专题04 椭圆知识点和常见题型(原卷版)
椭圆知识点以及题型总结

椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。
其中的定点F1和F2称为焦点,常数2a称为长轴的长度。
椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。
椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。
1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。
其中(h,k)是椭圆的中心坐标。
2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。
而椭圆的半短轴的长度等于b。
3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。
即PF1+PF2=2a。
4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。
离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。
5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。
其中θ的取值范围一般为0≤θ≤2π。
二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。
解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。
2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。
解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。
3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。
(完整版)椭圆知识点及经典例题汇总,推荐文档

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
x2
②椭圆
y2
1 (a b 0) 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为
a2 b2
A1 (a,0) , A2 (a,0) , B1 (0,b) , B2 (0,b)
③线段 A1 A2 , B1B2 分别叫做椭圆的长轴和短轴, A1 A2 2a , B1B2 2b 。 a 和 b 分
( BF1 BF2 a) ; ( OF1 OF2 c) ; A1B A2 B a 2 b2 ;
(3) A1F1 A2 F2 a c ; A1F2 A2 F1 a c ; a c PF1 a c ;
知识点四:椭圆第二定义
一动点到定点的距离和它到一条定直线的距离的比是一个 (0,1) 内常数 e ,那么这个点的轨
若 ( PF1 PF2 F1F2 ) ,则动点 P 的轨迹无图形.
知识点二:椭圆的标准方程
1.当焦点在 x 轴上时,椭圆的标准方程: x 2 y 2 1 (a b 0) ,其中 c 2 a 2 b2 a2 b2
2.当焦点在 y 轴上时,椭圆的标准方程: y 2 x 2 1 (a b 0) ,其中 c 2 a 2 b2 ; a2 b2
3.椭圆的参数方程
x
y
a b
cos sin
(为参数)
注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆
的标准ቤተ መጻሕፍቲ ባይዱ程;
2.在椭圆的两种标准方程中,都有 (a b 0) 和 c 2 a 2 b2 ;
3.椭圆的焦点总在长轴上.
当焦点在 x 轴上时,椭圆的焦点坐标为 (c,0) , (c,0) ;
高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点F i F 2距离和等于常数 2a (大于F^2 )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 2c .椭圆的几何性质:以2 2务每 1 a b 0为例a b2 2X y1. 范围:由标准方程可知,椭圆上点的坐标X, y 都适合不等式 — 1,召 1,即a bx a, y b 说明椭圆位于直线 xa 和yb 所围成的矩形里(封闭曲线) .该性质主要用于求最值、轨迹检验等问题 .2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
4.长轴、短轴:5.离心率椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关. 2 2a ,从而b ac 越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而b 越大,椭圆越接近圆。
2b 26. 通径(过椭圆的焦点且垂直于长轴的弦) ,——a7. 设F 1、F 2为椭圆的两个焦点, P 为椭圆上一点,当P 、F 1、F 2三点不在同一直线上时,3.顶点(椭圆和它的对称轴的交点)有四个:Aa,0、 A^ a,0、B i 0, b 、B 2 0, b .AA2叫椭圆的长轴,A 1A 22a, a 是 长半轴长;B 1B 2叫椭圆的短轴,B-|B 2 2b,b 是短半轴长.(1) 椭圆焦距与长轴的比 ea c 0,(2)Rt OB 2F 2, B 2F 2OB 22OF 2 ,即 a 2 b 22c .这是椭圆的特征三角形,并且cos OF 2B 2的值是椭圆的离心率.近于 .当e 接近于1时,c 越接P 、F ,、F 2构成了一个三角形一一焦点三角形.依椭圆的定义知:PF i PF 2 2a, F 1F 2 2c .(二) 运用的知识点及公式 1、 两条直线I ,: y k ,x bi ,l 2: y k 2x b>垂直:则k i k 2 1 ;两条直线垂直,则直线所在的向量£&222、 韦达定理:若一元二次方程ax bx c 0(a 0)有两个不同的根 x ,,X 2,贝yb cx , x 2, x , x 2 a a3、 中点坐标公式:x 已 x 2 ,y 出 y 2 ,其中x, y 是点A(x ,, y ,), B(x 2, y 2)的中点坐标 2 24、 弦长公式:若点 A(x i ,y i ), B(X 2,y 2)在直线 y kx b(k 0) 上, 则y , kx , b, y kx ? b ,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB | ./(x , x 2)2~(y ,_竜(x , x 2)2 (kx , kx 2)2k 2)(x ,①2, (, ^)[(x ,X 2)? 4x ,X 2】或者AB (x x>)2(y y(三) 转方向:方向一:向斜率转化,变为函数最值及最优解问题,或者变为不等式问题 方向二:向距离转化, 2(,k 2)[(y , y 2) 4y ,y 2]。
椭圆基本知识点与题型总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的简单几何性质标准方程12222=+by a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点、焦距)0,(1c F -,)0,(2c F ,cF F 221=),0(1c F -,),0(2c F cF F 221=范围a x ≤,b y ≤b x ≤,ay ≤顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±对称性关于x 轴、y 轴,轴对称,关于原点中心对称轴长长轴长=a 2,短轴长=b2离心率()10122<<-==e ab ac e e 越小,椭圆越圆;e 越大,椭圆越扁通径过焦点且垂直于长轴的弦,其长ab 22(通径为最短的焦点弦)准线方程ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -=01ey a PF +=,02ey a PF -=1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=(见右图)2.椭圆的一般方程:22Ax By C +=()B A C B A 0ABC ≠≠同号,,,,且3.椭圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数)4.椭圆焦点三角形问题(1)焦点三角形周长:ca 22+(2)在21F PF ∆中,有余弦定理:()θcos 2P P 22122212PF PF F F c -+=经常变形为:()()θcos 22-PF 221212212PF PF PF PF PF c -+=即:()()θcos 22-22212122PF PF PF PF a c -=(3)焦点三角形面积2tan cos 1sin sin 21S 2221P 21θθθθb b PF PF y c p F F =+=⋅=⋅=∆,其中21PF F ∠=θ5.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。
椭圆的复习(基本知识+常考题型)

椭圆基本知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点12,F F 距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集2121{||||2,2||2}M P PF PF a a F F c =+=>=,这里两个定点12,F F 叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(若1212||||||PF PF F F +=时,P 的轨迹为线段21F F ;若1212||||||PF PF F F +<,则无轨迹)。
2.标准方程: ①焦点在x 轴上:22221(0)x y a b a b+=>>; 焦点12(,0),(,0)F c F c -②焦点在y 轴上:22221(0)y x a b a b+=>>; 焦点12(0,),(0,)F c F c -注意:①在两种标准方程中,总有0a b >>,且222ca b =-;②两种标准方程可用一般形式表示:221x y m n+= 或221mx ny += 二.椭圆的简单几何性质:1.范围:(1)椭圆22221(0)x y a b a b+=>>横坐标a x a -≤≤ ,纵坐标b y b -≤≤(2)椭圆22221(0)y x a b a b+=>> 横坐标b x b -≤≤,纵坐标a y a -≤≤2.对称性:椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.椭圆的顶点:椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率:我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),2221()c b e aa==-0e =是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
椭圆知识点总结附例题

圆锥曲线与方程椭 圆知识点一.椭圆及其标准方程1.椭圆的概念:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};那个地址两个定点F 1,F 2叫椭圆的核心,两核心间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程: 222c a b =-①核心在x 轴上:12222=+by a x (a >b >0); 核心F (±c ,0) ②核心在y 轴上:12222=+bx a y (a >b >0); 核心F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,而且椭圆的核心总在长轴上; ②两种标准方程可用一样形式表示:221x y m n+= 或 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性椭圆关于x 轴y 轴都是对称的,那个地址,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.极点(1)椭圆的极点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 别离叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 别离叫做椭圆的长半轴长和短半轴长。
4.离心率(1)咱们把椭圆的焦距与长轴长的比22c a ,即a c 称为椭圆的离心率, 记作e (10<<e ),22221()b e a a==-c e 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
椭圆及其性质知识点题型总结

椭圆及其性质知识点题型总结研究必备精品知识点——椭圆椭圆是平面内与两定点F1,F2的距离的和等于定长2a(2a>F1F2)的动点P的轨迹,即点集M={P| |PF1|+|PF2|=2a},其中两定点F1,F2叫焦点,定点间的距离叫焦距。
另一种定义是平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|PF/e< d},其中e为离心率(e=1为抛物线;e>1为双曲线;e<1为椭圆)。
利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线。
椭圆有两种标准方程:(1)焦点在x轴上,中心在原点:x²/a²+y²/b²=1(a>b>0);焦点F1(-c,0),F2(c,0)。
其中c²=a²-b²(一个直角三角形);(2)焦点在y轴上,中心在原点:x²/b²+y²/a²=1(a>b>0);焦点F1(0,-c),F2(0,c)。
其中c²=a²-b²。
注意:①在两种标准方程中,总有a>b>0,c²=a²-b²并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax²+By²=1(A>0,B>0,A≠B),当A<B时,椭圆的焦点在x轴上,A>B时焦点在y轴上。
椭圆的参数方程是:焦点在x轴,x=acosθ,y=bsinθ。
椭圆的一般方程是:Ax+By=1(A>0,B>0)。
椭圆有以下性质:对于焦点在x轴上,中心在原点,x²/a²+y²/b²=1(a>b>0)有以下性质:①范围:|x|≤a,|y|≤b;②对称性:对称轴方程为x=0,y=0,对称中心为O(0,0);③顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b(a半长轴长,b半短轴长);④椭圆的准线方程:对于x²/a²+y²/b²=1,左准线过另一个焦点。
《椭圆》知识点归纳和题型归类

《椭圆》知识点归纳和题型归类椭圆的定义和性质- 椭圆是指平面上到两个定点的距离之和等于常数的所有点的轨迹。
- 椭圆有两个焦点和一个长轴和短轴。
- 长轴是通过两个焦点并且垂直于短轴的线段。
- 短轴是通过两个焦点并且垂直于长轴的线段。
- 椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆形。
椭圆的方程和图形特征- 椭圆的标准方程为 (x/a)^2 + (y/b)^2 = 1,其中a和b分别为长轴和短轴的一半。
- 椭圆的图形特征是:中心在原点(0, 0),x轴和y轴为对称轴。
- 椭圆在x轴和y轴上的截距分别为±a和±b。
- 椭圆的焦点坐标为(±c, 0),其中c为焦距,c^2 = a^2 - b^2。
椭圆的常见题型1. 确定椭圆的方程- 已知椭圆的焦点坐标和离心率,求椭圆的方程。
- 已知椭圆的端点坐标和离心率,求椭圆的方程。
- 已知椭圆的顶点坐标和离心率,求椭圆的方程。
2. 求椭圆的参数- 已知椭圆的方程,求椭圆的长轴、短轴、焦点和离心率。
3. 确定点的位置关系- 判断给定点是否在椭圆上。
- 判断给定点是否在椭圆内部或外部。
4. 求椭圆上的点的坐标- 已知椭圆的方程和角度,求椭圆上的点的坐标。
- 已知椭圆的方程和弧长,求椭圆上的点的坐标。
5. 求椭圆的切线和法线- 已知椭圆上的点,求椭圆的切线和法线。
6. 求椭圆的周长和面积- 已知椭圆的长轴和短轴,求椭圆的周长和面积。
以上是关于椭圆的知识点归纳和常见题型归类,希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= =
= =
题型四:弦长公式
例9.已知椭圆 的右焦点 ,且经过点 ,点 是 轴上的一点,过点 的直线 与椭圆 交于 两点(点 在 轴的上方)
(1)求椭圆 的方程;
(2)若 ,且直线 与圆 相切于点 ,求 的长.
例10在平面直角坐标系 中,已知点 , ,设直线 , 的斜率分别为 , ,且 ,记点 的轨迹为 .
由①-②得a2(y -y )+b2(x -x )=0,
∴ =- · =- · .
这样就建立了中点坐标与直线的斜率之间的关系,从而使问题能得以解决.
题型六:定值问题
1.与圆锥曲线有关的最值和范围的讨论常用以下方法
(1)结合圆锥曲线的定义,利用图形中几何量之间的大小关系;
(2)不等式(组)求解法,根据题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式(组),得出参数的变化范围;
专题四:椭圆知识点和常见题型
1、定义:平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆.
即: 。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.
2、椭圆的几何性质:
焦点的位置
焦点在 轴上
焦点在 轴上
图形
标准方程
范围
且
且
顶点
、
、
、
、
轴长
短轴的长 长轴的长
焦点
、
、
焦距
对称性
关于 轴、 轴、原点对称
(1)求椭圆 的方程;
(2)过点 作直线 与椭圆 交于不同两点 、 , 点关于 轴的对称点为 ,问直线 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
例13(定值问题)已知直线 经过椭圆 的左顶点A和上顶点D,设椭圆C的右顶点为B.
(1)求椭圆C的标准方程和离心率e的值;
(2)设点S是椭圆上位于x轴上方的动点,求证:直线AS与BS的斜率的乘积为定值.
例16:椭圆的两个焦点的坐标分别为F1(﹣2,0),F2(2,0),且椭圆经过点( ,﹣ )
(1)求椭圆标准方程.
(2)求椭圆长轴长、短轴长、离心率.
例17:已知直线 与椭圆 恰有一个公共点 , 与圆 相交于 两点.
(I)求 与 的关系式;
(II)点 与点 关于坐标原点 对称.若当 时, 的面积取到最大值 ,求椭圆的离心率.
(3)函数值域求解法,把所讨论的参数作为一个函数,选一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围;
(4)构造一个二次函数,利用判别式求解;
(5)利用不等式,若能将问题转化为“和为定值”或“积为定值”,则可以用基本不等式求解;
例12.(定点问题)已知椭圆 的离心率为 , 是椭圆 上的一点.
⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到 。
1.若 =0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;
当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
②.若 ,设 。 . 时,直线和圆锥曲线相交于不同两点,相交。
b. 时,直线和圆锥曲线相切于一点,相切。c. 时,直线和圆锥曲线没有公共点,相离。
(1)求椭圆 的方程;
(2)设点 是椭圆 的一个动点,直线 与椭圆 交于 两点,求 面积的最大值.
例14.已知椭圆 的离心率为 ,且过点 .
(1)求椭圆 的方程;
(2)若 , 分别为椭圆 的上,下顶点,过点 且斜率为 的直线 交椭圆 于另一点 (异于椭圆的右顶点),交 轴于点 ,直线 与直线 相交于点 .求证:直线 的斜率为定值.
题型七:求离心率
例15已知椭圆 上有一点 ,它关于原点的对称点为 ,点 为椭圆的右焦点,且满足 ,设 ,且 ,求该椭圆的离心率 的取值范围.
求曲线 的方程;
例4.已知 中,角 所对的边分别为 ,且 ,求点 的轨迹方程.
例5在圆 上任取一点 ,过 作 轴的垂线 , 为垂足.当点 在圆上运动时,求线段 的中点 的轨迹方程.
题型三:求参数的范围
例6已知椭圆 的上下两个焦点分别为 ,过点 与 轴垂直的直线交椭圆 于 两点, 的面积为 ,椭圆 的离心率为 .
离心率
e越小,椭圆越圆;e越大,椭圆越扁
通径
过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a
焦半径
公式
题型一:求椭圆的解析式
例1.求椭圆 的长轴长、焦距、焦点坐标、顶点坐标;
例2.求适合下列条件的椭圆标准方程:
(1)与椭圆 有相同的焦点,且经过点
(2)经过 两点
题型二:求轨迹
例3.在同一平面直角坐标系 中,圆 经过伸缩变换 后,得到曲线 .
例18椭圆 的中心在原点, 分别为左、右焦点, 分别是椭圆的上顶点和右顶点,P是椭圆上一点,且 轴, ,求椭圆的离心率.
题型八:求面积
例19.已知椭圆的焦点在 轴上,长轴长为6,焦距为 ,设P为椭圆上的一点, , 是该椭圆的两个焦点,若 ,求:
(1)椭圆的标准方程;
(2) 的面积.
.
例20.椭圆 的离心率为 ,且过其右焦点 与长轴垂直的直线被椭圆 截得的弦长为 .
(1)求 的方程;
(2)若直线 : 与 相交于 , 两点,求 .
题型五:中点弦问题
例11设椭圆 的短轴长为4,离心率为 .
设点 是直线 被椭圆所截得的线段 的中点,求直线 的方程.
[点评]关于中点弦问题,一般采用两种方法解决:
(1)联立方程组,消元,利用根与系数的关系进行设而不求,从而简化运算.
(2)利用“点差法”求解,即若椭圆方程为 + =1,直线与椭圆交于点A(x1,y1)、B(x2,y2),且弦AB的中点为M(x0,y0),则
(1)求椭圆 的标准方程;
(2)已知 为坐标原点,直线 与 轴交于点 ,与椭圆 交于 两个不同的点,若存在实数 ,使得 ,求 的取值范围.
直线与圆锥曲线的位置关系
2.直线与圆锥曲线的位置关系:
⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
题型四:直线与椭圆的位置关系
例7已知椭圆 : ( )的左,右焦点分别为 , ,且经过点 .
(1)求椭圆 的标准方程;
(2)若斜率为2的直线与椭圆 交于 , 两点,且 ,求该直线的方程.
例8.已知 是椭圆 上的一动点.求 到直线 距离的最大值.
弦长问题
直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方