精选山东省青岛市中考数学模拟试卷(有详细答案)

合集下载

【3套试卷】青岛市中考模拟考试数学精选含答案

【3套试卷】青岛市中考模拟考试数学精选含答案

中考模拟考试数学试卷模拟考试(一)数学科试题(考试时间100分钟,满分120分,同学们加油!)一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑. 1.2019的相反数是A.2019B.-2019C.12019D.12019- 2.下列计算正确的是 A .235x x x +=B .236x x x =gC .633x x x ÷=D. ()239x x =3.海口市2019年常住人口约为2280000人,数据2280000用科学记数法表示应是 A 、 62.2810⨯ B 、 622.810⨯ C 、 52.2810⨯ D 、72.2810⨯ 4. 一组数据2,-1,0,2,-3,3众数是A .-3B .-1C .2D .3 5.如图1是由四个相同的小正方体组成的立体图形,它的俯视图是6>->040x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x7. 下列四个点中,在函数xy 2-=图象上的点是 A . (-1,2) B . (-21,1) C . (-1,-2) D . (2,1) 8. 如图2,已知AB ∥CD ,∠1=115°,∠2=65°,则∠C 等于A .40°B .45°C .50°D .60°9.如图3,在□ABCD 中,对角线AC 、BD 交于点O ,下列结论一定成立....的是 A. AC ⊥BD B. AO=OD C. AC=BD D. OA=OC D . B . C . A . 图1 正面xABCDO1 2 E BDCAGFABOC10.二次函数2y ax bx c =++图象如图4所示,则下列结论正确的是A.a >0,b <0,c >0B.a <0,b <0,c >0C.a <0,b >0,c <0D.a <0,b >0,c >0 11.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是 A .21 B .31 C .32 D .4112. 如图5,⊙O 是△ABC 的外接圆,若AC =12,sin B =54,则⊙O 的半径为 A .6.5 B. 7.5 C. 8.5 D. 10 二、填空题(本大题满分16分,每小题4分) 13.分解因式24m n n -= . 14.方程213=-x x的解是 . 15.如图7,AB 是⊙O 的直径,点P 在AB 的延长线上,PC 切⊙O 于点C ,若AB =8,∠CPA =30°,则PC 的长等于 .16.如图8,菱形ABCD 中,∠BAD =60º ,M 是AB 的中点,P 是对角线AC 上的一个动点,若PM +PB 的最小值是3,则AB 长为 .三、解答题17.(满分(1; )1-. 18.(满分9分)大润发连锁超市海口市国兴店由于业务需要,计划面向社会招聘员工,在其网站上公布以下两条信息:【信息一】招聘送货员和电路维修人员共30名.【信息二】送货员工资为3500元/月,电路维修人员工资为4000元/月.若该超市每月付给这两类招聘人员的工资总额为11万元,求该超市计划招聘送货员和维修人员各多少人?19. (满分8分)为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A :50分、B :49~40分、C :39~30分、D :29~0分)统计,统计结果如图9.1、图9.2所示.(1 BC图8中考体育成绩(分数段百分比)统计图 图9.250 100150200250AB CD分数段图9.1中考体育成绩(分数段)统计图(2)补全图9.1,求图9.2中D分数段所占的圆心角是度;(3)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数为人.20.(满分10分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面的高度AH为3.4m.当起重臂AC长度为9m.张角∠HAC为0118时,求操作平台C离地面的高度(结果精确到个位;参考数据:0sin280.47≈,0cos280.88≈,0tan280.53≈)21.(满分14分)如图10,已知正方形ABCD的边长是2,∠EAF = m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG = DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF = BE + DF时,①求m的值;②若F是CD的中点,求BE的长.22.(满分15分)如图12,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线所对应的函数关系式;(2)点F是第一象限抛物线上的一个动点.①点F在运动过程中,△BCF的面积是否存在最大值?若存在,求出它的最大值及此时点F的坐标;若不存在,请说明理由;②问:在抛物线的对称轴上是否存在点E,使得以点B、C、E、F四个点为顶点的四边形是平行四边形. 若存在,求出它点E的坐标;若不存在,请说明理由。

2024年山东省青岛市中考数学模拟试题

2024年山东省青岛市中考数学模拟试题

2024年山东省青岛市中考数学模拟试题一、单选题1.12-的倒数是( )A .-2B .2C .12- D .122.下列图形是轴对称图形的是( )A .B .C .D . 3.一种病毒的直径约为0.0000001m ,将0.0000001m 用科学记数法表示为( ) A .1×107m B .1×10-6m C .1×10-7m D .10×10-8m 4.如图是一个空心圆柱体,其俯视图是( )A .B .C .D . 5.下列运算正确的是( )A .(﹣a 2)3=﹣a 5B .a 3•a 5=a 15C .(﹣a 2b 3)2=a 4b 6D .3a 2﹣2a 2=1 6.在如图所示的网格中,每个小正方形的边长均为1,ABC V 的三个顶点都是网格线的交点.已知(22)A -,,()12C --,,将ABC V 绕着点C 顺时针旋转90︒,则点B 对应点的坐标为()A .()2,2-B .()5,3--C .()2,2D .()0,07.如图,直线//a b ,一块含60°角的直角三角板ABC (60A ∠=︒)按如图所示放置.若155∠=︒,则∠2的度数为( )A .105°B .110°C .115°D .95°8.如图所示,在Rt △ABC 中∠A=25°,∠ACB=90°,以点C 为圆心,BC 为半径的圆交AB 于一点D,交AC 于点E,则∠DCE 的度数为( )A .30°B .25°C .40°D .50°9.如图,抛物线y =ax 2+bx +c 经过点(﹣1,0),与y 轴交于(0,2),抛物线的对称轴为直线x =1,则下列结论中:①a +c =b ;②方程ax 2+bx +c =0的解为﹣1和3;③2a +b =0;④c ﹣a >2,其中正确的结论有( )A .1个B .2个C .3个D .4个10.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB OA 、分别在x 轴、y 轴上,点A 的坐标为 0,3 ,60OAB ∠=︒,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A .32⎫-⎪⎭B .32⎛⎫- ⎪⎝⎭C .3,2⎛ ⎝D .(3,-二、填空题11.将代数式1235x y a b--化为只含有正整数指数幂的形式是. 12.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.13.如图,A 、B 是函数12y x=上两点,P 为一动点,作PB y ∥轴,PA x ∥轴.若 3.6BOP S =V ,则ABP S =△.14.为了解我市城区居民日常出行方式的情况.某学习小组进行了问卷调查,共收回600份调查问卷,结果统计如下:根据以上调查结果,在制作扇形统计图时,以“骑自行车、电动车”为出行方式所在扇形的圆心角的度数为 .15.如图,已知正方形ABCD ,点E 在BC 上延长线上,连接AE 交CD 于点F ,△CEF 与四边形ABCF 的面积分别为1和8,则△ADF 的面积为.16.下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,则第20个图中小正方形的个数是三、解答题17.如图,已知线段a 和∠α,求作△ABC ,使AB =a ,∠A =12∠α,∠B =∠α(使用直尺和圆规,并保留作图痕迹).18.(1)计算:(a ﹣2b a )÷222a ab b a++. (2)解不等式组:6241213x x x -≥⎧⎪+⎨>-⎪⎩. 19.将一枚六个面分别标有1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b .(1)求点(),a b 落在直线21y x =-上的概率;(2)求以点()0,0O ,()4,3A -,(),B a b 为顶点能构成等腰三角形的概率.20.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):根据统计图表中的信息,解答下列问题: (1)本次调查的学生总人数为;(2)补全条形统计图; (3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为; (4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为. 21.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520 km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)参考数据:(sin67°≈1213;cos67°≈513;tan67°≈125)22.如图,四边形ABCD 是O e 的内接四边形,四边形ABCD 两组对边的延长线分别相交于点E ,F ,且40E ∠=︒,50F ∠=︒,连接BD .(1)求A ∠的度数;(2)当O e 的半径等于2时,请直接写出弧BD 的长(结果保留π)23.如图,二次函数y=12x 2+bx+c 的图象交x 轴于A 、D 两点并经过B 点,已知A 点坐标是(2,0),B 点的坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)该二次函数的对称轴交x 轴于C 点,连接BC ,并延长BC 交抛物线于E 点,连接BD ,DE ,求△BDE 的面积.24.如图,在平面直角坐标系xOy 中,已知()90A ,、()912B ,,点M 、N 分别是线段OB 、AB 上的动点,速度分别是每秒53个单位、2个单位,作MH OA ⊥于H .现点M 、N 分别从点O 、A 同时出发,当其中一点到达端点时,另一个点也随之停止运动,设运动时间为t 秒(0t ≥).(1)是否存在t的值,使四边形BMHN为平行四边形?若存在,求出t的值;若不存在,说明理由;(2)是否存在t的值,使△OMH与以点A、N、H为顶点的三角形相似?若存在,求出t 的值;若不存在,说明理由;(3)是否存在t的值,使四边形BMHN为菱形?若存在,求出t的值;若不存在,请探究将点N的速度改变为何值时(匀速运动),能使四边形BMHN在某一时刻为菱形.25.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?。

初中数学山东省青岛市中考模拟数学考试题考试卷及答案 Word版.docx

初中数学山东省青岛市中考模拟数学考试题考试卷及答案 Word版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:已知:如图①,在□ABCD中,AB=3cm,BC=5cm.AC⊥AB。

△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC∶S四边形ABQP=1∶4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.试题2:问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.评卷人得分探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形。

所以,当时,(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形所以,当时,(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形所以,当时,(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形所以,当时,综上所述,可得表①3 4 5 61 0 1 1探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)7 8 9 10你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设分别等于、、、,其中是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。

【3套试卷】青岛市中考模拟考试数学试题含答案

【3套试卷】青岛市中考模拟考试数学试题含答案

中考一模数学试题及答案(1)一.填空题(满分18分,每小题3分)1.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|c﹣2b|+|a+2b|=.2.在直角坐标系中,O是坐标原点,点P(m,n)在反比例函数的图象上.(1)若m=k,n=k﹣2,则k=;(2)若m+n=k,OP=2,且此反比例函数,满足:当x>0时,y随x的增大而减小,则k=.3.若关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,则代数式(k﹣2)2+2k(1﹣k)的值为.4.如图所示,△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠BOC的度数是.5.如图,在△ABC中,点D是AB上一点,∠ACD=∠B.已知AD=2,BD=1,则AC=.6.按如图所示的方法用小棒摆正六边形,摆2个正六边形要11根小棒,摆3个正六边形要16根小棒,摆n个正六边形需要根小棒.二.选择题(满分32分,每小题4分)7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克8.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π9.使分式的值等于0的x的值是()A.﹣1 B.﹣1或5 C.5 D.1或﹣510.若一个多边形的每个内角都是108°,则这个多边形的内角和为()A.360°B.540°C.720°D.900°11.下列计算结果正确的是()A.B.C.D.12.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20°B.25°C.30°D.35°13.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70 14.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点B′,AB与CD相交于点F,若AB=3,sin∠CAB=,则DF的长度是()A.1 B.2 C.D.3三.解答题(共9小题,满分70分)15.(6分)已知:如图,∠1=∠2.请添加一个条件,使得△ABD≌△CDB,然后再加以证明.16.(6分)先化简,再求值:,其中a=﹣2.17.(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 aB组70≤x<80 8C组80≤x<90 12D组90≤x<100 14(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,则所抽取学生成绩为“优”的占所抽取学生的百分比是多少?18.(6分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.19.(7分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.20.(8分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x… ﹣2 ﹣1 0 1 2 … y =ax 2+bx +c … t m ﹣2 ﹣2 n…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)写出关于x的一元二次方程ax2+bx+c=t的根;(3)若m=﹣1,求此二次函数的解析式.21.(8分)“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成.(1)乙工程队单独完成这项工程需几个月的时间?(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做a个月,乙工程队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?22.(9分)如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积.23.(12分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.填空题1.解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,c﹣2b>0,a+2b<0,则原式=a+c﹣(c﹣2b)﹣a﹣2b=a+c﹣c+2b﹣a﹣2b=0.故答案为:02.解:(1)根据题意,得k﹣2==1,∴k=3.(2)∵点P(m,n)在反比例函数y=的图象上.∴mn=k又∵OP=2,∴=2,∴(m+n)2﹣2mn﹣4=0,又m+n=k,mn=k,得k2﹣2k=4,(k﹣1)2=5,∵x>0时,y随x的增大而减小,则k>0.∴k﹣1=,k=1+.3.解:∵关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,∴△=0,即(﹣2k)2﹣4××(1﹣4k)=0,整理得,2k2+4k﹣1=0,∴k2+2k=,∴(k﹣2)2+2k(1﹣k)=k2﹣4k+4+2k﹣2k2=﹣k2﹣2k+4=﹣(k2+2k)+4=﹣+4=3.故答案为:3.4.解:∵△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,∴∠AOC=∠BOD=35°,且∠AOD=90°,∴∠BOC=20°,故答案为20°5.解:在△ADC与△ACB中,∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB;∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=AD+BD=2+1=3,∴AC2=3×2=6,∴AC=,故答案为.6.解:设摆n个正六边形需要a n根小棒.∵a1=6=1×5+1,a2=11=2×5+1,a3=16=3×5+1,…,∴a n=5n+1.故答案为:(5n+1).二.选择题7.解:0.00 000 0076克=7.6×10﹣8克,故选:C.8.解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选:B.9.解:∵分式的值等于0,∴x2﹣4x﹣5=0,且x+1≠0,解得:x=5.故选:C.10.解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,则此多边形的内角和为(5﹣2)×180°=540°,故选:B.11.解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.12.解:∵AD切⊙O于点D,∴OD⊥AD,∴∠ODA=90°,∵∠A=40°,∴∠DOA=90°﹣40°=50°,由圆周角定理得,∠BCD=∠DOA=25°,故选:B.13.解:这些运动员成绩的中位数、众数分别是4.70, 4.75.故选:C.14.解:∵sin∠CAB=∴∠CAB=30°∵折叠可知:∠FAC=∠BAC=30°∵四边形ABCD是矩形,∴DC∥AB,∠D=90°,DC=AB=3∴∠FCA=∠CAB=30°,∴FC=FA,∠DAF=30°FA=FC=DC﹣FD=3﹣FD∴sin∠DAF==解得DF=1.所以DF的长为1.故选:A.三.解答题15.解:AB=CD,理由是:∵在△ABD和△CDB中∵,∴△ABD≌△CDB(SAS),故答案为:AB=CD(答案不唯一).16.解:原式=(﹣)•=•=﹣,当a=﹣2时,原式=.17.解:(1)抽取的学生成绩有14÷35%=40(个),则a=40﹣(8+12+14)=6,故答案为:40,6;(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.18.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.19.解:(1)依题意列表如下:1 2 3 4 5 61 2,1 3,1 4,1 5,1 6,12 1,2 3,2 4,2 5,2 6,23 1,3 2,3 4,3 5,3 6,34 1,4 2,4 3,4 5,4 6,45 1,5 2,5 3,5 4,5 6,56 1,6 2,6 3,6 4,6 5,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.20.解:(1)根据图表可知:二次函数y=ax2+bx+c的图象过点(0,﹣2),(1,﹣2),∴对称轴为直线x==,c=﹣2;(2)根据二次函数的对称性可知:(﹣2,t)关于对称轴x=的对称点为(3,t),即﹣2和3是关于x的方程ax2+bx+c=t的两个根;(3)若m=﹣1,则抛物线经过点(﹣1,﹣1),(0,﹣2),(1,﹣2),代入y=ax2+bx+c得,解得,∴此二次函数的解析式为y=x2﹣x﹣2.21.解:(1)设乙队需要x个月完成,根据题意得: +=1,解得:x=15,经检验x=15是原方程的根,答:乙队需要15个月完成;(2)根据题意得:,解得: a≤4 b≥9.∵a≤12,b≤12且a,b都为正整数,∴9≤b≤12又a=10﹣b,∴b为3的倍数,∴b=9或b=12.当b=9时,a=4;当b=12时,a=2∴a=4,b=9或a=2,b=12.方案一:甲队作4个月,乙队作9个月;方案二:甲队作2个月,乙队作12个月;22.证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=•12•﹣﹣×(2)2=9﹣2π.23.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.中考一模数学试卷及答案考试时间:100分钟一、单选题1.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内水面的形状不可能是( ) A .B .C .D .2.流感病毒的形状一般为球形,直径大约为0.000 000 102米,数0.000 000 102用科学记数法表示为( ) A .710.210-⨯B .610.210-⨯C .71.0210-⨯D .61.0210-⨯3.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-4.如图,在O e 中,弦8AB =,点C 在AB 上移动,连接OC ,过点C 作CD OC ⊥交O e 于点D ,则CD 的最大值是( )A .2B .4C .6D .85.下列计算正确的是( ) A .22(1)21m m m -=- B .()326m m -=- C .32m m m -=D .22(1)1m m +=+ 6.已知512x ≤≤,那么函数243y x x =-+-的最大值为( ) A .0B .34C .1D .527.如图∠1=∠2,则AB ∥CD 的根据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .同旁内角相等两直线平行D .两直线平行,同位角相等8.二次函数y =(x +1)2+2的图象的顶点坐标是( ) A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3)9.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .10.如图是一斜坡的横截面,某人沿斜坡从M 出发,走了13米到达 N 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是( )A .1∶5B .12∶13C .5∶13D .5∶12二、填空题11.实数3与6的比例中项是___ 12.在数学课上,老师提出如下问题:如图,已知线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .小明的作图过程如下:(1)连接AC ,作线段AC 的垂直平分线,交AC 于M;(2)连接BM 并延长,在延长线上取一点D ,使MD=MB ,连接AD ,CD . ∴四边形ABCD 即为所求.老师说:“小明的作法正确.”请回答:小明这样作图的依据是______.13.已知A ,B ,C ,D 在同一条直线上,AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为_____cm .14.如图,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2=60°,GM 平分∠HGB 交直线CD 于点M .那么∠3=_________.15.如图,在ACB △和DCE V 中,A D ∠=∠,AB DE =,添加一个你认为合适的条件___,使得ACB DCE ≌△△.三、解答题16.如图,在平面直角坐标系中,点A ,B 分别在y 轴,x 轴正半轴上.(1)OAB ∠的平分线与ABO ∠的外角平分线交于点C ,求C ∠的度数;(2)设点A ,B 的坐标分别为()0,a ,(),0b ,且满足224250a a b b -+-+=,求OAB S V 的面积;(3)在(2)的条件下,当ABD △是以AB 为斜边的等腰直角三角形时,请直接写出点D 的坐标.17.如图.AD 平分BAC ∠,DE AC ⊥,垂足为E ,BF AC P 交ED 的延长线于点F ,若BC 恰好平分ABF ∠. 求证:(1)点D 为EF 的中点; (2)AD BC ⊥.18.某市为了了解初中学校“高效课堂”的有效程度,并就初中生在课堂上是否具有“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”等学习行为进行评价.为此,该市教研部门开展了一次抽样调查, 并将调查结果绘制成尚不完整的条形统计图和扇形统计图( 如图所示),请根据图中信息解答下列问题:(1)这次抽样调查的样本容量为 .(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;(3)请补充完整条形统计图;(4)若该市初中学生共有8万人,在课堂上具有“独立思考”行为的学生约有多少人? 19.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.20.如图,ACF DBE ∆≅∆,E F ∠=∠,若15AD =,6BC =,求线段AB 的长,21.如图,在边长为1的正方形网格中,(4,2)A ,(3,1)B -,(2,2)D -,(1,1)E ,AB 绕C 点顺时针旋转m ︒得DE (点A 与点E 对应).(1)直接写出m 的值:m = ;(2)用无刻度直尺作出点C 并直接写出C 的坐标(保留作图痕迹,不写作法);(3)若格点F 在EAB ∠的角平分线上,这样的格点F (不包括点A 有) 个(直接写出答案)22.已知:抛物线23(1)26y ax a x a =--+-(0)a >.(1)求证:抛物线与x 轴有两个交点.(2)设抛物线与x 轴的两个交点的横坐标分别为1x ,2x (其中12x x >).若t 是关于a 的函数、且21t ax x =-,求这个函数的表达式;(3)若1a =,将抛物线向上平移一个单位后与x 轴交于点A 、B .平移后如图所示,过A 作直线AC ,分别交y 的正半轴于点P 和抛物线于点C ,且1OP =.M 是线段AC 上一动点,求2MB MC +的最小值.23.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴,y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:下图中的()1,3P 是“垂距点”.(1)在点()2,2A ,35,22B ⎛⎫- ⎪⎝⎭,()1,5C -,是“垂距点”的为______; (2)若31,22D m m ⎛⎫ ⎪⎝⎭为“垂距点”,求m 的值; (3)若过点()2,3的一次函数y kx b =+(0k ≠)的图像上存在“垂距点”,则k 的取值范围是______.参考答案1.D 2.C 3.A 4.B 5.B 6.C 7.B 8.B 9.B 10.D11.212.有一个角是90°的平行四边形是矩形(或对角线互相平分且相等的四边形是矩形) 13.1或714.60°15.AC=DC 或∠ACB=∠DCE 或∠B=∠E 或∠ACD=∠BCE (答案不唯一)16.(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)17.(1)证明见解析;(2)证明见解析;18.(1)560;(2)54;(3)见解析;(4)2400019.(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值820.4.521.(1)90;(2)见解析(3)522.(1)详见解析;(2)5t a =-;(3)2MB MC +的最小值143=23.(1)A ,B ;(2)2m =±;(3)32k <-或102k -<<或0k >.中考模拟考试数学试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的)1.(3分)﹣5的绝对值是()A.5B.﹣C.﹣5D.2.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A.16×104B.1.6×107C.16×108D.1.6×1084.(3分)一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a46.(3分)小明记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5;则这组数据的中位数是()A.5B.4.5C.5.5D.5.27.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°8.(3分)如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°9.(3分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,下列结论:①∠BAE=30°;②△ABE∽△AEF;③CF=CD;④S△ABE=4S△ECF.正确结论的个数为()A.1个B.2个C.3个D.4个10.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)分解因式:a2﹣9=.12.(4分)八边形内角和度数为.13.(4分)等腰三角形的两边长是3和7,则这个三角形的周长等于.14.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF 对应边上中线的比为.15.(4分)不等式组的解是.16.(4分)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为.17.(4分)在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1;过点M1作M1A1⊥OA于点A1:过点A1作A1M2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以此类推,点M2019的坐标为.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:19.(6分)先化简,再求值:÷a,中a=﹣1.20.(6分)如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠BAC的平分线交BC于D(保留痕迹);(2)若AD=DB,求∠B的度数.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有人.22.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.23.(8分)如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.(1)求∠BCD的度数;(2)求旗杆AC的高度.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.25.(10分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的)1.(3分)﹣5的绝对值是()A.5B.﹣C.﹣5D.【解答】解:﹣5的绝对值是5.故选:A.2.(3分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.3.(3分)2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A.16×104B.1.6×107C.16×108D.1.6×108【解答】解:将16 000 000用科学记数法表示应为1.6×107,故选:B.4.(3分)一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:∵△=(﹣4)2﹣4×2=8>0,∴方程有两个不相等的实数根.故选:A.5.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.6.(3分)小明记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5;则这组数据的中位数是()A.5B.4.5C.5.5D.5.2【解答】解:把这些数据从小到大排列为:4.5,4.5,5,5,5,5.5,5.5,最中间的数是5,则这组数据的中位数是5;故选:A.7.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°【解答】解:如图,∵∠2=42°,∴∠3=90°﹣∠2=48°,∴∠1=48°.故选:A.8.(3分)如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°【解答】解:∵∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:B.9.(3分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,下列结论:①∠BAE=30°;②△ABE∽△AEF;③CF=CD;④S△ABE=4S△ECF.正确结论的个数为()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴=,∵BE=CE=BC,∴=()2=4,∴S△ABE=4S△ECF,故④正确;∴CF=EC=CD,故③错误;∴tan∠BAE==,∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=2a,EF=a,AF=5a,∴==,==,∴=,∴△ABE∽△AEF,故②正确.∴②与④正确.∴正确结论的个数有2个.故选:B.10.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣3x,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选:A.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)分解因式:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).12.(4分)八边形内角和度数为1080°.【解答】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.13.(4分)等腰三角形的两边长是3和7,则这个三角形的周长等于17.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,7+4>7,所以能构成三角形,周长是:7+7+3=17.故答案为:17.14.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF 对应边上中线的比为2:3.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为2:3,∴△ABC与△DEF对应边上中线的比是2:3,故答案为:2:3.15.(4分)不等式组的解是1<x≤6.【解答】解:解不等式①,得x>1,解不等式②,得x≤6,所以,这个不等式组的解集是1<x≤6,故答案为1<x≤6.16.(4分)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为3.【解答】解:由旋转得:AD=EF,AB=AE,∠D=90°,∵DE=EF,∴AD=DE,即△ADE为等腰直角三角形,根据勾股定理得:AE==3,则AB=AE=3,故答案为:317.(4分)在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1;过点M1作M1A1⊥OA于点A1:过点A1作A1M2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以此类推,点M2019的坐标为(1﹣,).【解答】解:∵OA=OB,OM1⊥AB,∴点M1是AB的中点,∵M1A1⊥OA,∴A1是OA的中点,∴点M1的坐标为(,),同理,点M2的坐标为(1﹣,),点M3的坐标为(1﹣,),……点M2019的坐标为(1﹣,),故答案为:(1﹣,).三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:【解答】解:原式=﹣2﹣1+3﹣1=﹣1.19.(6分)先化简,再求值:÷a,中a=﹣1.【解答】解:原式=﹣=﹣1=当a=﹣1时,原式==﹣20.(6分)如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠BAC的平分线交BC于D(保留痕迹);(2)若AD=DB,求∠B的度数.【解答】解:(1)如图所示,AD即为所求.(2)∵AD=DB,∴∠DBA=∠DAB,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠DBA=∠DAB=∠DAC,∵∠ACB=90°,∴∠B=30°.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了120名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为108°;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有150人.【解答】解:(1)18÷15%=120,即本次调查一共随机抽取了120名居民,故答案为:120;(2)“较强”层次的有:120×45%=54(名),补充完整的条形统计图如右图所示;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),故答案为:150.22.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.(8分)如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.(1)求∠BCD的度数;(2)求旗杆AC的高度.【解答】解:(1)过点C作CE⊥BD于E,则DF∥CE,AB∥CE∵DF∥CE∴∠ECD=∠CDF=30°同理∠ECB=∠ABC=45°∴∠BCD=∠ECD+∠ECB=75°.(2)在Rt△ECD中,∠ECD=30°∵∴同理BE=CE∵BD=BE+DE∴,答:(1)∠BCD为75°;(2)旗杆AC的高度CE为米.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.25.(10分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax+bx﹣4经过点A(2,0),B(﹣4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().。

2024年山东省青岛市中考数学试卷(含答案)

2024年山东省青岛市中考数学试卷(含答案)

2024年山东省青岛市中考数学试卷一、选择题:本题共9小题,每小题3分,共27分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为( )A. 6×103B. 60×103C. 0.6×105D. 6×1042.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是( )A. aB. bC. cD. d4.如图所示的正六棱柱,其俯视图是( )A. B. C. D.5.下列计算正确的是( )A. a+2a=3a2B. a5÷a2=a3C. (−a)2⋅a3=−a5D. (2a3)2=2a66.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转90°,得到四边形A′B′C′D′,则点A的对应点A′的坐标是( )A. (−1,−2)B. (−2,−1)C. (2,1)D. (1,2)7.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE和正方形CDFG中,CF,DG的延长线分别交AE,AB于点M,N,则∠FME的度数是( )A. 90°B. 99°C. 108°D. 135°8.如图,A,B,C,D是⊙O上的点,半径OA=3,AB=CD,∠DBC=25°,连接AD,则扇形AOB的面积为( )A. 54πB. 58πC. 52πD. 512π9.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=−1,则过点M(c,2a−b)和点N(b2−4ac,a−b+c)的直线一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共6小题,每小题3分,共18分。

山东省青岛市中考数学模拟试卷(一)(有答案)

山东省青岛市中考数学模拟试卷(一)(有答案)

山东省青岛市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.√2的相反数是()A. 1√2B. −√2 C. −1√2D. √22.既是轴对称图形又是中心对称图形的是()A. 等腰梯形B. 菱形C. 平行四边形D. 等边三角形3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.计算(−4m2)·(3m+2)的结果是()A. −12m3+8m2B. 12m3−8m2C. −12m3−8m2D. 12m3+8m25.如图,在Rt△ABC中,∠A=90°,BC=4,以BC的中点O为圆心分别与AB,AC相切于D、E两点,则DE⏜的长为()A. √2π4B. π2C. √2π2D. √2π6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(−1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A. (2,2)B. (1,2)C. (−1,2)D. (2,−1)7.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是()A. 52°B. 58°C. 60°D. 62°8.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图的所示,则一次函数y=mx+n与反比例函数y=m+nx图象可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√32−√8=______.√210.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.11.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是______分.12.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.13.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.14. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______. 三、计算题(本大题共1小题,共8.0分) 15. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.四、解答题(本大题共9小题,共70.0分) 16. 已知,∠α求作:∠AOB =2∠α.(保留作图痕迹,不写作法)17. 甲、乙两个人进行游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲得1分;否则乙得1分.这是个公平的游戏吗?请说明理由;若不公平,请你修改规则使该游戏对双方公平.18. 青岛市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据绘成如下表格.请回答下列问题:时间第一天 7:00—8:00 第二天 7:00—8:00 第三天 7:00—8:00 第四天 7:00—8:00 第五天7:00—8:00 需要租用自 行车却未租 到车的人数1500 1200 1300 1300 1200(1)表格中的五个数据(人数)的中位数是多少⊕(2)由随机抽样估计,平均每天在7:00−8:00需要租用公共自行车的人数是多少⊕19.如图,方特欢乐园中有飞越极限、恐龙危机、海螺湾三处游乐设施,分别记为A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积.(2)景区规划在恐龙危机和海螺湾的中点D处修建一个游客休息中心,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,√2≈1.414)20.某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.22.某文具店购进一批单价为10元的学生用品,如果以单价12元售出,那么一个月内可售200件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少10件,当售价提高多少元时,可在一个月内获得最大的利润?最大利润是多少23.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)24.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E 出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:(1)当t为何值时,△EPQ为等腰三角形?(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.答案和解析1.【答案】B【解析】解:√2的相反数是−√2,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:轴对称图形有:等腰梯形,菱形,等边三角形;中心对称图形有菱形,平行四边形;∴既是轴对称图形又是中心对称图形的式菱形,故选B.根据轴对称图形和中心对称图形的定义判断即可.本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.3.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题主要单项式乘以多项式的法则和单项式乘以单项式的法则.掌握相关法则是解题的关键.【解答】解:(−4m2)·(3m+2)=(−4m2)×3m+(−4m2)×2=−12m3−8m2.故选C.5.【答案】C【解析】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=1AC,2∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=4,∴由勾股定理可知AB=2√2,∴r=√2,∴DE⏜=90π×√2180=√22π,故选:C.连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.6.【答案】A【解析】解:∵点C的坐标为(−1,0),AC=2,∴点A的坐标为(−3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(−1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.7.【答案】C【解析】【分析】本题主要考查等腰三角形的性质,设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,进而可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和可求得x.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠ADB=180°−∠ADC=180°−(x°+12°)=168°−x°∴∠B=180°−(∠ADB+∠BAD)=180°−(168°−x°+18°)=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=180°−∠DEC=180°−(180°−∠C−∠EDC)=180°−(180°−x°+6°−12°)=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=56°+6°=62°.故选C.8.【答案】C【解析】【分析】根据二次函数图象判断出m<−1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.【解答】解:由图可知,m<−1,n=1,所以m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=m+nx的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.9.【答案】2【解析】【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.首先化简二次根式,进而求出答案.【解答】解:原式=√2−2√2√2=√2√2=2.故答案为2.10.【答案】±2√2【解析】【分析】本题主要考查了一元二次方程的根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【解答】解:∵方程2x2+bx+1=0有两个相等的实数根,∴△=b2−2×4×1=b2−8=0,解得:b=±2√2.故答案为:±2√2.11.【答案】9.1【解析】【分析】此题主要考查了加权平均数以及条形统计图,正确掌握加权平均数求法是解题关键.直接利用条形统计图以及结合加权平均数求法得出答案.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分).故答案为9.1.12.【答案】72°【解析】【分析】本题考查了圆周角定理,正多边形的性质,熟记定理并作辅助线构造出弧AD所对的圆心角是解题的关键.连接AO、DO,根据正五边形的性质求出∠AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:如图,连接AO、DO,∵五边形ABCDE是正五边形,∴∠AOD=25×360°=144°,∴∠ABD=12∠AOD=12×144°=72°;故答案为72°.13.【答案】√5【解析】解:连结CE,过E点作EG⊥CD于G,设BE为x,在Rt△CA′E中,CE=√(2−x)2+(2÷2)2,在Rt△CBE中,CE=√x2+22,√(2−x)2+(2÷2)2=√x2+22,解得x=14∴CG=14,在Rt△CD′F中,CF2=FD′2+CD′2,即CF2=(2−CF)2+(2÷2)2,解得CF=54.∴GF=54−14=1,在Rt△EFG中,EF=√22+12=√5.故答案为:√5.连结CE,过E点作EG⊥CD于G,设BE为x,根据勾股定理在Rt△CA′E中先求出CE,进一步在Rt△CBE中求出CE,列出方程求出x,可得CG,根据勾股定理在Rt△CD′F中求出CF,可求GF,再根据勾股定理在Rt△EFG中求出折痕EF的长.本题考查了翻折变换(折叠问题)、正方形的性质、勾股定理,对综合的分析问题、解决问题的能力提出了较高的要求.14.【答案】24【解析】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.15.【答案】解:由①得4x+4+3>x解得x>−73,由②得3x−12≤2x−10,解得x≤2,∴不等式组的解集为−73<x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.16.【答案】解:如图,∠AOB为所求.【解析】利用基本作图(作一个角等于已知)先作出∠AOC=∠α,再作∠COB=∠α,则∠AOB=2∠α.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和为3,6的情况有5种,∴P(和为3的倍数)=516,∴P(和不为3的倍数)=1−516=1116,∵5≠11∴该游戏不公平,故可以这样修改游戏规则:数字之和为奇数甲获胜,之和为偶数乙获胜.【解析】列表得出所有等可能的情况数,找出之和为6的情况数,即可求出所求的概率,找出数字之和为3的倍数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.【答案】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300.(2)平均每天需要租用自行车却未租到车的人数是(1500+1200+1300+1300+ 1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【解析】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.19.【答案】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°−60.7°−66.1°=53.2°,∴CE=AC⋅sin53.2°≈1000×0.8=800米.∴S△ABC=12⋅AB⋅CE=12×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF//CE.∵BD=CD,DF//CE,∴BF=EF,∴DF=12CE=400米,∵AE=AC⋅cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=12EB−AE=400米,在Rt△ADF中,AD=√AF2+DF2=400√2≈565.6米,答:A,D间的距离为565.6m.【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF//CE.首先求出DF、AF,再在Rt△ADF中求出AD 即可.本题考查解直角三角形−方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.21.【答案】证明:∵平行四边形ABCD,∴AB=CD,AB//CD,∴∠BAE=∠DCF,∠ABO=∠CDO,在△ABE与△CDF中{AB=DC∠BAE=∠DCF AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF,∠BAE=∠CDF,∴∠ABO−∠BAE=∠CDO−∠CDF,即∠EBO=∠DFO,∴BE//DF,∴四边形EBDF是平行四边形,∵EF=BD,∴平行四边形EBDF是矩形.【解析】根据矩形的判定和平行四边形的性质证明即可.此题考查矩形的判定,关键是根据全等三角形的判定得出△ABE≌△CDF.22.【答案】解:设销售单价提高x元,销售利润为y元,根据题意可得:y=(x+2)(200−10x)=−10x2+180x+400=−10(x−9)2+1210,∵−10<0,∴x=9时,y有最大值,最大值为1210,答:当售价提高9元时,可在一个月内获得最大的利润,最大利润是1210元.【解析】直接利用总利润=销量×每件利润,进而得出关系式求出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.23.【答案】(1)10;4;(2)14;5;(3)4n+2;n+2.【解析】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.本题主要考查的是探究图形的变化规律,找出图形的变化规律是解题的关键.24.【答案】解:(1)∠C=90°,AC=6cm,BC=8cm,∴AB=10cm,由题意得:DP=EQ=t,∵D为AC的中点,E为BC的中点,∴DE=12AB=5cm,当EP=EQ时,5−t=t,t=52,即当t=52时,△EPQ为等腰三角形;(2)如图②,过P作PH⊥BC于H,连接PE,sin∠PEH=PHPE=DCDE,∴PH5−t =35,∴PH=3(5−t)5,设△DCE中,DE边上的高为h,1 2×3×4=12×5ℎ,ℎ=125,∴y=S△PEF+S△EFB−S△EQP,=12×125PE+12×125FB−12EQ⋅PH,=65(5−t)+65×5−12t ⋅3(5−t)5,=3t 210−2710t +12;(3)∵S 四边形PFBQS △ABC=25,∴5S 四边形PFBQ =2S △ABC , ∴5(3t 210−2710t +12)=2×12×6×8,t 2−9t +8=0, t 1=1,t 2=8(舍);(4)如图③,过P 作PG ⊥AB 于G ,过Q 作QH ⊥AB 于H ,过D 作DM ⊥AB 于M , 由(3)知:PG =DM =125,Rt △ADM 中,∵AD =3, ∴AM =√32−(125)2=95,∴FG =5−95−t =165−t ,Rt △QHB 中,BQ =4−t , sin ∠B =QH4−t =610, ∴QH =3(4−t)5,∴BH =4(4−t)5,∴FH =5−BH =9+4t 5,∵PF ⊥FQ ,易得△PGF∽△FHQ , ∴PG GF=FH QH,∴PG ⋅QH =FH ⋅GF , ∴125⋅3(4−t)5=(165−t)⋅9+4t 5,4t 2−11t =0, t 1=0(舍),t 2=114.∴当t =114时,PF 与QF 互相垂直.【解析】(1)根据EP =EQ 列方程可得t 的值;(2)如图②,作辅助线,构建高线PH ,先根据三角函数或相似表示PH 的长,利用面积法求h 的值,最后利用面积差可得y 与t 的关系式;(3)根据已知得:5S 四边形PFBQ =2S △ABC ,代入列一元二次方程解出可得t 的值,并根据0<t <4这一取值进行取舍;(4)如图③,作辅助线,构建直角三角形,证明△PGF∽△FHQ,列比例式可得t的值.本题是动点型综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时间t的方法:最终都是转化为一元一次方程或一元二次方程求解,属于中考压轴题.。

2022年山东省青岛市中考数学模拟考试试卷及答案解析

2022年山东省青岛市中考数学模拟考试试卷及答案解析

2022年山东省青岛市中考数学模拟考试试卷一、选择题(本题满分24分,共有8道小题,每题3分) 1.下列各组数中,互为倒数的是( ) A .﹣0.15和203B .﹣3和13C .0.01和100D .1和﹣12.下列图形中既不是轴对称也不是中心对称图形的是( )A .B .C .D .3.下列代数式运算正确的是( ) A .(﹣a )2•a 6=﹣a 8 B .(﹣2b 2)3=﹣6b 6C .3+√3=3√3D .(m ﹣n )(m 2+mn +n 2)=m 3﹣n 34.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60°5.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)6.如图,△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于D ,E ,S △ADE =2S △DCE ,则S △ADE S △ABC=( )A .14B .12C .23D .497.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s 2如表所示:甲 乙 丙 丁 x 12″33 15″29 10″26 10″26 S 21.11.61.31.1如果从中选拔一名学生去参赛,应派( )去. A .甲B .乙C .丙D .丁8.如图,点A (﹣2,0),B (0,1),以线段AB 为边在第二象限作矩形ABCD ,双曲线y =kx (k <0)过点D ,连接BD ,若四边形OADB 的面积为6,则k 的值是( )A .﹣9B .﹣12C .﹣16D .﹣18二、填空题(本小题满分18分,共有6道小题,每题3分)9.PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 .10.在一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有个.11.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).12.二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为13.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若DGGA=17,则ADAB=.14.棱长分别为7cm,6cm两个正方体如图放置,点P在E1F1上,且E1P=13E1F1,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是.三、作图题(本题满分4分)15.(4分)用圆规,直尺作图,不写作法,但要保留作图痕迹如图,OA、OB表示两条道路,在OB上有一车站(用点P表示).现在要在两条道路形成的∠AOB的内部建一个报亭,要求报亭到两条道路的距离相等且在过点P与AO平行的道路上.请在图中作出报亭的位置.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)计算:(1−2a−2)÷a2−8a+16a2−4(2)解不等式组{x−32+3≥x1−3(x−1)<8−x,并求其最小整数解.17.(6分)春节期间某商场搞促销活动,方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里同时摸出两个球,根据这两个小球所标金额之和可获相应价格的礼品;(1)若某顾客在甲商商场消费320元,至少可得价值元的礼品,至多可得价值元的礼品;(2)请用画树状图或列表的方法,求该顾客去商场消费,获得礼品的总价值不低于50元的概率.18.(6分)某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈712,cos35°≈56,tan35°≈710)19.(6分)某工厂的甲、乙两个车间各生产了400个新款产品,为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围在165≤x<180为合格),分别从甲、乙两个车间生产的产品中随机各抽取了20个样品进行检测,获得了它们的数据(尺寸),并对数据进行了整理、描述和分析.下面给出了部分信息:a.甲车间产品尺寸的扇形统计图如下(数据分为6组:165≤x<170,170≤x<175,175≤x<180,180≤x<185,185≤x<190,190≤x≤195):b.甲车间生产的产品尺寸在175≤x<180这一组的是:175 176 176 177 177 178 178 179 179c.甲、乙两车间生产产品尺寸的平均数、中位数、众数如下:车间平均数中位数众数甲车间178m183乙车间177182184根据以上信息,回答下列问题:(1)表中m的值为;(2)此次检测中,甲、乙两车间生产的产品合格率更高的是(填“甲”或“乙”),理由是;(3)如果假设这个工厂生产的所有产品都参加了检测,那么估计甲车间生产该款新产品中合格产品有个.20.(8分)某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y(千克)与每千克售价x(元)的关系如表所示每千克售价x(元)2530 40每周销售量y(千克)240200150(1)写出每周销售量y(千克)与每千克售价x(元)的函数关系式;(2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?(3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由.21.(8分)已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.22.(10分)如图,斜坡AB长10米,按图中的直角坐标系可用y=−√33x+5表示,点A,B 分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=−13x2+bx+c表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?23.(10分)【探究】(1)观察下列算式,并完成填空:1=121+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+…+(2n﹣1)=.(n是正整数)(2)如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.①第3层中分别含有块正方形和块正三角形地板砖;②第n层中含有块正三角形地板砖(用含n的代数式表示).【应用】该市打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺多少层?请说明理由.24.(12分)菱形ABCD 中,对角线AC =6cm ,BD =8cm ,动点P 、Q 分别从点C 、O 同时出发,运动速度都是1cm /s ,点P 由C 向D 运动;点Q 由O 向B 运动,当Q 到达B 时,P 、Q 两点运动停止,设时间为t 妙(0<t <4).连接AP ,AQ ,PQ . (1)当t 为何值时,PQ ⊥AB ;(2)设△APQ 的面积为y (cm 2),请写出y 与t 的函数关系式; (3)当t 为何值时,△APQ 的面积是四边形AQPD 面积的23?(4)是否存在t 值,使得线段PQ 经过CO 的中点M ?若存在,求出t 值;若不存在,请说明理由.2022年山东省青岛市中考数学模拟考试试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每题3分) 1.下列各组数中,互为倒数的是( ) A .﹣0.15和203B .﹣3和13C .0.01和100D .1和﹣1【解答】解:A 、﹣0.15×203=−1,故本选项错误, B 、﹣3×13=−1,本选项错误, C 、0.01×100=1,故本选项正确, D 、1×(﹣1)=﹣1,故本选项错误, 故选:C .2.下列图形中既不是轴对称也不是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,不符合题意; B 、不是轴对称图形,是中心对称图形,不符合题意; C 、不是轴对称图形,也不是中心对称图形,符合题意; D 、既是轴对称图形又是中心对称图形,不符合题意. 故选:C .3.下列代数式运算正确的是( ) A .(﹣a )2•a 6=﹣a 8 B .(﹣2b 2)3=﹣6b 6C .3+√3=3√3D .(m ﹣n )(m 2+mn +n 2)=m 3﹣n 3 【解答】解:(A )原式=a 8,故A 错误; (B )原式=﹣8b 6,故B 错误; (C )原式=3+√3,故C 错误; 故选:D .4.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC的度数为()A.15°B.30°C.45°D.60°【解答】解:设等腰梯形的较小的底角为x,则3x=180°,∴x=60°,依题意,延长BF、CG必交于点O(△ABO,△CDO为等边三角形),∴△BOC为等边三角形,∴∠BOC=60°,∴∠BEC=12∠BOC=30°.故选:B.5.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C .6.如图,△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于D ,E ,S △ADE =2S △DCE ,则S △ADE S △ABC=( )A .14B .12C .23D .49【解答】解:∵S △ADE =2S △DCE ,△ADE 与△DCE 的高相同 ∴△ADE 与△DCE 中,AC EC=2∴AE AC=23∵DE ∥BC∴△ADE ∽△DCE ,相似比等于AE AC=23则S △ADE S △ABC=49故选:D .7.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s 2如表所示:甲 乙 丙 丁 x12″3315″2910″2610″26S2 1.1 1.6 1.3 1.1如果从中选拔一名学生去参赛,应派()去.A.甲B.乙C.丙D.丁【解答】解:因为丙丁的平均成绩最好,丁的方差最小,即丁最稳定,所以选丁最合适.故选:D.8.如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=k x(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()A.﹣9B.﹣12C.﹣16D.﹣18【解答】解:∵点A(﹣2,0),B(0,1),∴OA=2,OB=1,过D作DM⊥x轴于M,则∠DMA=90°=∠AOB,∴∠DAM+∠ADM=90°,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM+∠BAO=90°,∴∠ADM=∠BAO,∴△DMA∽△AOB,∴DM AM=AO BO=21=2,即DM =2MA ,设AM =x ,则DM =2x , ∵四边形OADB 的面积为6, ∴S 梯形DMOB ﹣S △DMA =6, ∴12(1+2x )(x +2)−12•2x •x =6,解得:x =2,则AM =2,OM =4,DM =4, 即D 点的坐标为(﹣4,4), ∴k =﹣4×4=﹣16, 故选:C .二、填空题(本小题满分18分,共有6道小题,每题3分)9.PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6 .【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.10.在一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a 大约有 12 个. 【解答】解:由题意可得,3a ×100%=25%,解得,a =12个. 估计a 大约有12个. 故答案为:12.11.如图,△ABC 是等腰直角三角形,∠ACB =90°,BC =AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,若AB =2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是π4(结果保留π).【解答】解:∵∠ACB =90°,CB =AC ,AB =2, ∴AC =BC =√2,∵△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,∴AC ′=AC =√2,AB ′=AB =2,∠BAB ′=45°,∠B ′AC ′=45°, ∴S 阴影部分=S 扇形ABB ′+S △AB ′C ′﹣S △ABC ﹣S 扇形ACC ′=S 扇形ABB ′﹣S 扇形ACC ′=45⋅π⋅22360−45⋅π⋅(√2)2360=π4. 故答案为π4.12.二次函数y =ax 2﹣12ax +36a ﹣5的图象在4<x <5这一段位于x 轴下方,在8<x <9这一段位于x 轴上方,则a 的值为54【解答】解:∵抛物线的对称轴为直线x =−−12a2a=6, ∴x =4和x =8对应的函数值相等,∵在4<x <5这一段位于x 轴下方,在8<x <9这一段位于x 轴上方, ∴抛物线与x 轴的交点坐标为(4,0),(8,0),把(4,0)代入y =ax 2﹣12ax +36a ﹣5得16a ﹣48a +36a ﹣5=0,解得a =54. 故答案为54.13.如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若DG GA=17,则AD AB= √2 .【解答】解:连接GE , ∵点E 是CD 的中点, ∴EC =DE ,∵将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部, ∴EF =DE ,∠BFE =90°, 在Rt △EDG 和Rt △EFG 中 {GE =GE DE =EF, ∴Rt △EDG ≌Rt △EFG (HL ), ∴FG =DG , ∵DG GA=17,∴设DG =FG =a ,则AG =7a , 故AD =BC =8a , 则BG =BF +FG =9a ,∴AB =√(9a)2−(7a)2=4√2a , 故AD AB=4√2a=√2.故答案为:√2.14.棱长分别为7cm ,6cm 两个正方体如图放置,点P 在E 1F 1上,且E 1P =13E 1F 1,一只蚂蚁如果要沿着长方体的表面从点A 爬到点P ,需要爬行的最短距离是 √233cm .【解答】解:如图,有两种展开方法:方法一:P A=√132+82=√233cm,方法二:P A=√152+62=√261=cm.故需要爬行的最短距离是√233cm.故答案为:√233cm.三、作图题(本题满分4分)15.(4分)用圆规,直尺作图,不写作法,但要保留作图痕迹如图,OA、OB表示两条道路,在OB上有一车站(用点P表示).现在要在两条道路形成的∠AOB的内部建一个报亭,要求报亭到两条道路的距离相等且在过点P与AO平行的道路上.请在图中作出报亭的位置.【解答】解:如图,点T即为所求.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)计算:(1−2a−2)÷a2−8a+16a2−4(2)解不等式组{x−32+3≥x1−3(x−1)<8−x,并求其最小整数解.【解答】解:(1)(1−2a−2)÷a2−8a+16a2−4=a−2−2a−2⋅(a+2)(a−2)(a−4)2=a−4 a−2⋅(a+2)(a−2)(a−4)2=a+2 a−4;(2){x−32+3≥x①1−3(x−1)<8−x②由不等式①,得x≤3由不等式②,得x>﹣2,故原不等式组的解集是﹣2<x≤3,故该最小整数解是x=﹣1.17.(6分)春节期间某商场搞促销活动,方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里同时摸出两个球,根据这两个小球所标金额之和可获相应价格的礼品;(1)若某顾客在甲商商场消费320元,至少可得价值20元的礼品,至多可得价值80元的礼品;(2)请用画树状图或列表的方法,求该顾客去商场消费,获得礼品的总价值不低于50元的概率.【解答】解:(1)根据题意得:该顾客至少可得0+20=20(元),至多可得30+50=80(元).故答案为:20,80.(2)列表如下:02030500﹣203050 2020﹣5070 303050﹣80 50507080﹣∴P(不低于50元)=812=23.18.(6分)某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈712,cos35°≈56,tan35°≈710)【解答】解:过点D作水平线的垂线,即(DE⊥AB),垂足为E,则C、D、E在一条直线上,设DE的长为x米,在Rt△BCE中,∠CBE=45°,∴CE=BE=CD+DE=(10+x)米,在Rt△ADE中,∠A=35°,AE=AB+BE=20+10+x=30+x,tan A=DE AE,∴tan35°=x30+x≈710,解得:x≈70,答:假山的高度DE约为70米.19.(6分)某工厂的甲、乙两个车间各生产了400个新款产品,为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围在165≤x<180为合格),分别从甲、乙两个车间生产的产品中随机各抽取了20个样品进行检测,获得了它们的数据(尺寸),并对数据进行了整理、描述和分析.下面给出了部分信息:a.甲车间产品尺寸的扇形统计图如下(数据分为6组:165≤x<170,170≤x<175,175≤x<180,180≤x<185,185≤x<190,190≤x≤195):b.甲车间生产的产品尺寸在175≤x<180这一组的是:175 176 176 177 177 178 178 179 179c.甲、乙两车间生产产品尺寸的平均数、中位数、众数如下:车间平均数中位数众数甲车间178m183乙车间177182184根据以上信息,回答下列问题:(1)表中m的值为177.5;(2)此次检测中,甲、乙两车间生产的产品合格率更高的是甲(填“甲”或“乙”),理由是甲车间生产的产品合格率为70%,乙车间生产的产品合格率<50%;(3)如果假设这个工厂生产的所有产品都参加了检测,那么估计甲车间生产该款新产品中合格产品有280个.【解答】解:(1)由扇形统计图可知,A组数据的个数:5%×20=1,B组数据的个数:20%×20=4,C组数据的个数:45%×20=9,∴m=12×(177+178)=177.5,故答案为:177.5;(2)甲、乙两车间生产的产品合格率更高的是甲,理由如下:甲车间生产的产品合格率为:1+4+920×100%=70%,∵乙车间生产的产品的中位数是182, ∴乙车间生产的产品合格率<50%,故答案为:甲;甲车间生产的产品合格率为70%,乙车间生产的产品合格率<50%; (3)∵甲车间生产的产品合格率为70%,∴估计甲车间生产该款新产品中合格产品有:400×70%=280, 故答案为:280.20.(8分)某果品超市经销一种水果,已知该水果的进价为每千克15元,通过一段时间的销售情况发现,该种水果每周的销售总额相同,且每周的销售量y (千克)与每千克售价x (元)的关系如表所示 每千克售价x (元) 25 30 40 每周销售量y (千克)240200150(1)写出每周销售量y (千克)与每千克售价x (元)的函数关系式;(2)由于销售淡季即将来临,超市要完成每周销售量不低于300千克的任务,则该种水果每千克售价最多定为多少元?(3)在(2)的基础上,超市销售该种水果能否到达每周获利1200元?说明理由. 【解答】解:(1)由表格中数据可得:y =k x, 把(30,200)代入得: y =6000x;(2)当y =300时,300=6000x, 解得:x =20,即该种水果每千克售价最多定为20元;(3)由题意可得:w =y (x ﹣15)=6000x(x ﹣15)=1200, 解得:x =754经检验:x =754是原方程的根,答:超市销售该种水果能到达每周获利1200元.21.(8分)已知:如图,在矩形ABCD 中,点E 在边AD 上,点F 在边BC 上,且AE =CF ,作EG ∥FH ,分别与对角线BD 交于点G 、H ,连接EH ,FG . (1)求证:△BFH ≌△DEG ;(2)连接DF ,若BF =DF ,则四边形EGFH 是什么特殊四边形?证明你的结论.【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴∠FBH =∠EDG , ∵AE =CF , ∴BF =DE , ∵EG ∥FH , ∴∠OHF =∠OGE , ∴∠BHF =∠DGE , 在△BFH 和△DEG 中, {∠FBH =∠EDG ∠BHF =∠DGE BF =DE,∴BFH ≌△DEG (AAS );(2)解:四边形EGFH 是菱形;理由如下: 连接DF ,设EF 交BD 于O .如图所示: 由(1)得:BFH ≌△DEG , ∴FH =EG , 又∵EG ∥FH ,∴四边形EGFH 是平行四边形,∵DE =BF ,∠EOD =∠BOF ,∠EDO =∠FBO , ∴△EDO ≌△FBO , ∴OB =OD ,∵BF =DF ,OB =OD ,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.22.(10分)如图,斜坡AB长10米,按图中的直角坐标系可用y=−√33x+5表示,点A,B 分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=−13x2+bx+c表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?【解答】解:(1)∵AB=10、∠OAB=30°,∴OB=12AB=5、OA=AB cos∠OAB=10×√32=5√3,则A(5√3,0)、B(0,5),将A、B坐标代入y=−13x2+bx+c,得:{−13×75+5√3b+c=0c=5,解得:{b=4√3 3c=5,∴抛物线解析式为y=−13x2+4√33x+5;(2)水柱离坡面的距离d=−13x2+4√33x+5﹣(−√33x+5)=−1x2+5√3x=−13(x2﹣5√3x)=−13(x−5√32)2+254,∴当x=5√32时,水柱离坡面的距离最大,最大距离为254;(3)如图,过点C作CD⊥OA于点D,∵AC=2、∠OAB=30°,∴CD=1、AD=√3,则OD=4√3,当x=4√3时,y=−13×(4√3)2+4√33×4√3+5=5>1+3.5,所以水柱能越过树.23.(10分)【探究】(1)观察下列算式,并完成填空:1=121+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+…+(2n﹣1)=n2.(n是正整数)(2)如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.①第3层中分别含有6块正方形和30块正三角形地板砖;②第n层中含有6(2n﹣1)或12n﹣6块正三角形地板砖(用含n的代数式表示).【应用】该市打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺多少层?请说明理由.【解答】解:【探究】(1)观察算式规律,1+3+5+…+(2n﹣1)=n2,故答案为n2;(2)①∵第一层包括6块正方形和6块正三角形地板砖,第二层包括6块正方形和6+12=18块正三角形地板砖,∴第三层包括6块正方形和18+12=30块正三角形地板砖,故答案为6,30;②∵第一层6=6×1=6×(2×1﹣1)块正三角形地板砖,第二层18=6×3=6×(2×2﹣1)块正三角形地板砖,第三层30=6×5=6×(2×3﹣1)块正三角形地板砖,∴第n层6=6×1=6(2n﹣1)块正三角形地板砖,故答案为6(2n﹣1)或12n﹣6.【应用】铺设这样的图案,最多能铺8层.理由如下:∵150÷6=25(层),∴150块正方形地板砖可以铺设这样的图案25层;∵铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n﹣1)]=6n2,∴6n2=420,n2=70,n=√70.又∵8<√70<9,即8<n<9,∴420块正三角形地板砖最多可以铺设这样的图案8层.∴铺设这样的图案,最多能铺8层.24.(12分)菱形ABCD中,对角线AC=6cm,BD=8cm,动点P、Q分别从点C、O同时出发,运动速度都是1cm/s,点P由C向D运动;点Q由O向B运动,当Q到达B时,P 、Q 两点运动停止,设时间为t 妙(0<t <4).连接AP ,AQ ,PQ . (1)当t 为何值时,PQ ⊥AB ;(2)设△APQ 的面积为y (cm 2),请写出y 与t 的函数关系式; (3)当t 为何值时,△APQ 的面积是四边形AQPD 面积的23?(4)是否存在t 值,使得线段PQ 经过CO 的中点M ?若存在,求出t 值;若不存在,请说明理由.【解答】解:(1)如图3中,作CH ⊥AB 于H 交BD 于M .易知CH =245,AH =√AC 2−CH 2=185, ∵∠MCO =∠ACH ,∠COM =∠CHA =90°, ∴△COM ∽△CHA , ∴OM AH =OC CH ,∴OM185=3245, ∴OM =94,∵PQ ⊥AB ,CH ⊥AB , ∴PQ ∥CM , ∴DQ DM =DPDC , ∴4+t94+4=5−t 5,∴t =1,∴t =1s 时,PQ ⊥AB .(2)如图1中,作AM ⊥CD 于M ,PH ⊥BD 于H .∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =3,OB =OD =4, ∴∠COD =90°, ∴CD =√32+42=5, ∵12•AC •OD =12•CD •AM ,∴AM =245, ∵OQ =CP =t , ∴DQ =4+t .PD =5﹣t . ∵PH ∥OC , ∴PH OC =PD CD , ∴PH 3=5−t5,∴PH =35(5﹣t ),∴y =S △ADQ +S △PDQ ﹣S △ADP =12•(4+t )•3+12•(4+t )•35(5﹣t )−12•(5﹣t )•245=−310t 2+215t (0<t ≤4).(3)如图2中,∵△APQ 的面积是四边形AQPD 面积的23,∴S △APQ =2S △APD , ∴−310t 2+215t =2•12•(5﹣t )•245, 解得t =15−√145或15+√145(舍弃),∴t =15−√145时,△APQ 的面积是四边形AQPD 面积的23.(4)如图4中,作PH ⊥AC 于H .∵OQ ∥PH ,ON =NC =32, ∴OQ PH =ON NH,∴t45t=3232−35t , ∴t =12,∴t =12时,PQ 经过线段OC 的中点N .。

【3套试卷】青岛市中考模拟考试数学试题含答案

【3套试卷】青岛市中考模拟考试数学试题含答案

中考模拟考试数学试题一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣32.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)24.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a26.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或二.填空题(共5小题)11.计算的结果为.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)23.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.参考答案与试题解析一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣3【分析】先找出最小数和最大数,再求出差即可.【解答】解:在﹣1,﹣3,0,1这四个数中,最小的数是﹣3,最大的数是1,差为﹣3﹣1=﹣4.故选:B.2.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知∠1=70°,故可按同旁内角互补两直线平行补充条件.【解答】解:∠1=70°,要使AB∥CD,则只要∠2=180°﹣70°=110°(同旁内角互补两直线平行).故选:C.3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)2【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣16)=x(y+4)(y﹣4),故选:A.4.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:827122亿元用科学记数法表示为8.27122×1013.故选:D.5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a)2=4a2,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;故选:C.6.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.【分析】设原计划每天施工x米,实际每天施工(x+50)米,根据工作时间=工作总量÷工作效率结合实际比原计划少用3天,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天施工x米,实际每天施工(x+50)米,依题意,得:﹣=3.故选:C.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°【分析】根据圆周角定理求得、:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【解答】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故选:B.8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选:D.9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,则此时PA+PC的值最小,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B,∴AB=,OA=,∵∠OAB=90°,∴∠B=∠AOB=45°,由勾股定理得:OB=AD=2,∵C(1,0),∴CD=,即PA+PC的最小值是故选:B.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.二.填空题(共5小题)11.计算的结果为 1 .【分析】利用平方差公式计算.【解答】解:原式=()2﹣1=2﹣1=1.故答案为1.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为x2+(6﹣x)2=9 .【分析】设AE=x,则DE=(6﹣x),根据正方形的面积公式及剪下的两个正方形的面积和为9,即可得出关于x的一元二次方程,此题得解.【解答】解:设AE=x,则DE=(6﹣x),依题意,得:x2+(6﹣x)2=9.故答案为:x2+(6﹣x)2=9.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为91 .【分析】根据图形的变化规律即可得结论.【解答】解:第①个图形中一共有3个菱形,即12+(1+1)第②个图形中一共有7个菱形,即22+(2+1)第③个图形中一共有13个菱形,即32+(3+1)……,第n个图形中一共有[n2+(n+1)]个菱形,∴第⑨个图形中菱形的个数为92+9+1=91.故答案为91.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为2π﹣4 .【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×42=2π﹣4.故答案为2π﹣4.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为 2 .【分析】连接AD、CD,由勾股定理得:AB=DE==5,BD==2,CD=AD==,得出AB=DE=AB=BC,BD2+AD2=AB2,证出△ABD是直角三角形,∠ADB=90°,同理△BCD是直角三角形,∠BDC=90°,证出A、D、C三点共线,得出AC=2AD=2=BD,证明△ABC≌△DEB(SSS),得出∠BAC=∠EDB,证出DF⊥AB,BD平分∠ABC,由角平分线的性质得出DF=DG=2即可.【解答】解:连接AD、CD,如图所示:由勾股定理得:AB=DE==5,BD==2,CD=AD==,∵BE=BC=5,∴AB=DE=AB=BC,BD2+AD2=AB2,∴△ABD是直角三角形,∠ADB=90°,同理:△BCD是直角三角形,∠BDC=90°,∴∠ADC=180°,∴A、D、C三点共线,∴AC=2AD=2=BD,在△ABC和△DEB中,,∴△ABC≌△DEB(SSS),∴∠BAC=∠EDB,∵∠EDB+∠ADF=90°,∴∠BAD+∠ADF=90°,∴∠BFD=90°,∴DF⊥AB,∵AB=BC,BD⊥AC,∴BD平分∠ABC,∵DG⊥BC,∴DF=DG=2;故答案为:2.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)原式=++1﹣2×=++1﹣=;(2)原式=•+=+=,当时,原式=.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可.【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图①当PA⊥OD时,∵PA∥OC,∴△ADP∽△CDO,此时p(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)【分析】(1)按照题目所给作法,即可用尺规作出图;(2)根据所作图1,先利用圆心角、弧、弦关系定理推出∠AOP=∠BOQ,再证∠AOP=∠OPQ,由内错角相等即可证明PQ∥l;(3)原理一通过用尺规作出同位角构造平行线,原理二通过作三角形的中位线构造平行线,原理三通过作平行四边形构造平行线.【解答】解:(1)如图(2)证明:如图1,连接OQ,BQ在⊙O中,由作图知AP=BQ,∴∠AOP=∠BOQ∴∠AOP=又∵OP=OQ∴∠OPQ=∠OQP∴∠OPQ=∴∠AOP=∠OPQ∴PQ∥l;(3)如图19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为500 件,扇形统计图中D厂家对应的圆心角为90°;(2)抽查C厂家的合格零件为380 件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【分析】(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.【分析】(1)由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,∴⊙O的半径为.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列不等式求出a的值,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)≥12800,由(2)可知,8≤a≤10,故采购A种型号净水器8台,采购B种型号净水器22台;或采购A种型号净水器9台,采购B种型号净水器21台;或采购A种型号净水器10台,采购B种型号净水器20台;公司能实现利润12800元的目标.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是AM=CN.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)【分析】(1)结论:AM=CN.先证明△AOK≌△AOJ(ASA),推出OK=OJ,AK=CJ,∠AOK =∠AJO,再证明△EKM≌△GJN(ASA)即可解决问题.(2)过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.首先证明四边形QMRN是平行四边形,再证明QM=QN即可.(3)结论:∠MQN=∠AOE.理由三角形的外角的性质以及平行线的性质即可解决问题.(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD=,则AJ=2,解直角三角形求出∠BOC的度数,结合图象即可解决问题.【解答】解:(1)结论:AM=CN.理由:如图2中,设AB交EG于K,CD交EG于J.∵四边形ABCD是矩形,四边形EFGH是矩形,∴AB∥CD,EF∥EG,OA=OC=OE=OG,∴∠MEK=∠JGN,∠OAK=∠OAJ,∵∠AOK=∠AOJ,∴△AOK≌△AOJ(ASA),∴OK=OJ,AK=CJ,∠AOK=∠AJO,∴EK=JG,∵∠EKM=∠AKO,∠GJN=∠CJO,∴∠EKM=∠GJN,∴△EKM≌△GJN(ASA),∴KM=JN,∴AM=AN.(2)证明:过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.由题可知:矩形ABCD≌矩形EFGH∴AD=EH,AB∥CD,EF∥HG∴四边形QMRN为平行四边形,∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS)∴MQ=NQ∴四边形QMRN为菱形.(3)结论:∠MQN=∠AOE.理由:如图3﹣1中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD=,则AJ=2,∵CD=2+,∴CJ=AJ=2,∴∠JCA=∠JAC,∵∠AJD=45°=∠JCA+∠JAC,∴∠ACJ=22.5°,∵OC=OD,∴∠OCD=∠ODC=22.5°,∴∠BOC=45°,观察图象可知,当点F与点C重合或点G与点D重合时,四边形QMRN的面积最大,最大值=2,∴∠AOE=45°或135°时,四边形QMRN面积最大为.23.如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.【分析】(1)利用待定系数法求二次函数的表达式;(2)先求出OB和AB的长,根据勾股定理的逆定理证明∠ABO=90°,由对称计算∠QCB =60°,利用特殊的三角函数列式可得BQ的长;(3)因为D在OB上,所以F分两种情况:i)当F在边OA上时,ii)当点F在AB上时,当F在边OA上时,分三种情况:①如图2,过D作DF⊥x轴,垂足为F,则E、F在OA上,②如图3,作辅助线,构建△OFD≌△EDF≌△FGE,③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,当点F在OB上时,过D作DF∥x轴,交AB于F,连接OF与DA,依次求出点E的坐标即可.ii)当点F在AB上时,分两种情况:画出图形可得结论.【解答】解:(1)将点A的坐标代入二次函数的解析式得:﹣×42+4b=0,解得b=2,∴二次函数的表达式为y=﹣x2+2x.(2)∵y=﹣x2+2x=﹣(x﹣2)2+2,∴B(2,2),抛物线的对称轴为x=2.如图1所示:由两点间的距离公式得:OB==2,BA==2.∵C是OB的中点,∴OC=BC=.∵△OB′C为等边三角形,∴∠OCB′=60°.又∵点B与点B′关于CQ对称,∴∠B′CQ=∠BCQ=60°.∵OA=4,OB=2,AB=2,∴OB2+AB2=OA2∴∠OBA=90°.在Rt△CBQ中,∠CBQ=90°,∠BCQ=60°,BC=,∴tan60°=,∴BQ=CB=×=.(3)分两种情况:i)当F在边OA上时,①如图2,过D作DF⊥x轴,垂足为F,∵△DOF≌△DEF,且E在线段OA上,∴OF=FE,由(2)得:OB=2,∵点D在线段BO上,OD=2DB,∴OD=OB=,∵∠BOA=45°,∴cos45°=,∴OF=OD•cos45°==,则OE=2OF=,∴点E的坐标为(,0);②如图3,过D作DF⊥x轴于F,过D作DE∥x轴,交AB于E,连接EF,过E作EG⊥x轴于G,∴△BDE∽△BOA,∴=,∵OA=4,∴DE=,∵DE∥OA,∴∠OFD=∠FDE=90°,∵DE=OF=,DF=DF,∴△OFD≌△EDF,同理可得:△EDF≌△FGE,∴△OFD≌△EDF≌△FGE,∴OG=OF+FG=OF+DE=+=,EG=DF=OD•sin45°=,∴E的坐标为(,);③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,过B作BM⊥x轴于M,过E作EN⊥BM于N,由翻折的性质得:△DOF≌△DEF,∴OD=DE=,∵BD=OD=,∴在Rt△DBE中,由勾股定理得:BE==,则BN=NE=BE•cos45°=×=,OM+NE=2+,BM﹣BN=2﹣,∴点E的坐标为:(2+,2﹣);ii)当点F在AB上时,①过D作DF∥x轴,交AB于F,连接OF与DA,∵DF∥x轴,∴△BDF∽△BOA,∴,由抛物线的对称性得:OB=BA,∴BD=BF,则∠BDF=∠BFD,∠ODF=∠AFD,∴OD=OB﹣BD=BA﹣BF=AF,则△DOF≌△DAF,∴E和A重合,则点E的坐标为(4,0);②如图6,由①可知:当E与O重合时,△DOF与△DEF重合,此时点E(0,0);综上所述,点E的坐标为:(,0)或(,)或(2+,2﹣)或(4,0)或(0,0).中考第一次模拟考试数学试题(1) 注意事项:数学试题卷(考试分值150 分考试时间120 分钟)本试题分选择题、填空题和解答题三部分,共 24 小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省青岛市数学中考模拟试卷一、单选题1.﹣的绝对值是()A.﹣B.﹣C.D.5【答案】C【考点】实数的绝对值【解析】【解答】解:|﹣|= .故选:C.【分析】直接利用绝对值的定义分析得出答案.2.某种计算机完成一次基本运算的时间约为0.000 000 001 s,把0.000 000 001 s用科学记数法可表示为( )A.0.1×10-8 sB.0.1×10-9 sC.1×10-8 sD.1×10-9 s【答案】D【考点】科学记数法—表示绝对值较小的数【解析】【解答】0.000000001=1×10-9,故答案为:D.【分析】一个小于1的正数可以表示为a×1oⁿ,其中1≤a<10,n是负整数。

3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A.是中心对称图形,但不是轴对称图形,故不符合题意;B.既是轴对称图形又是中心对称图形,故符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既不是轴对称图形,也不是中心对称图形,故不符合题意。

故答案为:B【分析】把一个图形沿着某一条直线折叠,这个图形的两部分能完全重合,那么这个图形是轴对称图形。

在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形是中心对称图形。

根据定义即可判断B符合题意。

4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则化简求出答案.5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1, B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)【答案】A【考点】坐标与图形变化﹣平移【解析】【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3).故答案为:A.【分析】由图知,点A(1,-1),点(-1,2),因为点A,B的对应点分别为点A1, B1,所以可知平移的规律是,向左平移2个单位,向上平移3个单位,则则点P在A1B1上的对应点P′的坐标为(a-2,a+3).6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【答案】A【考点】分式方程的实际应用【解析】【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故答案为:A.【分析】由题意可得相等关系:提速前走完全程所需时间-提速后走完全程所需时间=缩短的时间,根据这个相等关系即可列方程。

7.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【答案】B【考点】扇形面积的计算【解析】【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选B.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm 和10cm,可根据扇形的面积公式求出贴纸部分的面积.8.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是( )A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>2【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】∵正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为2,∴点B的横坐标为﹣2.观察函数图象,发现:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故答案为:D.【分析】当y1>y2时,x的取值范围即是直线高于双曲线的x 的范围,所以要求这个范围,只需求得两图像的两个交点的横坐标即可。

根据正比例函数与反比例函数的图象是中心对称图形,可求出B点的横坐标,结合图形即可写出符合题意的x的范围。

二、填空题9.计算:=________.【答案】2【考点】二次根式的混合运算【解析】【解答】=故答案为:2.【分析】根据多项式除以单项式的法则和二次根式的性质计算即可求解。

10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有________名.【答案】2400【考点】用样本估计总体,扇形统计图【解析】【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.【分析】根据样本中选择红色运动衫的人数占总数的百分比,据此可估计总体中选择红色运动衫的人数占总数的百分比近似相等,列式计算即可.11.如图AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________.【答案】62°【考点】圆周角定理【解析】【解答】连接AD,根据AB是直径,可知∠ADB=90°,然后根据同弧所对的圆周角可得∠BAD=∠DCB=28°,然后根据直角三角形的两锐角互补可得∠ABD=62°.故答案为:62°.【分析】根据AB是直径,连接AD,由直径所对的圆周角是直角可得∠ADB=90°,再根据同弧所对的圆周角相等可得∠BAD=∠DCB=28°,则在三角形ABD中由直角三角形的两锐角互余可求得∠ABD的度数。

12.把一个长、宽、高分别为3cm、2cm、1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________.【答案】S=【考点】圆柱的计算【解析】【解答】根据题意可得铜块的体积=3×2×1=6 ,则圆柱体的体积=Sh=6 ,则S= .【分析】长方体的体积=长宽高,根据这个体积公式可求长方体的体积;而已知长方体铜块的体积=圆柱体铜块的体积,圆柱体铜块的体积=底面积圆柱体铜块的高,变形后可得圆柱体铜块的底面积S=圆柱体铜块的体积圆柱体铜块的高=长方体铜块的体积圆柱体铜块的高。

13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF 的周长为18,则OF的长为________.【答案】3.5【考点】直角三角形斜边上的中线,三角形中位线定理,正方形的性质【解析】【解答】∵CE=5,△CEF的周长为18,∴CF+EF=18-5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF= DE,∴EF=CF= DE=6.5,∴DE=2EF=13,∴CD= =12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF= (BC-CE)= (12-5)=3.5.【分析】要求OF的长,根据题意知OF是三角形BED的中位线,所以只需求得BE的长即可;要求BE,关键是求得正方形的边长,已知△CEF的周长为18,根据直角三角形斜边上的中线等于斜边的一半可得CF=EF=DF,结合CE=5可求得CF=EF=DF的长,则DE的长可求,在直角三角形CDE中,用勾股定理可求得CD的长,则BE=BC-CE=CD-CE,OF的长可求。

14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为________cm3.【答案】【考点】三角形的面积,解直角三角形【解析】【解答】解:如图,由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M.在Rt△AOD中,∠OAD=∠OAK=30°,∴OD= AD= cm.∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×= (cm),∴无盖柱形盒子的容积= =144(cm3);故答案为:144.【分析】如图,由题意可得折成的底为正三角形的无盖柱形盒子的高OD可在直角三角形AOD中求出,底为正三角形的边长为AB-2AD=20-8=12,则无盖柱形盒子的容积=三角形OPQ的面积高OD。

三、解答题15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】解:如图所示:⊙O即为所求.【考点】作图—复杂作图【解析】【分析】因为所求作的⊙O与∠ACB的两边分别相切,所以根据切线的性质可知点O到CA、CB两边的距离相等,根据角平分线的判定可得CO是∠ACB的平分线,于是可得作法:用尺规作图先作∠ACB的平分线,在射线CM上截取线段CO=a,过点O作CA的垂线,垂足为E,然后用圆规作以O为圆心,OE为半径的圆即可。

16.计算(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【答案】(1)解:原式= •= •=(2)解:∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣【考点】分式的混合运算,一元二次方程根的判别式及应用【解析】【分析】(1)根据题意将括号内的式子通分,然后将分式的分子和分母用平方差和完全平方公式分解因式,再约分,达到化简的目的;(2)根据一元二次方程的根的判别式可知,当一元二次方程有两个不相等的实数根,则,将a、b、c的值代入不等式并解不等式即可求得m的取值范围。

相关文档
最新文档