b =(舍去),24b =-.综上所述,b =b=-4.∴此时二次函数的解析式为27y x =++或2416y x x =-+.考点:二次函数的综合题.22.(1)60,10;(2)96°;(3)1020;(4)23【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.23.(1)证明见解析;(2)37.【解析】【分析】(1)连接FO ,可根据三角形中位线的性质可判断易证OF ∥AB ,然后根据直径所对的圆周角是直角,可得CE ⊥AE ,进而知OF ⊥CE ,然后根据垂径定理可得∠FEC =∠FCE ,∠OEC =∠OCE ,再通过Rt △ABC 可知∠OEC +∠FEC =90°,因此可证FE 为⊙O 的切线;(2)根据⊙O 的半径为3,可知AO =CO =EO =3,再由∠EAC =60°可证得∠COD =∠EOA =60°,在Rt △OCD 中,∠COD =60°,OC =3,可由勾股定理求得CD=33,最后根据Rt △ACD ,用勾股定理求得结果.【详解】解:(1)连接FO易证OF∥AB∵AC⊙O的直径∴CE⊥AE∵OF∥AB∴OF⊥CE∴OF所在直线垂直平分CE∴FC=FE,OE=OC∴∠FEC=∠FCE,∠0EC=∠OCE∵Rt△ABC∴∠ACB=90°即:∠OCE+∠FCE=90°∴∠OEC+∠FEC=90°即:∠FEO=90°∴FE为⊙O的切线(2)∵⊙O的半径为3∴AO=CO=EO=3∵∠EAC=60°,OA=OE∴∠EOA=60°∴∠COD=∠EOA=60°∵在Rt△OCD中,∠COD=60°,OC=3∴CD=33∵在Rt△ACD中,∠ACD=90°,CD=33,AC=6∴AD=37【点睛】本题考查切线的判定,中位线的性质,以及特殊直角三角形的边角关系和勾股定理.24.2008年盈利3600万元.【解析】【分析】设该公司从2007年到2009年,每年盈利的年增长率是x,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x,由题意得:3000(1+x)2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.25.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x 米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x 米,依题意,得:(18﹣2x )(10﹣x )=144,整理,得:x 2﹣19x +18=0,解得:x 1=1,x 2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。
最新九年级数学上期末第一次模拟试题附答案

一、选择题1.现有两道数学选择题,他们都是单选题,并且都含有A、B、C、D四个选项,瞎猜这两道题,这两道题恰好全部猜对的概率是()A.14B.12C.18D.1162.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.343.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A,B,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是()A.13B.23C.19D.294.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.2155.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C的点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°6.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m,底面圆周长为8mπ,则1个屋顶的侧面积等于()2m.(结果保留π)A.40πB.20πC.16πD.80π7.如图,AB圆O的直径,弦CD AB⊥,垂足为M,下列结论不成立的是()A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 8.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 9.如图,正方形OABC 的两边OA ,OC 分别在x 轴、y 轴上,点D(5,3)在边AB 上,以C 为中心,把△CDB 旋转90º,则旋转后点D 的对应点D 的坐标是( )A .(-2,0)B .(-2,10)C .(2,10)或(-2,0)D .(10,2)或( -2,10) 10.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A .3B .3C 13D 1511.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .12.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 二、填空题13.从﹣8,﹣2,1,4这四个数中任取两个数分别作为二次函数y =ax 2+bx +1中a 、b 的值,恰好使得该二次函数当x >2时,y 随x 的增大而增大的概率是_____.14.在一个不透明的盒子里装有3个分别写有数字﹣2,0,1的小球,它们除了数字不同以外其余完全相同,先从盒子里随机抽取1个小球,再从剩下的小球中抽取1个,将这两个小球上的数字依次记为a ,b ,则满足关于x 的方程x 2+ax +b =0有实数根的概率为_____.15.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.16.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.17.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.18.如图,在等边△ABC 中,AC=10,点O 在AC 上,且AO=4,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋 转60º得到线段OD .要使点D 恰好落在BC 上,则AP 的长是________.19.方程230x -=的解为___________.20.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.三、解答题21.20届年级组董老师为学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,A 盘被分成面积相等的几个扇形,B 盘中蓝色扇形区域所占的圆心角是120°.同学们同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色,赢得游戏.(1)若小蕊同学转动一次A 盘,求出她转出红色的概率;(2)若小津同学同时转动A 盘和B 盘,请通过列表或者树状图的方式,求出她赢得游戏的概率.22.交大附中 各班举行了“垃圾分类,从我做起”的主题班会,九年级三班的同学在班会课上进行了一个有关垃圾分类知识竞答的活动,他们上网查阅了相关资料,收集到如下四个图标,并将其制成编号为,,,A B C D 的四张卡片(除编号和内容外,其余完全相同) ,他们将这四张卡片背面朝上,洗匀放好.(1)从中随机抽取一张,恰好抽到“可回收物”的概率是(2)从中随机抽取一张(不放回),再从中随机抽一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“其他垃圾”和“有害垃圾”的概率(这四张卡片分别用它们的编号,,,A B C D 表示)23.如图,在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的中线,以CD 为直径的⊙O 分别交AC 、BC 于点 M 、N ,过点N 作NE ⊥AB ,垂足为E .(1)求证:NE 与⊙O 相切;(2)若⊙O 的半径为52,AC=6,求BN 的长. 24.如图,己知点()2,4A ,()1,1B ,()3,2C .(1)将MBC 绕点O 逆时针旋转90°得111A B C △,画出111A B C △,并写出点C 的对应点1C 的坐标为_____;(2)画出ABC 关于原点成中心对称的图形222A B C △,并写出点A 的对称点2A 的坐标为______.25.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意画树状图或者列表找出所有可能出现的情况总数,以及两道题恰好全部猜对的数量即可求出.【详解】解:用列表法表示所有可能出现的结果情况如下:共有16种等可能出现的结果情况,其中两道题恰好全部猜对的只有1种,所以,两道题恰好全部猜对的概率为1 16,故选:D.【点睛】本题考查画树状图法或列表法求事件发生的概率,根据题意正确画树状图或列表是解题的关键.2.B解析:B【分析】利用树形图进行分析可得到所有情况从而得出答案.【详解】解:画树形图如下:共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是14,故选B.3.A解析:A【分析】画树状图展示所有9种等可能的结果数,找出两人恰好选择同一社区的结果数,然后根据概率公式求解即可.【详解】画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一社区的结果为3种,∴两人恰好选择同一社区的概率=39=13.故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4.C解析:C【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值=515=13,∴最终停在阴影方砖上的概率为13.故选:C.【点睛】本题考查的是几何概率,熟知概率公式是解答此题的关键.5.C解析:C【分析】根据切线的性质得到OB⊥AB,OC⊥AC,求出∠BOC,分点P在优弧BC上、点P在劣弧BC上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB、AC是⊙O的切线,∴OB⊥AB,OC⊥AC,∴∠OBA=90°,∠OCA=90°∵∠A=50°,∴∠BOC=360°﹣90°﹣90°﹣50°=130°,如图,当点P在优弧BPC上时,∠BPC=12∠BOC=65°,当点P′在劣弧BC上时,∠BP′C=180°﹣65°=115°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.6.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl=π×4×5=20π.故选:B.【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.7.D解析:D【分析】根据垂径定理得到CM=DM,BC BD=,AC AD=,然后根据圆周角定理得∠ACD=∠ADC,而对于OM与MB的大小关系不能判断.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,BC BD=,=,AC AD∴∠ACD=∠ADC.而无法比较OM,MB的大小,故选:D.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.8.C解析:C【分析】先根据等腰三角形的性质求出∠A,再利用圆周角定理求得∠BOC,最后根据弧长公式求求解即可.【详解】解:∵∠OCA=50°,OA=OC,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 9.C解析:C【分析】根据题意,分顺时针和逆时针旋转两种情况解答即可.【详解】解:由题意,AB=BC=5,BD=5﹣3=2,∠B=90°,若把△CDB 顺时针旋转90º,则点D 在x 轴的负半轴上,O D =BD=2,所以点D 坐标为(﹣2,0);若把△CDB 逆时针旋转90º,则点D 到x 轴的距离是5+5=10,到y 轴的距离是2,∴点D 的坐标为(2,10),综上,旋转后点D 的对应点D 的坐标是(2,10)或(-2,0),故选:C .【点睛】本题考查坐标与图形变化-旋转、正方形的性质,熟练掌握旋转的性质,分顺时针和逆时针旋转两种情况是解答的关键.10.C解析:C【分析】连接BM.证明△AFE ≌△AMB 得FE=MB ,再运用勾股定理求出BM 的长即可.【详解】连接BM ,如图,由旋转的性质得:AM=AF.∵四边形ABCD 是正方形, ∴AD=AB=BC=CD ,∠BAD=∠C=90°,∵ΔAEM 与ΔADM 关于AM 所在的直线对称, ∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°, ∴∠BAM=∠EAF, ∴△AFE ≌△AMB ∴FE=BM.在Rt △BCM 中,BC=3,CM=CD-DM=3-1=2,∴== ∴故选C. 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.11.C解析:C 【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象. 【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势. 对称轴再y 轴左边,故02ba-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项 故本题选择C . 【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.12.B解析:B 【分析】直接利用一元二次方程的定义分析得出答案. 【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意. B.220x -=,是一元二次方程,故本选项符合题意. C.21x y +=,是二元二次方程,故本选项不符合题意. D.211x x+=,该方程分式方程,故本选项不符合题意.故选B.【点睛】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.二、填空题13.0【分析】先画出树状图共有12个等可能的结果恰好使得该二次函数当x >2时y随x的增大而增大的结果有0个再由概率公式即可得出答案【详解】解:画树状图如图:共有12个等可能的结果恰好使得该二次函数当x>解析:0【分析】先画出树状图,共有12个等可能的结果,恰好使得该二次函数当x>2时,y随x的增大而增大的结果有0个,再由概率公式即可得出答案.【详解】解:画树状图如图:共有12个等可能的结果,恰好使得该二次函数当x>2时,y随x的增大而增大的结果有0个,∴恰好使得该二次函数当x>2时,y随x的增大而增大的概率为:012=0,故答案为:0.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了二次函数的性质.14.【分析】根据题意列表得出所有等可能的结果数再找出满足△=a2﹣4b≥0的结果数然后根据概率公式求解即可【详解】解:列表如下﹣2 0 1 ﹣2 (0﹣2)(1﹣2)0 (﹣20)(10解析:5 6【分析】根据题意列表得出所有等可能的结果数,再找出满足△=a2﹣4b≥0的结果数,然后根据概率公式求解即可.【详解】解:列表如下﹣201﹣2(0,﹣2)(1,﹣2)0(﹣2,0)(1,0)1(﹣2,1)(0,1)2,1)、(0,﹣2)、(1,﹣2)、(1,0)这5种结果,∴满足关于x的方程x2+ax+b=0有实数根的概率为56,故答案为:56.【点睛】本题考查了概率的计算,列出所有可能的情况是解题关键.15.【分析】列举出所有情况根据概率公式即可得到小明获胜的概率【详解】共9种情况和为奇数的情况数有5种小明获胜的概率为故答案为:【点睛】本题考查了列表格或画树状图求概率正确画出树状图是解答本题的关键解析:5 9【分析】列举出所有情况,根据概率公式即可得到小明获胜的概率.【详解】共9种情况,和为奇数的情况数有5种,小明获胜的概率为59.故答案为:59.【点睛】本题考查了列表格或画树状图求概率.正确画出树状图是解答本题的关键.16.【分析】作A点关于BC的对称点A以A点为圆心以BC的长为半径作圆连接AA交BC于E点延长AA交⊙A与点D连接BDCD则∠BDC=∠BAC=×60°=30°此时AD为最大值根据等边三角形的性质可求解A解析:535【分析】作A点关于BC的对称点A',以A'点为圆心,以BC的长为半径作圆,连接AA'交BC于E点,延长AA'交⊙A'与点D,连接BD,CD,则∠BDC=12∠BA'C=12×60°=30°,此时AD为最大值,根据等边三角形的性质可求解A'E=AE=53,A'D=A'B=AB=5,进而可求解.【详解】作A点关于BC的对称点A',以A'点为圆心,以BC的长为半径作圆,连接AA'交BC于E点,延长AA'交⊙A'与点D,连接BD,CD,则∠BDC=12∠BA'C=12×60°=30°,此时AD为最大值,∵△ABC是边长为5的等边三角形,∴BC=AB=5,∴BE=12BC=52∴A'E=AE=22552⎛⎫- ⎪⎝⎭=53,A'D=A'B=AB=5,∴AD=AE+A'E+A'D=53+5.故答案为53+5.【点睛】本题主要考查等边三角形的性质,轴对称的性质,圆周角定理等知识的综合运用,解题的关键是根据题意作出示意图进行求解.17.【分析】首先连接OAOB由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB的长【详解】解:连接OAOB∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴解析:2【分析】首先连接OA ,OB ,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB 的长. 【详解】解:连接OA ,OB ,∵∠APB=45°, ∴∠AOB=2∠APB=90°, ∵OA=OB=2,∴2222AB OA OB =+=. 故答案为:22. 【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.18.6【分析】根据三角形的外角性质可得∠APO=∠COD 进而可以证明△APO ≌△COD 进而可以证明AP=CO 即可解题【详解】∵∠A+∠APO=∠POD+∠COD ∠A=∠POD=60°∴∠APO=∠COD解析:6 【分析】根据三角形的外角性质可得∠APO=∠COD ,进而可以证明△APO ≌△COD ,进而可以证明AP=CO ,即可解题. 【详解】∵∠A+∠APO=∠POD+∠COD ,∠A=∠POD=60°, ∴∠APO=∠COD ,在△APO 和△COD 中,A C APO COD OD OP ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△APO ≌△COD (AAS ), 即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为:6.【点睛】本题考查了等边三角形的性质,旋转的性质,三角形的外角性质,全等三角形的判定和性质,本题中求证△APO≌△COD是解题的关键.19.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x=【分析】先移项,然后利用数的开方直接求出即可.【详解】x=,移项得,23解得:x=故答案为:x=【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.20.1<a≤2【分析】画出图象找到该抛物线在MN之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界利用与y交点位置可得a的取值范围【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界,利用与y交点位置可得a的取值范围.【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点式为y=a(x+1)2−2,∴函数的对称轴:x=−1,顶点坐标为(−1,−2),∴M和N两点关于x=−1对称,根据题意,抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0),如图所示:∵当x =0时,y =a−2, ∴−1<a−2≤0,当x =1时,y =4a−2>0, 即:120420a a --≤-⎧⎨⎩<>,解得1<a≤2, 故答案为:1<a≤2. 【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.三、解答题21.(1)13;(2)13. 【分析】(1)根据概率公式直接求解即可;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果,由表格求得她赢的情况,然后利用概率公式求解即可求得答案. 【详解】解:(1)∵A 盘被分成面积相等的3个扇形,分别是红、黄、蓝, ∴小蕊转出红色的概率是13; (2)∵B 盘中蓝色扇形区域所占的圆角是120°, ∴蓝色区域占整体的12013603︒=︒, ∴红色区域占整体的23, 根据题意列表如下:红红蓝红(红,红)(红,红)(红,蓝)黄(黄,红)(黄,红)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,蓝)则她赢得游戏的概率是31 93 =.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(1)14;(2)16.【分析】(1)根据概率公式直接得出答案;(2)根据题意先画出树状图列出所有等可能结果数,根据概率公式求解即可.【详解】解:(1)有其他垃圾、可回收物、有害垃圾、厨房垃圾,共四张卡片,∴恰好抽到“可回收物”的概率是14;(2)根据题意画图如下:共12种等可能的结果数,其中抽到“其他垃圾”和“有害垃圾”的结果数为2,∴抽到的两张卡片恰好是“其他垃圾”和“有害垃圾”的概率21 126 ==.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题时放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)见解析;(2)4.【分析】(1)连接DN,根据直角三角形的性质、等腰三角形的性质以及平行线的判定与性质证得ON⊥NE即可证明;(2)连接ON,先根据直角三角形的性质求得AB=10,再由勾股定理可求BC=8,最后由等腰三角形的性质求解即可.【详解】解:(1)如图:连接DN ∵∠ACB=90°,D 为斜边的中点, ∴CD=DA=DB=12AB , ∴∠BCD=∠B , ∵OC=ON , ∴∠BCD=∠ONC , ∴∠ONC=∠B , ∴ON//AB , ∵NE ⊥AB , ∴ON ⊥NE , ∴NE 为OO 的切线; (2)如图:连接ON ∵⊙O 的半径为52∴CD=5∵∠ACB=90°,CD 是斜边AB 上的中线, ∴BD=CD=AD=5, ∴AB=10, ∵AC=6∴BC=22106 =8 ∵CD 为直径∴∠CND=90°,且BD=CD ∴BN=NC=4.【点睛】本题主要考查圆的切线判定和性质、直角三角形的性质、等腰三角形的性质以及平行线的判定与性质等知识点,掌握圆的切线判定和性质是解答本题的关键. 24.(1)如图见解析, 1C (-2,3);(2)如图见解析, 2A (-2,-4). 【分析】(1)依据△ABC 绕点O 按逆时针方向旋转90°,即可得到111A B C △;(2)依据中心对称的性质,即可画出△ABC 关于原点成中心对称的图形222A B C △. 【详解】(1)如图,111A B C △即为所求,点1C 的坐标为(-2,3);(2)如图,222A B C △即为所求,点2A 的坐标为(-2,-4). 【点睛】本题主要考查了利用旋转变换作图,解决本题的关键是掌握旋转的性质.旋转作图有自己独特的特点,旋转角度、旋转方向、旋转中心不同,位置就不同,但得到的图形全等. 25.(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 . 【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 . 【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到: (10+x )(40-x )=600,解之得:x=10或x=20, 因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ), 配方得:()215625y x =--+, ∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元. 【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.26.(1)4;(2)(2)2+秒或(22)-秒;(3)小明说得对,理由见解析 【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面; (2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
初三数学上期末第一次模拟试卷带答案

一、选择题1.从1,2,3,4,5这5个数字任取两个数字,使其乘积为偶数的概率为( ) A .45B .710C .35D .122.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是( ) A .必然事件B .不可能事件C .随机事件D .确定事件3.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 ( )A .415B .15C .13D .2154.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( ) A .13B .12C .23D .565.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .636.下列事件属于确定事件的为( ) A .氧化物中一定含有氧元素 B .弦相等,则所对的圆周角也相等 C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60°8.下列说法中,正确的是( )A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等9.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C .26D .4110.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .11.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个12.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >二、填空题13.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.14.在一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一个球,不再放回袋中,充分搅匀后再随机摸出一球,则两次都摸到红球的概率是_____.15.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.16.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.17.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.18.直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____.19.2251=-+-y x x 的图象不经过__________象限;20.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根.三、解答题21.2020年庚子鼠年来临之际,一场来势汹汹的疫情,给我国带来了新的考验,疫情防控的人民战争在全国打响,举国上下团结奋斗、共克时艰,中国精神成为抗击病魔的利剑,是疫情防控战役中致胜的法宝,某医院为了鼓励工作人员抗击疫情,做如下活动:在一个不透明的盒子中装有4张分别标有A 、B 、C 、D 的卡片,A 、B 、C 、D 四张卡片的背面分别写有“防护、抗击、团结、奋斗”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果; (2)求摸出的两张卡片中的词语能组成“团结奋斗”的概率.22.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表: 批次 1 2 3 4 5 6 油菜籽粒数100400800100020005000发芽油菜籽粒数 a 318 652 793 1604 4005 发芽频率0.8500.7950.8150.793b0.801(1)分别求a 和b 的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1); (3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数. 23.如图,AC 为O 的直径,4AC =,B 、D 分别在AC 两侧的圆上,60BAD ∠=︒,BD 与AC 的交点为E .(1)求点O 到BD 的距离及OBD ∠的度数; (2)若2DE BE =,求cos OED ∠的值和CD 的长.24.如图,已知,点E 在正方形ABCD 的BC 边上(不与点B ,C 重合),AC 是对角线,过点E 作AC 的垂线,垂足为G ,连接BG ,DG .把线段DG 绕着G 点顺时针旋转,使D 点的对应点F 点刚好落在BC 延长线上,根据题意补全图形. (1)证明:GC GE =;(2)连接DF ,用等式表示线段BG 与DF 的数量关系,并证明.25.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱. (1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?26.如图,利用22米长的墙为一边,用篱笆围成一个长方形仓库ABCD ,中间用篱笆分割出两个小长方形,在与墙平行的一边要开两扇1米宽的门,总共用去篱笆34米,为了使这个长方形ABCD的面积为96平方米,求AB和BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积为偶数的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有20种等可能的结果,其乘积为偶数的有14种情况,∴其乘积为偶数的概率为:147,2010故选:B.【点睛】本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件,故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C解析:C【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值=515=13,∴最终停在阴影方砖上的概率为13.故选:C.【点睛】本题考查的是几何概率,熟知概率公式是解答此题的关键.4.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能使四边形ABCD成为平行四边形的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,能使四边形ABCD成为平行四边形的有8种情况,分别为:①②,①④,②③,②④,②①,④①,③②,④②,∴从中任选两个条件,能使四边形ABCD成为平行四边形的概率是:82123.故选:C.【点睛】此题考查了平行四边形的判定及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,熟练掌握平行四边形的判定方法是解决本题的关键.5.A解析:A 【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论. 【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠, ∴DCM ACB =∠∠, ∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ), ∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232, 此时面积为:434 故选:A 【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键.6.A解析:A 【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可. 【详解】A 、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B 、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C 、戴了口罩一定不会感染新冠肺炎,不确定事件;D 、物体不受任何力的时候保持静止状态或匀速运动,不确定事件. 故选A. 【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.7.B解析:B【分析】由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得=BC BD,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=BC BD,∵∠CAB=20°,∴∠BOD=2∠CAB=2×20°=40°.故选:B.【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.8.D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D.【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.D解析:D【分析】根据旋转的性质可得BA=BE,∠ABE=60°,AC=DE,进而可得△ABE是等边三角形,然后根据等边三角形的性质和已知条件可得∠EAD=90°,根据勾股定理可求出DE的长,即为AC的长【详解】解:∵△EBD是由△ABC旋转得到,∴BA=BE,∠ABE=60°,AC=DE,∴△ABE是等边三角形,∴∠EAB=60°,∵∠BAD=30°,∴∠EAD=90°,∵AE=AB=5,AD=4,∴DE,即故选:D.【点睛】本题考查了旋转的性质、等边三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.B解析:B【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y=ax2+bx+c经过原点;①正确;抛物线对称轴为:直线0212x+==,即12ba-=,∴2a+b=0,②正确;当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y>0时,x的取值范围是x<0或x>2;③正确由以上分析可知当x=1时,y取得最小值为a+b+c若点P(m,n)在该抛物线上,则am2+bm+c≥a+b+c.即am2+bm≥a+b,④错误故选:B【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.12.B解析:B【分析】由方程有实数根即△=b2﹣4ac≥0,从而得出关于m的不等式,解之可得.【详解】解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:14 m,故选:B.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.二、填空题13.【分析】先列表求出所有情况数然后再确定一男一女的情况数最后运用概率公式计算即可【详解】解:列表如下:男1 男2 女1 女2 女3 男1 (男1男2)(男1女1)(男1女2)(男1女3)解析:3 5【分析】先列表求出所有情况数,然后再确定一男一女的情况数,最后运用概率公式计算即可.【详解】解:列表如下:所以由概率公式可得选中一男一女的概率为123= 205.5【点睛】本题主要考查了运用列表法求概率,正确的列表是解答本题的关键.14.【分析】先画树状图展示所有20种等可能的结果数再找出两次都摸到红球的结果数然后根据概率公式求解【详解】解:画树状图为:共有20种等可能的结果数其中两次都摸到红球的结果数为6种所以两次都摸到红球的概率解析:3 10【分析】先画树状图展示所有20种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有20种等可能的结果数,其中两次都摸到红球的结果数为6种,所以两次都摸到红球的概率=620=310.故答案为3 10.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】直接利用概率公式求解即可【详解】解:共有3个盒子有自己写的纸条的有1个所以每人摸出一张甲恰好摸到自己的卡片的概率为故答案为:【点睛】考查了概率公式解题的关键是牢记概率公式难度不大解析:1 3【分析】直接利用概率公式求解即可.【详解】解:共有3个盒子,有自己写的纸条的有1个,所以每人摸出一张,甲恰好摸到自己的卡片的概率为13,3【点睛】考查了概率公式,解题的关键是牢记概率公式,难度不大.16.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.17.3或5【分析】分类讨论:当点P在当点P在射线OA时⊙P与CD相切过P 作PE⊥CD与E根据切线的性质得到PE=1cm再利用含30°的直角三角形三边的关系得到OP=2PE=2cm则⊙P的圆心在直线AB上解析:3或5【分析】分类讨论:当点P在当点P在射线OA时⊙P与CD相切,过P作PE⊥CD与E,根据切线的性质得到PE=1cm,再利用含30°的直角三角形三边的关系得到OP=2PE=2cm,则⊙P的圆心在直线AB上向右移动了(8-2)cm后与CD相切,即可得到⊙P移动所用的时间;当点P在射线OB时⊙P与CD相切,过P作PE⊥CD与F,同前面一样易得到此时⊙P移动所用的时间.【详解】当点P在射线OA时⊙P与CD相切,如图,过P作PE⊥CD与E,∴PE=1cm ,∵∠AOC=30°,∴OP=2PE=2cm ,∴⊙P 的圆心在直线AB 上向右移动了(8-2)cm 后与CD 相切,∴⊙P 移动所用的时间=822-=3(秒); 当点P 在射线OB 时⊙P 与CD 相切,如图,过P 作PE ⊥CD 与F ,∴PF=1cm ,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm ,∴⊙P 的圆心在直线AB 上向右移动了(8+2)cm 后与CD 相切,∴⊙P 移动所用的时间=822+=5(秒). 故答案为3或5.【点睛】本题考查直线与圆的位置关系:直线与有三种位置关系(相切、相交、相离).也考查了切线的性质.解题关键是熟练掌握以上性质. 18.(32)【分析】根据题目已知条件写出A1A2A3的坐标找出规律即可解决问题【详解】解:作点A 关于y 轴的对称点为A1是(﹣32);作点A1关于原点的对称点为A2是(3﹣2);作点A2关于x 轴的对称点为解析:(3,2).【分析】根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题.【详解】解:作点A 关于y 轴的对称点为A 1,是(﹣3,2);作点A 1关于原点的对称点为A 2,是(3,﹣2);作点A 2关于x 轴的对称点为A 3,是(3,2).显然此为一循环,按此规律,2019÷3=673,则点A 2019的坐标是(3,2),故答案为:(3,2).【点睛】本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数. 19.第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1,∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二.【点睛】 本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.20.m <且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m >0解不等式组确定m 的取值范围【详解】解:∵关于x 的一元二次方程mx2-3x+5=0有两个不相解析:m <920且m≠0. 【分析】根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m >0,解不等式组,确定m 的取值范围.【详解】解:∵关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根,∴m≠0,且△=(-3)2-4m×5=9-20m >0,解得m <920且m≠0,故当m <920且m≠0时,关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根. 故答案是:m <920且m≠0. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题21.(1)树状图如图所示,见解析;(2)摸出的两张卡片中的词语能组成“团结奋斗”的概率是16. 【分析】 (1)根据题意可以画出相应的树状图;(2)根据(1)中的树状图可以求得摸出的两张卡片中的词语能组成“团结奋斗”的概率.【详解】解:(1)树状图如下图所示,(2)由树状图得:共有12个等可能的结果,摸出的两张卡片中的词语能组成“团结奋斗”的结果有2个,∴摸出的两张卡片中的词语能组成“团结奋斗”的概率是:21126=. 【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.22.(1)85a,0.802b =;(2)0.8;(3)4800 【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数.【详解】(1)1000.85085a =⨯=,16040.8022000b ==;(2)∵观察表格发现发芽频率逐渐稳定到0.8附近,∴该品种油菜籽发芽概率的估计值为0.8;(3)60000.8=4800,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800.【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.23.(1)1,30º;(2)12,22【分析】(1)作OF⊥BD于点F,连接OD,根据圆周角定理可得出∠DOB=120º,再由OB=OD=12AC=2,可得出∠OBD的度数,也可以得出OF的长度,(2)设BF=2x,则可表示出DF、EF的长度,从而可解出x的值,在Rt△OEF中,利用三角函数值的知识可求出∠OED的度数,也可得出cos∠OED的值,判断出DO⊥AC,然后利用等腰直角三角形的性质可得出CD的长度.【详解】(1)作OF⊥BD于点F,连接OD,∵∠BAD=60º,∴∠BOD=2∠BAD=120º,又∵OB=OD,∴∠OBD=30º,∵AC为⊙O的直径,AC=4,∴OB=OC=2,在Rt△BOF中,∵∠OFB=90º,OB=2,∠OBF=30º,∴OF=12OB=1,即点O到BD的距离等于1,(2)∵OB=OD,OF⊥BD于点F,∴BF=DF,由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x,EF =x,BF=3x ,∵BF=OB•cos30º=3, ∴33,33x EF ==, 在Rt △OEF 中,∠OFE=90º,∵tan ∠OED=OF =3EF, ∴∠OED=60º,cos ∠OED=12, ∴∠BOC=∠OED-∠OBD=30º,∴∠DOC=∠DOE-∠BOE=90º,∴∠C=45º,∴CD=2OC=22.【点睛】本题考查属于圆的综合题,涉及等腰三角形的性质,三角函数值,及勾股定理等知识,解答此类综合性题目,要求我们熟悉掌握一些小知识,做到将所学的知识融会贯通,难度较大.24.补图见解析;(1)见解析;(2)2DF BG =,理由见解析【分析】(1)证明△EGC 是等腰直角三角形即可得出结论;(2)连接DG 、FG ,由“SAS”可证△BEG ≌△FCG ,得出BG=GF ,得出EF=BC=DC ,由“SAS”可证△GEF ≌△GCD ,得出∠EGC=∠DGF=90°,FG=GD ,则△DGF 是等腰直角三角形,从而得出DF=2BG .【详解】解:补全图形如图所示,(1)∵四边形 ABCD 是正方形,AC 是对角线,∴∠ACB =45°,∵EG ⊥AC ,∴∠EGC=90 °∴∠ GEC= ∠ ACB=45 °∴GC =GE ;(2)DF =.理由如下:证明:∵△EGC 是等腰直角三角形,∴EG =GC ,∠GEC =∠ACB =45°,∴∠BEG =∠GCF =135°,由旋转得:DG =GF ,正方形 ABCD 中,AB=AD ,∠BCA=∠DCA=45°,CG=CG∴△CBG ≌△CDG (SAS ),∴∠CGB=∠CGD , BG =DG ,∴BG=GF ∴∠GBC=∠GFB又∠BEG =∠GCF∴△BEG ≌△FCG (AAS ),∴∠BGE =∠CGF ,∴∠CGB ﹣∠BGE =∠CGD ﹣∠CGF ,即∠EGC =∠DGF =90°,∴△DGF 是等腰直角三角形,DF ∴====即DF =.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,灵活运用这些性质解决问题是本题的关键.25.(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x=7时,W取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.26.AB=8米,BC=12米.【分析】设AB为x米,然后表示出BC的长为(36-3x)米,利用矩形的面积计算方法列出方程求解即可.【详解】解:设AB为x米,则BC为(36-3x)米,x(36-3x)=96,解得:x1=4,x2=8,当x=4时,36-3x=24>22(不合题意,舍去),当x=8时,36-3x=12.答:AB=8米,BC=12米.【点睛】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.。
初三数学上期末一模试题(附答案)

一、选择题1.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( )A .123P P P <<B .321P P P <<C .213P P P <<D .312P P P <<2.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球D .事先能确定摸到什么颜色的球3.下列事件是必然事件的是( ) A .阴天一定会下雨 B .购买一张体育彩票,中奖C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .任意画一个三角形,其内角和是180°4.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A .12B .14C .34D .15.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 6.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm7.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm8.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠9.下面四个图案是常用的交通标志,其中为中心对称图形的是( ) A .B .C .D .10.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>12.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.一个不透明的口袋中装有3个红球和5个黄球,它们除颜色外,其他都相同,往口袋中再放入x 个红球和y 个黄球,若从口袋中随机摸出一个红球的概率是14,则y 与x 之间的函数表达式是_______.14.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,定义点(),m n 在反比例函数ky x=上为事件k Q (44,k k -≤≤为整数),当k Q 的概率最大时,则k 的所有可能的值为__________.15.现有4张完全相同的卡片分别写着数字-1、1、2、3,将卡片的背面朝上并洗匀,从中任意抽取一张, 将卡片上的数字记作a ,再从余下的卡片中任意抽取一张,将卡片上的数字记作b ,则+a b 为奇数的概率为________.参考答案16.如图,,PA PB 切⊙O 于,A B ,点C 在AB 上,DE 切⊙O 于C ,10cm,PO =⊙O 的半径为6cm ,则PDE △的周长是_________cm .17.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.18.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.19.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是______.20.当m =___________时,方程()21350m m xmx -+-+=是一元二次方程.三、解答题21.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A .非常了解.B .了解.C .知道一点.D .完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息, 解答下列问题:(1)求本次共调查了多少学生? (2)补全条形统计图;(3)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.22.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A ,B 是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形,同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请用画树状图或者列表的方式说明理由.23.如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD CE =. (1)求证:BE =CE ;(2)若∠B =50°,求∠AOC 的度数.24.如图,在平面直角坐标系中有一个直角AOB ,已知90OAC ∠=︒,且点B 的坐为()3,2(1)画出OAB 绕原点O 逆时针旋转90︒后的11OA B ; (2)点1B 关于原点O 对称的点2B 的坐标为________.25.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示. (1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式; (2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?26.解方程: (1)2237x x +=; (2)x(2x+5)=2x+5.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,利用概率公式分别计算,再比较大小可得. 【详解】解:∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,∴P 1=13、P 2=1、P 3=0, 则P 3<P 1<P 2, 故选:D . 【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C 【详解】∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球, ∴从布袋中随机摸出一个球是黑球的概率为1011,摸出一个球是白球的概率为111, ∴A 、这个球一定是黑球,错误;B 、摸到黑球、白球的可能性的大小一样,错误;C 、这个球可能是白球,正确;D 、事先能确定摸到什么颜色的球,错误;故选C . 【点睛】 可能性的大小.3.D解析:D 【分析】根据必然事件的概念可得答案. 【详解】A 、阴天下雨是随机事件;B 、购买一张体育彩票,中奖是随机事件;C 、打开电视机,任选一个频道,屏幕上正在播放新闻联播是随机事件;D 、任意画一个三角形,其内角和是180°是必然事件; 故选:D . 【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四种汽车标志中,既是中心对称图形,又是轴对称图形的有1个, ∴既是中心对称图形,又是轴对称图形的概率为14; 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()P A =m n. 5.C解析:C 【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可. 【详解】解:∵AB 、AC 是⊙O 的切线, ∴OB ⊥AB ,OC ⊥AC , ∴∠OBA =90°,∠OCA =90°∵∠A=50°,∴∠BOC=360°﹣90°﹣90°﹣50°=130°,如图,当点P在优弧BPC上时,∠BPC=12∠BOC=65°,当点P′在劣弧BC上时,∠BP′C=180°﹣65°=115°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.6.C解析:C【分析】分析题意,本题应分两种情况讨论:(1)点P在圆内;(2)点P在圆外;根据“一个点到圆的最大距离和最短距离都在过圆心的直线上”可知,点P到圆的最大距离与最小距离的和或差即是圆的直径,进而即可得出半径的长.【详解】当点P在圆内时,圆的直径是10+6=16cm,所以半径是8cm.当点P在圆外时,圆的直径是10-6=4cm,所以半径是2cm.故选C.【点睛】本题考查了圆的有关性质,熟知一个点到圆的最大距离和最短距离都在过圆心的直线上是解题的关键.7.B解析:B【分析】根据题意,可以推出AD=BD=10,若设半径为r,则OD=r﹣5,OA=r,结合勾股定理可推出半径r的值.【详解】解:∵OC⊥AB,AB=20,∴AD=DB=10,在Rt AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣5)2+102,解得:r=12.5,∴这段弯路的半径为12.5,【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OA的长度.8.D解析:D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.9.C解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C、图形旋转180度之后能与原图形重合,故是中心对称图形;D、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;10.C【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A 、不是轴对称图形,是中心对称图形,故此选项不合题意; B 、是轴对称图形,不是中心对称图形,故此选项不符合题意; C 、是轴对称图形,也是中心对称图形,故此选项符合题意; D 、不是轴对称图形,是中心对称图形,故此选项不合题意; 故选:C . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图形重合.11.C解析:C 【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小. 【详解】∵222(1)1y x x m x m =++=++-, ∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上, ∴231y y y >>. 故选:C . 【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.12.A解析:A 【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC ,然后计算m 的值. 【详解】∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根, ∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E , ∴∠CBD =∠EBD , ∵AD ∥BC , ∴∠CBD =∠EDB , ∴∠EBD =∠EDB , ∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×105-×205+=165. 故选:A . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=ca.也考查了矩形的性质和折叠的性质. 二、填空题13.【分析】根据题意直接利用概率公式求解可得:继而求得答案【详解】根据题意得:整理得:则y 与x 之间的函数关系式为:故答案为:【点睛】此题考查了根据概率公式求概率用到的知识点为:概率=所求情况数与总情况数解析:34y x =+ 【分析】根据题意,直接利用概率公式求解可得:31354x x y +=+++,继而求得答案.【详解】 根据题意得:31354x x y +=+++,整理得:34y x =+, 则y 与x 之间的函数关系式为: 34y x =+. 故答案为:34y x =+. 【点睛】此题考查了根据概率公式求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.±2【分析】首先根据题意列出表格然后根据表格求得k 取不同值时的概率比较大小即可确定k 的所有可能的值【详解】列表得:(1−2) (−1−2) (2−2) (−2−2) (12) (−12) (22)解析:±2. 【分析】首先根据题意列出表格,然后根据表格求得k 取不同值时的概率,比较大小即可确定k 的所有可能的值. 【详解】 列表得:∵若点(m ,n )在反比例函数ky x=上, 则k =mn ,∵P (k =−4)=21168=,P (k =−1)=21168=,P (k =−2)=41164=,P (k =1)=21168=,P (k =2)=41164=,P (k =4)=21168=,∴当Q k 的概率最大时,k =±2. 故答案为:±2. 【点睛】此题考查了列表法或树状图法求概率与反比例函数的性质.此题难度适中,解题时注意列表法与树状图法可以不重不漏的列出所有等可能的情况,然后根据概率公式求得概率.15.【分析】画出树状图然后由树状图求得所有等可能的结果和为奇数的结果即可求出概率【详解】解:根据题意画出树状图如下:由树状图可知共有12种等可能的结果其中为奇数的有6种∴为奇数的概率为:;故答案为:【点解析:12【分析】画出树状图,然后由树状图求得所有等可能的结果和+a b 为奇数的结果,即可求出概率. 【详解】解:根据题意,画出树状图如下:由树状图可知共有12种等可能的结果,其中+a b为奇数的有6种,∴+a b为奇数的概率为:61122P==;故答案为:1 2 .【点睛】本题考查了树状图法或列表法求概率,解题的关键是熟练运用树状图求出等可能的结果. 16.16【分析】连接OAOB由切线长定理可得:PA=PBDA=DCEC=EB;由勾股定理可得PA的长△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB即可求得△PDE的周长【详解解析:16【分析】连接OA、OB,由切线长定理可得:PA=PB,DA=DC,EC=EB;由勾股定理可得PA的长,△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB,即可求得△PDE的周长.【详解】解:连接OA、OB,如图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=6cm,PO=10cm,∴由勾股定理得:PA=8cm,∴PA=PB=8cm;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=16cm,故答案为:16.【点睛】本题考查的是切线长定理,分析图形时关键是要仔细探索,找出图形的各对相等切线长.17.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系解析:相交 【分析】根据勾股定理,5AB =.作CD AB ⊥于点D ,则CD 的长即为圆心C 到AB 的距离.利用等积法求出CD 的长,与半径比较大小,再作判断. 【详解】解: 如图, 作CD AB ⊥于点D .∵Rt ABC 的两条直角边3BC =,4AC =,∴斜边5AB =.1122ABC S AC BC AB CD ∆==,即 512CD , 2.4CD .半径是2.5 2.4>, ∴直线与圆C 相交 .【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键.18.【分析】由旋转角∠BAB′=30°可知∠DAB′=90°﹣30°=60°;构造全等三角形用S 阴影部分=S 正方形﹣S 四边形AB′ED 计算面积即可【详解】如图连接根据旋转角为可知在与中在中故答案为:【点 解析:36123-【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;构造全等三角形,用S 阴影部分=S 正方形﹣S 四边形AB′ED,计算面积即可.【详解】如图,连接AE ,根据旋转角为30,可知,30BAB '∠=︒,9060DAB ∴∠=︒-30︒='︒,在Rt ADE △与Rt AB E '中,AD AB AE AE '=⎧⎨=⎩()Rt ADE Rt AB E HL '∴△△≌,1302EAD B AD DAB '∴∠=∠=∠='︒,∴在Rt ADE △中,6AD =,23ED =,112623632ADE AD E S D ⋅∴=⨯=⨯=△, 1223ADEB ADE S S '=∴=△, 2636ABCD S ==正方形,36123ADEB ABCD S S S '∴-==阴影正方形-,故答案为:36123-.【点睛】本题考查了正方形的性质及旋转的性质,熟练添加辅助线,证明全等,灵活计算阴影面积是解题关键.19.或【分析】由表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3. 故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.20.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意 解析:3【分析】根据一元二次方程的定义解答. 【详解】∵()21350mm xmx -+-+=是一元二次方程,∴212m -=且30m +≠, 解得3m =,故答案为:3. 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.三、解答题21.(1)30名;(2)见解析;(3)23【分析】(1)由D 选项的人数及其百分比可得总人数;(2)总人数减去A 、C 、D 选项的人数求得B 的人数即可; (3)画树状图列出所有等可能结果,根据概率公式求解可得. 【详解】解:(1)本次调查的学生人数为620%30÷=(名); (2)B 选项的人数为3039612---=(名), 补全图形如下:(3)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种, ∴被选中的两人恰好是一男生一女生的概率为4263=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22.公平,图表见解析 【分析】画出树状图,求出配成紫色的概率判断即可. 【详解】解:这个游戏对双方公平,理由如下: 画树状图如下:由树状图可知,所有等可能的结果共有6种,其中能配成紫色的结果有3种, ∴()31==62P 小颖去,()31==62P 小亮去, ∵11=22, ∴这个游戏对双方是公平的. 【点睛】本题考查了游戏公平性的判断,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,画出树状图,求出各自获胜的概率是解答本题的关键. 23.(1)见解析;(2)20° 【分析】(1)根据∠AOD=∠BOE 可知AD BE ,再由AD CE =即可得出结论;(2)先根据等腰三角形的性质求出∠BOE 的度数,再由BE=CE 可得出∠BOE=∠COE ,根据补角的定义即可得出结论. 【详解】解:(1)证明:∵∠AOD=∠BOE , ∴ADBE .∵AD CE =, ∴BE CE =, ∴BE=CE ;(2)∵∠B=50°,OB=OE , ∴∠BOE=180°-50°-50°=80°. ∵由(1)知,BE=CE , ∴∠COE=∠BOE=80°, ∴∠AOC=180°-80°-80°=20°. 【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键. 24.(1)作图见解析;(2)()22,3.B - 【分析】(1)利用网格特点和旋转的性质,画出点A 、B 的对称点11,A B ,即可得到11OA B ; (2)先写出1B 点的坐标,然后根据关于原点对称的点的坐标特征写出点2B 的坐标. 【详解】解:(1)如图,11OA B 为所作;(2)1B 点的坐标为(-2,3),所以点1B 关于原点O 对称的点2B 的坐标为(2,-3). 【点睛】本题考查了作图旋转变换,根据旋转的性质,可以作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形. 25.(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050. 【分析】(1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可; (2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解. 【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得:12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++;(3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050. 【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键. 26.(1)112x =,23x =;(2)11x =,252x =-【分析】(1)先把方程化为一般式,然后利用因式分解法解方程; (2)利用因式分解法求解. 【详解】解:(1)2x 2-7x+3=0, (2x-1)(x-3)=0, 2x-1=0或x-3=0, 所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0, 因式分解得,(2x+5)(x-1)=0, ∴x-1=0,2x+5=0, ∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
新初三数学上期末第一次模拟试题含答案

新初三数学上期末第一次模拟试题含答案一、选择题1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <12.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .3.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形 4.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023B .2021C .2020D .2019 5.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣16.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .97.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个8.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .169.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 10.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =2 11.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2二、填空题13.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.14.若点A (-3,y 1)、B (0,y 2)是二次函数y=-2(x -1)2+3图象上的两点,那么y 1与y 2的大小关系是________(填y 1>y 2、y 1=y 2或y 1<y 2).15.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.16.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 17.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.18.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____.19.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.20.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40° B.50° C.60° D.20°三、解答题21.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.22.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.23.如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D 表示).24.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示). ()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.25.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具 童车 童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.2.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.4.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=;【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.5.B解析:B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.6.C解析:C【解析】试题解析:∵m ,n 是方程x 2﹣2x ﹣1=0的两根∴m 2﹣2m=1,n 2﹣2n=1∴7m 2﹣14m=7(m 2﹣2m )=7,3n 2﹣6n=3(n 2﹣2n )=3∵(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8∴(7+a )×(﹣4)=8∴a=﹣9.故选C .7.B解析:B【解析】【分析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.8.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;10.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.11.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.12.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.二、填空题4【解析】【分析】根据已知建立平面直角坐标系进而求出二次函数解析式再通过把代入抛物线解析式得出水面宽度即可得出答案【详解】建立平面直角坐标系设横轴x 通过AB 纵轴y 通过AB 中点O 且通过C 点则通过画解析:42-4【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.- 代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±, 所以水面宽度增加到242 4.故答案是: 42 4.【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键. 14.y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1由a=-2可知当x >1时y 随x 增大而减小当x <1时y 随x 增大而增大因此由-3<0<1可知y1<y2故答案为y1<y2点睛:此题主要考查解析:y 1<y 2【解析】试题分析:根据题意可知二次函数的对称轴为x=1,由a=-2,可知当x >1时,y 随 x 增大而减小,当x <1时,y 随x 增大而增大,因此由-3<0<1,可知y 1<y 2.故答案为y 1<y 2.点睛:此题主要考查了二次函数的图像与性质,解题关键是求出其对称轴,然后根据对称轴和a 的值判断其增减性,然后可判断.15.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k 的方程然后根据一元二次方程的定义确定k 的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+3k=0,解得k 1=0,k 2=﹣3,因为k≠0,所以k 的值为﹣3.故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。
初三数学上期末第一次模拟试题附答案

初三数学上期末第一次模拟试题附答案一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒2.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°3.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <44.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个5.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( ) A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-=6.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( ) A .13B .14C .15D .167.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070D .(1)2x x -=2070 8.下列函数中是二次函数的为( ) A .y =3x -1 B .y =3x 2-1 C .y =(x +1)2-x 2D .y =x 3+2x -3 9.下列判断中正确的是( ) A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3511.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根D .没有实数根12.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④二、填空题13.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.14.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.15.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.16.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______.17.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 18.已知扇形的面积为12πcm 2,半径为12cm ,则该扇形的圆心角是_______. 19.已知二次函数y =a (x +3)2﹣b (a ≠0)有最大值1,则该函数图象的顶点坐标为_____. 20.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S =_____m 2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .三、解答题21.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此方程的根.22.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根. (1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.23.如图,在ABC V 中,AB BC =,120ABC ∠=︒,点D 在边AC 上,且线段BD 绕着点B 按逆时针方向旋转120︒能与BE 重合,点F 是ED 与AB 的交点.(1)求证:AE CD =;(2)若45DBC ∠=︒,求BFE ∠的度数.24.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率. 25.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题: (1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】 【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.2.A解析:A 【解析】 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.3.C解析:C 【解析】 【分析】根据二次函数图象上点的坐标特征即可求得. 【详解】解:当a >0时,抛物线开口向上,则点(0,1)的对称点为(x 0,1), ∴x 0>4,∴对称轴为x=m 中2<m <4, 故选C . 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.4.B解析:B 【解析】 【分析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x =﹣2ba=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.5.C解析:C 【解析】 【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解. 【详解】快递量平均每年增长率为x , 依题意,得:2300(1x)450+=, 故选C . 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.A解析:A 【解析】 【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可. 【详解】 画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是2163=. 故选A . 【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.A解析:A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:∴63P2010==两次红,故选A.11.A解析:A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.二、填空题13.5【解析】【分析】过点M作ME⊥x轴于点EME与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.14.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=353+=38.15.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH则S 四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.16.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次解析:k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.17.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为34,∴63 64n=+,解得:n=2.故答案为2.18.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30°【解析】设圆心角为n°,由题意得:212360nπ⨯=12π,解得:n=30,故答案为30°.19.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.20.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x,则AB=10-x,∴S=34•π•102+14•π•x2+30360•π•(10-x)2=π3(x2-5x+250)=π3(x-52)2+325π4,当x=52时,S取得最小值,∴BC=5 2 .故答案为:(1)88π;(2)52. 【点睛】 本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题21.(1)m >94-;(2)x 1=0,x 2=1. 【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m +2)=9+4m >0 ∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.22.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.23.(1)证明见解析;(2)105BFE ︒∠=【解析】【分析】(1)根据旋转的性质证明ABE CBD ∆≅∆,进而得证;(2)结合(1)得出BED BDE ∠=∠,最后根据三角形内角和定理进行求解.【详解】(1)证明:∵线段BD 绕着点B 按逆时针方向旋转120︒能与BE 重合,∴BD BE =,120EBD ︒∠=,∵AB BC =,120ABC ∠=︒,∴120ABD DBC ABD ABE ∠+∠=∠+∠=︒,即DBC ABE ∠=∠,∴ABE CBD ∆≅∆,∴AE CD =;(2)解:由(1)知,45DBC ABE ∠==∠︒, BD BE =,120EBD ︒∠=, ∴1(180120)302BED BDE ︒︒︒∠=∠=⨯-=, ∴1803045105BFE ︒︒︒︒∠=--=.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,三角形内角和定理,利用旋转的性质证明ABE CBD ∆≅∆是解题的关键.24.13【解析】【分析】分别用字母A ,B ,C 代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A ,B ,C 代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率=39=13.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.25.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.。
初三数学上期末第一次模拟试题含答案

一、选择题1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是( )A .①②B .①④C .②③D .②④ 2.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有一“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是( )A .12B .13C .23D .143.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是( )A .25个B .24个C .20个D .16个4.同时抛掷完全相同的,A B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),两个立方体朝上的数字分别为,x y ,并以此确定(,)P x y ,那么点P 落在函数29y x =-+上的概率为( )A .118B .112C .19D .165.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个6.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A 3B 3C 3π6D 3π6- 7.如图,A ,B ,C 三点在O 上,若120ACB ∠=︒,则AOB ∠的度数是( )A .60︒B .90︒C .100︒D .120︒ 8.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .49.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D . 10.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A .3B .3C 13D 1511.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+B .231y x =-C .()2321y x =++D .()2321y x =-+ 12.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20二、填空题13.有四张不透明卡片,分别写有实数14,﹣1,-1-52,15,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是__.14.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.15.将分别标有“衢”“州”“有”“礼”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别.每次摸球前先搅拌均匀,随机摸出一球,放回;搅拌均匀,再随机摸出一球.则两次摸出的球,一个球是“衢”,一个球是“州”的概率是_____.16.已知O的面积为π,则其内接正六边形的边长为______.17.如图,△ABC中,∠A=60°,若O为△ABC的内心,则∠BOC的度数为______度.18.在平面直角坐标系中,将点P(﹣3,2)绕点Q(﹣1,0)顺时针旋转90°,所得到的对应点P'的坐标为____.19.一条抛物线与x轴相交于A,B两点(点A在点B的左侧),若点M,N的坐标分别为(-1,-2),(1,-2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为__________.20.已知a2+1=3a,b2+1=3b,且a≠b,则11a b+=_____.三、解答题21.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图.(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.22.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.23.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).24.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3).(1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2.25.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C向右平移n个单位,再次落在二次函数图象上,求n的值;(3)对于这个二次函数,若自变量x的值增加4时,对应的函数值y增大,求满足题意的自变量x的取值范围.26.某校园有一块正方形的空地,若从这块空地上划出部分区域栽种鲜花(如图阴影部分为花带),横向花带宽为2m,纵向花带宽为1m,栽种鲜花后剩余空地面积为42m2,求原正方形空地的边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据随机事件、不可能事件、必然事件的定义逐个判断即可得.【详解】①打开电视机,正在播广告,是随机事件;②从只装红球的口袋中,任意摸出一个球恰好是白球,是不可能事件;③同性电荷,相互排斥,是必然事件;④抛掷硬币1000次,第1000次正面向上,是随机事件;综上,为随机事件的是①④,故选:B .【点睛】本题考查了随机事件、不可能事件、必然事件,掌握理解各定义是解题关键.2.B解析:B【分析】根据题意画出树状图,得出所有可能数和所求情况数,根据概率公式即可得答案.【详解】根据题意画出树状图:∵事件发生的所有可能性为12种;抽到的汉字恰为相反意义的事件为4种;∴抽到的汉字恰为相反意义的概率是:412=13, 故选:B .【点睛】本题考查列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数的比;正确画出树状图,熟练掌握概率公式是解题关键. 3.C解析:C【分析】首先设口袋中白色棋子有x 个,再结合题目已知可得口袋中摸到白色棋子的概率为80%,然后利用白色棋子的个数除以棋子的总个数列方程求解即可,注意分式方程要验根.【详解】解:设口袋中白色棋子有x 个,因为摸到白色棋子的频率稳定在80%附近,所以从口袋中摸到白色棋子的概率为80%, 所以,80%5x x =+ 解得:x=20 经检验,x=24是原方程的解,所以口袋中白色棋子的个数可能是20个故选:C【点睛】本题考查的是利用频率估计概率,解答此类题目的关键是熟练掌握利用频率估计概率的知识,由题目信息得到口袋中摸到白色棋子的概率为80%,这是解题的突破口.4.B解析:B【分析】画树状图展示所有36种等可能的结果数,其中点(2,5)、(3,3)、(4,1)在直线y=-2x+9上,然后根据概率公式求解即可.【详解】解:画树状图为:共有36种等可能的结果数,其中点(2,5)、(3,3)、(4,1)在直线y=-2x+9上,所以点P在直线y=-2x+9上的概率为31 3612.故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5.B解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆;(2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B.【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π6-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.7.D解析:D【分析】在优弧AB上取一点D,连接AD、BD,根据圆内接四边形的性质计算可得∠D,然后根据圆周角定理即可求解.【详解】解:在优弧AB上取一点D,连接AD、BD,∵四边形ADBC 是⊙O 的内接四边形,∴∠D+∠ACB=180°,∵120ACB ∠=︒∴∠D=60°∴∠AOB=120°,故选:D .【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.8.A解析:A【分析】如图,连接OD ,设半径为r ,则OM=6-r;再由垂径定理求出MD 的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键. 9.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A 、既是轴对称又是中心对称图形,故此项正确;B 、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C解析:C【分析】连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.【详解】连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴2222BC CM+=+=3213∴13故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.11.A解析:A【分析】根据二次函数图象的平移规律解答即可.【详解】解:把抛物线231y x =+向上平移2个单位可得233y x =+,故选:A .【点睛】本题考查了二次函数的平移变换,熟悉二次函数的平移规律是解题的关键. 12.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.二、填空题13.【解析】四个数中无理数只有则取到的数是无理数的可能性大小是 解析:14【解析】,则取到的数是无理数的可能性大小是14 14.28【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近所以用黄球的频率乘以总球数求解【详解】解:根据题意得:40×(1﹣30)=28(个)答:口袋中黄球的个数约为28个故答案为:解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.【分析】根据题意画出树状图由树状图知共16种可能的结果两次摸出的球一个球是衢一个球是州的有2个根据概率公式即可算出答案【详解】如图根据树形图可知:所有可能的结果是16个两次摸出的球一个球是衢一个球是解析:1 8【分析】根据题意画出树状图,由树状图知,共16种可能的结果,两次摸出的球,一个球是“衢”,一个球是“州”的有2个,根据概率公式即可算出答案.【详解】如图根据树形图可知:所有可能的结果是16个,两次摸出的球,一个球是“衢”,一个球是“州”的有2个.所以P(一个是“衡”,一个是“州”)=18.故答案为18.【点睛】本题考查的是求事件的概率,求事件的概率时要找准两点:一是全部情况的总数,二是符合条件的情况数目,二者的比值就是其发生的概率.16.1【分析】首先根据圆的面积求出圆的半径再证明△AOB是等边三角形即可得到结论【详解】解:如图的面积为设半径为r∴解得∵OA=OB为等边三角形故故答案为:1【点睛】本题考查的是正多边形和圆熟知正六边形解析:1【分析】首先根据圆的面积求出圆的半径,再证明△AOB是等边三角形即可得到结论.【详解】O 的面积为π,设半径为r ,2S r ππ∴==,∴21r =,解得,1r =, ∵360606AOB ︒∠==︒,OA=OB AOB ∴为等边三角形,故1AB OA ==.故答案为:1【点睛】本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键. 17.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 18.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P (12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.如图,观察图象可知,P'(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.19.-3【分析】根据顶点P在线段MN上移动又知点MN的坐标分别为(-1-2)(1-2)分别求出对称轴过点M和N时的情况即可判断出A点横坐标的最小值【详解】根据题意知点B的横坐标的最大值为3即可知当对称轴解析:-3【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M和N时的情况,即可判断出A点横坐标的最小值.【详解】根据题意知,点B的横坐标的最大值为3,即可知当对称轴过N点时,点B的横坐标最大,此时的A点坐标为(-1,0),当对称轴过M点时,点A的横坐标最小,此时B点坐标为(1,0),此时A点的坐标最小为(-3,0),故点A的横坐标的最小值为-3,故答案为:-3.【点睛】本题主要考査二次函数的综合,解答本题的关键是熟练掌握二次函数的图象对称轴的特点.20.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.三、解答题21.(1)学生人数21人,画图见解析;(2)180名;(3)23. 【分析】(1)首先求出总人数,进而可求出喜爱排球运动的学生人数,并补全条形图即可; (2)由总人数乘以喜爱篮球运动的学生的百分数即可;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解.【详解】(1)由题意可知调查的总人数1220%60=÷=(人)所以喜爱排球运动的学生人数6035%21=⨯=(人)补全条形图如图所示:(2)∵该中学七年级共有400名学生,∴该中学七年级学生中喜爱篮球运动的学生有()400135%20%180⨯--=名. 答:该中学七年级学生中喜爱篮球运动的学生有180名.(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8, 所以抽取的两人恰好是一名男生和一名女生概率82123==. 【点睛】此题考查条形统计图,列表法与树状图法,解题关键在于利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.22.(1)13;(2)23. 【分析】(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.【详解】(1)三种等可能的情况数, 则恰好选中绳子AA 1的概率是13; (2)列表如下:AB AC BC A 1B 1 × √ √ A 1C 1√ × √ B 1C 1 √ √ ×6种, 则P=6293=. 23.(1)3m π;(2)127(52m -. 【分析】 (1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2,∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.45-+=-, 答:点B 到地面的距离为127()52m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)将三个顶点分别向下平移5个单位得到其对应点,再首尾顺次连接即可得;(2)将三个顶点分别绕原点O 逆时针旋转90°后得到其对应点,再首尾顺次连接即可得.【详解】解:(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示.本题主要考查作图-旋转变换与平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得到其变换后对应点.25.(1)234y x x =--;(2)3n =;(3)12x >-【分析】(1)把A,B 代入解析式求出b,c ,即可得到抛物线解析式;(2)根据抛物线的对称性即可求得;(3)分三种情况讨论,即可求得满足题意的自变量x 的取值范围.【详解】解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -, ∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为()0,4-, 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为()3,4-.∴3n CD ==.(3)依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ② 当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥.综上所述,自变量x 的取值范围是12x >-. 【点睛】 本题考查了抛物线与x 轴的交点,待定系数法求二次函数的解析式,坐标与图形的变换−平移,二次函数的性质,分类讨论是解题的关键.26.原正方形空地的边长为8m .【分析】观察图形得到阴影面积=正方形的面积-空白图形的面积,列方程解决问题.【详解】解:设正方形空地的边长为xm ,由题意得()()2142x x --=, 化简得23400x x --=,解得1285x x ==-,,因为0x >,故8x =,答:原正方形空地的边长为8m .【点睛】此题考查一元二次方程的实际应用—图形面积类问题,观察图形得到阴影面积=正方形的面积-空白图形的面积,由此列方程解决问题的思路是解题的关键.。
初三数学上期末第一次模拟试卷含答案

一、选择题1.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次()A.只有①正确B.只有②正确C.①②都正确D.①②都错误2.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是()A.25个B.24个C.20个D.16个3.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.1164.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为()A.38B.116C.12D.235.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.30°C.36°D.60°6.已知O的半径为5,若4PO ,则点P与O的位置关系是()A.点P在O内B.点P在O上C.点P在O外D.无法判断7.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.1028.一个圆锥的底面直径为4 cm,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于()A.4πcm2B.8πcm2C.12πcm2D.16πcm2第II卷(非选择题)请点击修改第II卷的文字说明参考答案9.如图,已知在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,则以下结论:①DE+BF=EF,②BF=47,③AF=307,④S△AEF=507中正确的是()A.①②③B.②③④C.①③④D.①②④10.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(-3,-4)则点A′的坐标为A.(3,2)B.(3,3)C.(3,4)D.(3,1)11.某同学在利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y … ﹣3 0 ﹣1 0 3 …) A .03x y =⎧⎨=-⎩ B .21x y =⎧⎨=-⎩ C .30x y =⎧⎨=⎩ D .43x y =⎧⎨=⎩ 12.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=二、填空题13.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.14.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.15.有四张背面完全相同的卡片,正面上分别标有数字﹣2,﹣1,1,2.把这四张卡片背面朝上,随机抽取一张,记下数字为m ;放回搅匀,再随机抽取一张卡片,记下数字为n ,则y =mx+n 不经过第三象限的概率为_____.16.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.17.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.18.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD =15°时,BC ∥DE ,当90°<∠BAD <180°时,∠BAD 的度数为___.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.三、解答题21.小豪设计一款小游戏,将分别标有数字2,3,4,6的四张质地,大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张的数字记做点A 的横坐标(不放回),再抽取一张的数字记做点A 的纵坐标,用树状图或表格表示出所有的可能,并求出点A 在反比例函数12y x=的图象上的概率.22.某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如下两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有__________人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.23.如图,AB 为O 的弦,,C D 是直线AB 上两点,且AC BD =,求证:C D ∠=∠.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为(2,4)-.(1)以原点O 为旋转中心,画出把ABC 逆时针旋转90°的图形111A B C △;(2)在(1)的条件下,求出经过111A B C 、、三点的抛物线的解析式.25.已知:二次函数2y x bx c =++过点(0,-3),(1,-4)(1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .26.某公司一月份营业额为10万元,若二、三月份增长率相同,到三月份时,营业额达到12.1万元.求二、三月份的平均增长率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【详解】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误; ①和②都是错误的.故选D .【点睛】本题考查概率的相关概念.不确定事件是可能发生也可能不发生的事件.正确理解随机事件、不确定事件的概念是解决本题的关键.2.C解析:C【分析】首先设口袋中白色棋子有x 个,再结合题目已知可得口袋中摸到白色棋子的概率为80%,然后利用白色棋子的个数除以棋子的总个数列方程求解即可,注意分式方程要验根.【详解】解:设口袋中白色棋子有x 个,因为摸到白色棋子的频率稳定在80%附近,所以从口袋中摸到白色棋子的概率为80%, 所以,80%5x x =+ 解得:x=20 经检验,x=24是原方程的解,所以口袋中白色棋子的个数可能是20个故选:C【点睛】本题考查的是利用频率估计概率,解答此类题目的关键是熟练掌握利用频率估计概率的知识,由题目信息得到口袋中摸到白色棋子的概率为80%,这是解题的突破口. 3.C解析:C【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112P=;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.4.D解析:D【分析】分别计算所有情况数及满足条件的情况数,代入概率计算公式,可得答案.【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则共有9种情况,分别为:(-1,-1),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),其中函数y=kx+b是增函数有6种情况,分别为:(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),故函数y=kx+b是增函数的概率P=62 93 =,故选:D.【点睛】此题考查概率计算公式,解题关键在于列出所有可能出现的情况.5.C解析:C【分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.【详解】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=1(180°﹣∠AOB)=36°,2故选:C.【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.6.A解析:A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.7.C解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.8.D解析:D【分析】设展开后的圆半径为r,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r,由题可得:4π=2rπ解得r=8∴S扇形=14π×82=16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键.9.D解析:D【分析】利用全等三角形的性质及勾股定理求出BF的长,再利用勾股定理求出AF的长,从而求得GF,即可求解出△AEF的面积,最终即可判断出所有选项.【详解】∵将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,∴AG=AE,∠DAE=∠BAG,DE=BG,∵∠EAF=45°,∴∠DAE+∠BAF=45°=∠GAB+∠BAF=∠GAF=45°,∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=47,∴BF=47,AF②正确,③错误,∴GF =3+47=257, ∴S △AEF =S △AGF =12AB ×GF =507, 故④正确,故选:D .【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.10.A解析:A【解析】试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称11.A解析:A【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案.【详解】∵x =1和x =3时,y =0;∴抛物线的对称轴为直线x =2,∴顶点坐标为(2,﹣1),∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0,∴x =0,y =﹣3错误.故选:A .【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.12.D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题13.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球的编号之和为偶数的结果数然后根据概率公式求解【详解】解:根据题意画图如下:共有16种等情况数其中两次摸出的球的编号之和为偶数的有10种则解析:58【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解. 【详解】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种, 则两次摸出的球的编号之和为偶数的概率是1016=58. 故答案为:58. 【点睛】此题考查列树状图求概率问题,难度一般.14.【分析】由直线不过第二象限可得a >0b≤0画出树状图可得出所有可能的结果找出a >0b≤0的结果数利用概率公式即可得答案【详解】∵直线不过第二象限∴a >0b≤0画树状图如下:∵共有6种等可能的结果使得解析:13【分析】由直线y ax b =+不过第二象限可得a >0,b≤0,画出树状图可得出所有可能的结果,找出a >0,b≤0的结果数,利用概率公式即可得答案. 【详解】∵直线y ax b =+不过第二象限, ∴a >0,b≤0, 画树状图如下:∵共有6种等可能的结果,使得直线y ax b =+不过第二象限的结果有2种, ∴a b 、的取值使得直线y ax b =+不过第二象限的概率是26=13, 故答案为:13【点睛】本题考查了一次函数的性质及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】根据题意列表然后根据表格求得所有等可能的结果与直线y =mx+n 不经过第三象限的的情况数根据概率公式求解即可【详解】列表得:mn -2 -1 1 2 -2 (-2-2) (-2-1) (-2解析:14【分析】根据题意列表,然后根据表格求得所有等可能的结果与直线y =mx+n 不经过第三象限的的情况数,根据概率公式求解即可. 【详解】 列表得: m n-2-112其中使得直线y =mx+n 不经过第三象限有(-2,1)、(-2,2)、(-1,1)、(-1,2)共4种情况, 所以直线y =mx+n 不经过第三象限的概率为:41164=, 故答案为:14. 【点睛】本题考查了列表法或树状图法求概念,一次函数的图象与性质,熟练掌握相关知识是解题的关键.16.【分析】根据扇形的面积公式S 扇形=即可求得【详解】解:∵S 扇形=∴r2==3∴r=(负值舍去)故答案为:【点睛】本题主要考查扇形面积的计算解题的关键是掌握扇形面积的计算公式:S 扇形=【分析】根据扇形的面积公式S 扇形=2360n r π 即可求得. 【详解】解:∵S 扇形=2360n r π,∴r 2=360360120S n πππ==3, ∴(负值舍去),【点睛】本题主要考查扇形面积的计算,解题的关键是掌握扇形面积的计算公式:S 扇形=2360n r π.17.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF 的边长为2∴正六边形ABCDEF 的面积是:6××22=∠FAB =∠EDC解析:83π【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题. 【详解】解:∵正六边形ABCDEF 的边长为2, ∴正六边形ABCDEF 的面积是:6×3×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π,故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.18.105°或135°【分析】根据题意画出图形再由平行线的判定定理即可得出结论【详解】解:如图(1)当AC ∥DE 时∠BAD=∠DAE=45°;如图(2)当BC ∥AD 时∠DAB=∠B=60°;如图(3)当解析:105°或135° 【分析】根据题意画出图形,再由平行线的判定定理即可得出结论. 【详解】解:如图(1),当AC ∥DE 时,∠BAD =∠DAE =45°; 如图(2),当BC ∥AD 时,∠DAB =∠B =60°; 如图(3),当BC ∥AE 时, ∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;如图(4),当AB ∥DE 时, ∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.∴当90°<∠BAD <180°时, ∠BAD =105°或135°. 故答案为:105°或135°. 【点睛】本题考查的是旋转的性质,平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对 解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论 【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上, ∵y= 3x 2+12x+m 的对称轴x=b2a-=-2,开口向上, ∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2, C 在对称轴右侧,y 随x 的增大而增大, ∵1>-1, ∴y 3>y 1,, ∴y 3>y 1>y 2, 故答案为:y 3>y 1>y 2. 【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项解析:-4 【分析】根据方程根的定义,把0x =代入原方程,求出m 的值. 【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程, ∴10m -≠,即1m ≠, ∴4m =-. 故答案是:4-. 【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.三、解答题21.(1)抽到奇数的概率为14;(2)点A 在反比例函数12y x=的图象上的概率为13. 【分析】(1)由概率公式即可得出结果;(2)画树状图展示所有12种等可能的结果数,找出点A 在反比例函数12y x=的图象上的结果数,然后根据概率公式求解. 【详解】(1)∵四张完全相同的不透明卡片,其正面分别写有数字2,3,4,6,奇数只有3这1张,∴随机抽取一张,求抽到奇数的概率为:14; (2)画树状图为:共有12种等可能的结果数,其中点A 在反比例函数12y x=的图象上的结果数为4, 所以点A 在反比例函数12y x=的图象上的概率:41123=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率. 22.(1)60;(2)图详见解析,144°;(3)23【分析】(1)由摄影小组的人数及其对应的百分比可得总人数;(2)用(1)得到的总人数减去其它各小组的人数即可得到航模小组的人数,从而补全条形统计图,再用航模小组的人数除以总人数乘以360°即可得到“航模”所对应的圆心角的度数;(3)根据题意列表得出所有等可能的结果数和“恰好是1名男生和1名女生”的结果数,再根据概率公式即可得到答案. 【详解】解:(1)9÷15%=60(人) (2)609151224---=(人) 补全条形统计图如图学生选择课外活动小组的条形统计图2436014460︒︒⨯= 答:在扇形统计图中“航模”所对应圆心角的度数为144°.(3)解:设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1 男2 女1 女2男1(男2,男1)(女1,男1) (女2,男1) 男2 (男1,男2)(女1,男2)(女2,男2) 女1 (男1,女1) (男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)1名男生和1名女生的情况有8种.82(11)123∴==男女P . 【点睛】本题考查了列表法或树状图法求概率以及条形图和扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比. 23.见解析 【分析】过O 作OH ⊥AB 于H ,则AH =BH ;再根据线段的和差关系可得:CH =DH ,即OH 是CD 的线段垂直平分线,所以OC =OD ,继而即可求证结论.【详解】证明:如图过点O 作OH ⊥AB ,于点H . ∵AB 为O 的弦,∴AH =BH 又∵AC =BD∴AC +AH =BD +BH , 即CH DH = 又OH ⊥AB , ∴OC =OD , ∴∠C =∠D .【点睛】本题考查了垂径定理,解答本题的关键是作辅助线,利用垂径定理和线段垂直平分线的性质证明OC =OD .24.(1)△A 1B 1C 1为所求见详解图;(2)2210433y x x =-+-. 【分析】(1)先连结OA 、OB 、OC ,以O 点为旋转中心,分别以OA 、OB 、OC 逆时针旋转90º到OA 1、OB 1、OC 1,再顺次连结A 1B 1,B 1C 1,C 1A 1即可(2)先求出A 、B 、C 三点坐标,结合旋转后的位置求出A 1(1,0),B 1(5,0),C 1(4,2),由A 1(1,0),B 1(5,0),两点在x 轴上,利用交点式抛物线解析式设出函数解析式,把C 1坐标代入求出a 值,再化为一般式即可 【详解】(1)如图所示,连结OA 、OB 、OC ,以O 点为旋转中心,分别以OA 、OB 、OC 逆时针旋转90º到OA 1、OB 1、OC 1,再顺次连结A 1B 1,B 1C 1,C 1A 1,则△A 1B 1C 1为所求;(2)由A (0,-1),B (0,-5),C (2,-4)则A 1(1,0),B 1(5,0),C 1(4,2), 由A 1(1,0),B 1(5,0),两点在x 轴上,设出经过111A B C 、、三点的抛物线的解析式为()()15y a x x =--, 把C 1(4,2)代入抛物线的解析式,()()24145a =--,解得23a =-, ()()2153y x x =---,2210433y x x =-+-.【点睛】本题考查旋转变换问题,掌握旋转作图的方法与步骤,会通过旋转后的位置,确定点的坐标,会用待定系数法求抛物线解析式是解题关键. 25.(1)2-2-3y x x =;(2)见解析;(3)-4≤y <0 【分析】(1)把已知点的坐标代入函数解析式,即可求出答案; (2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可. 【详解】解:(1)将点(0,-3),(1,-4)代入二次函数2y x bx c =++得:314c b c =-⎧⎨++=-⎩, 解得:23b c =-⎧⎨=-⎩,所以,二次函数的表达式为:223y x x =--; (2)二次函数的图象如下:(3)∵()214y x =-- ∴当x =1时,有最小值-4, 当x =0时,y =(0−1)2-4=−3, 当x =3时,y =(3−1)2-4=0, 又对称轴为x =1,∴当0≤x <3时,y 的取值范围是−4<y≤0. 【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式. 26.这两个月营业额的平均增长率是10% 【分析】用增长后的量=增长前的量×(1+增长率),即可表示出三月份的营业额,根据三月份营业额达到12.1万元,即可列方程求解. 【详解】解:设这两个月营业额的平均增长率是x , 由题意可得:10(1+x )2=12.1, 解得x 1=0.1;x 2=﹣2.1(不合题意舍去). 答:这两个月营业额的平均增长率是10%. 【点睛】此题主要考查了求平均变化率的问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学上期末第一次模拟试题含答案一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x += D .()11980x x -=2.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠33.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为( )A .B .C .D .4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒5.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2 C .(24−54π)cm 2D .(24−256π)cm 2 6.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°7.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .98.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >49.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( ) A .0,4B .-3,5C .-2,4D .-3,110.抛物线2y x 2=-+的对称轴为 A .x 2=B .x 0=C .y 2=D .y 0=11.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 212.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150二、填空题13.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.14.如图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE =_____.15.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.16.函数y =x 2﹣4x +3的图象与y 轴交点的坐标为_____.17.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S =_____m 2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .18.请你写出一个有一根为0的一元二次方程:______.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.20.若一元二次方程x2+px﹣2=0的一个根为2,则p=_____,另一个根是_____.三、解答题21.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC =DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.22.关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.23.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.24.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.2.D解析:D 【解析】 【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可. 【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.3.C解析:C 【解析】 【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线cy x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象, 可得a <0,b >0,c <0, ∴y=ax+b 过一、二、四象限,双曲线cy x=在二、四象限, ∴C 是正确的. 故选C . 【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.4.C解析:C 【解析】 【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.5.A解析:A 【解析】 【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm ,则2AC=5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A . 【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.6.C解析:C 【解析】试题解析:∵CC′∥AB , ∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′, ∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°, ∴∠CAC′=∠BAB′=50°. 故选C .7.C解析:C 【解析】试题解析:∵m ,n 是方程x 2﹣2x ﹣1=0的两根 ∴m 2﹣2m=1,n 2﹣2n=1∴7m 2﹣14m=7(m 2﹣2m )=7,3n 2﹣6n=3(n 2﹣2n )=3 ∵(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8 ∴(7+a )×(﹣4)=8 ∴a=﹣9. 故选C .8.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.9.B解析:B 【解析】 【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c += ∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --= 解得:13x =-,25x = 故选:B . 【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.10.B解析:B 【解析】 【分析】根据顶点式的坐标特点,直接写出对称轴即可. 【详解】解∵:抛物线y=-x 2+2是顶点式, ∴对称轴是直线x=0,即为y 轴. 故选:B . 【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为(h ,k ),对称轴为直线x=h .11.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C12.B解析:B 【解析】 【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.二、填空题13.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S 阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.14.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵A B是⊙O的直径∴劣弧的度数为180°﹣78°=1解析:68°【解析】【分析】根据∠AOE的度数求出劣弧¶AE的度数,得到劣弧¶BE的度数,根据圆心角、弧、弦的关系定理解答即可.【详解】∵∠AOE=78°,∴劣弧¶AE的度数为78°.∵AB是⊙O的直径,∴劣弧¶BE的度数为180°﹣78°=102°.∵点C、D是弧BE的三等分点,∴∠COE23=⨯102°=68°.故答案为:68°.【点睛】本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键.15.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.16.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.17.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x ,则AB=10-x ,∴S=34•π•102+14•π•x 2+30360•π•(10-x)2 =π3(x 2-5x+250) =π3(x-52)2+325π4, 当x=52时,S 取得最小值, ∴BC=52. 故答案为:(1)88π;(2)52. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.18.【解析】【分析】根据一元二次方程定义只要是一元二次方程且有一根为0即可【详解】可以是=0等故答案为:【点睛】本题考核知识点:一元二次方程的根解题关键点:理解一元二次方程的意义解析:240x x -=【解析】【分析】根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.【详解】可以是240x x -=,22x x -=0等.故答案为:240x x -=【点睛】本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.-1-1【解析】【分析】设方程的另一根为t 根据根与系数的关系得到2+t=-p2t=-2然后先求出t 再求出p 【详解】解:设方程的另一根为t 根据题意得2+t =﹣p2t =﹣2所以t =﹣1p =﹣1故答案为:解析:-1 -1【解析】【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-p ,2t=-2,然后先求出t ,再求出p .【详解】解:设方程的另一根为t,根据题意得2+t=﹣p,2t=﹣2,所以t=﹣1,p=﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1•x2=ca.三、解答题21.(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y 轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D 点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P 为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DPDF EF DE==求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴10{3b cc-+==-,解得2{3bc=-=-,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得DP=3, 过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG == 解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴OC ODDP DC=,即3DP=10,解得DP=310,过点P作PG⊥y轴于点G,则DG PG DPDF EF DE==,即3103110DG PG==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.22.(1)m>94-;(2)x1=0,x2=1.【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m>0即可求出m的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m+2)=9+4m>0∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.23.(1)13;(2)16. 【解析】【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)=13; (2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)=212=16. 【点睛】本题考查列表法与树状图法.24.(1)证明见解析;(229【解析】【分析】(1)连结OA 、OD ,如图,根据垂径定理的推理,由D 为BE 的下半圆弧的中点得到OD ⊥BE ,则∠D+∠DFO=90°,再由AC=FC 得到∠CAF=∠CFA ,根据对顶角相等得∠CFA=∠DFO ,所以∠CAF=∠DFO ,加上∠OAD=∠ODF ,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC 是⊙O 的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt △ODF 中利用勾股定理计算DF 的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF=225+2=29.【点睛】本题考查切线的判定.25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。