九年级数学上册21.1一元二次方程教案(新版)新人教版
人教版九年级上册数学21.1:一元二次方程(教案)

-在实际问题中建立一元二次方程模型,将现实问题抽象为数学问题,这是学生需要跨学科思考的难点。
举例:
-对于方程x²-6x+9=0,学生可能难以理解为何需要将中间项-6x分解为-2*3x,并与x²和9组合成完全平方形式。
最后,我认识到,作为教师,我不仅要教授知识,还要培养学生的思维能力,尤其是在解决实际问题时能够灵活运用所学知识。我会继续努力,不断优化教学方法,以期在下一节课中,能够带给学生更好的学习体验。
五、教学反思
在今天的一元二次方程的教学中,我发现学生们对于这个概念的理解整体上是积极的,但也有一些地方需要我进一步关注和调整教学方法。
在导入新课的环节,通过日常生活中的例子引入一元二次方程的概念,学生们明显表现出兴趣,这让我觉得这个切入点是有效的。然而,我也注意到,当涉及到具体的解题方法时,尤其是配方法和公式法,部分学生显得有些困惑。我意识到,在接下来的教学中,我需要更加细致地解释这些方法,并且通过更多的例题和练习来帮助学生巩固。
3.重点难点解析:在讲授过程中,我会特别强调求解方法和根的判别式这两个重点。对于难点部分,如配方法和公式法,我会通过具体例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量抛物线运动的轨迹,并尝试建立方程。
四、教学程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决面积、速度或高度等问题的情况?”(如抛物线运动的最高点问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程的奥秘。
九年级数学上册21.1一元二次方程教案(新版)新人教版 (2)

四、程化成一元二次方程的一般形式,并写出其中的二次项系数及常数项.
练习
1.将下列方程化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)
(2)
2.当_____时,关于的方程是一元二次方程.
根据所学内容解答习题
2、总结归纳
谈谈本节课的收获?
3、作业:课堂
必做:教材第4页1题
选做:教材第4页2题
家庭
教材第4页习题21.1第1---7题
板书设计
21.1一元二次方程
定义:例题练习
一般形式:
教后记
⑸上述一元二次方程还有哪些相同点和不同点?你能类比一元一次方程的一般形式得出一元二次方程的一般形式吗?
⑹什么叫做一元二次方程的解?
阅读提纲,
(1)~(6)
4、组织学生自学
指导学生阅读课本P2---4课文,并回答问题。
学生自学得出结论组内交流,互助互教。
二、自学反馈
汇报或检测
1.一元二次方程的概念:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.
一元二次方程
教学目标
知识与技能
通过对本节课的教学,使学生充分了解一元二次方程的概念,会判断一个数是否是一元二次方程的根,正确掌握一元二次方程的一般形式
过程与方法
培养学生分析问题、解决问题的能力以及对数学概念理解的完整性和深刻性,帮助学生掌握初步的研究问题的方法
情感态度与价值观
帮助学生树立转化的思想和严谨的科学态度;培养学生用数学的意识
共同点:①它们都是整式方程;②都含有一个未知数.
不同点:方程中未知数的最高次数是2;而一元一次方程的未知数最高次数是1。
九年级数学上册21.1一元二次方程教案1(新版)新人教版

一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0 C.(x-1)(x-2)=3 D.ax2+bx+c=0 解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)( x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2.已知床单的长是2m,宽是1.4m,求花边的宽度.请根据题意列出方程. 解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x 2-2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C. 方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解. 【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( ) A .1 B .-1C .0D .无法确定 解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m -1)+1+1=0,解得m =-1,此时m -1=-2≠0,∴m =-1.故选B. 方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版数学九年级上册教学设计21.1《一元二次方程》

人教版数学九年级上册教学设计21.1《一元二次方程》一. 教材分析《一元二次方程》是人民教育出版社九年级上册数学的一个重要内容,它标志着学生从简单方程的认识过渡到更复杂的一元二次方程的解决。
本节内容通过实例引入一元二次方程,使学生了解一元二次方程的定义、特点以及解法。
教材通过问题驱动,引导学生探索求解一元二次方程的方法,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了简单方程的解法、不等式的性质等知识,具备了一定的数学基础。
但一元二次方程较为抽象,学生可能难以理解其定义和解法。
因此,在教学过程中,需要关注学生的认知困难,通过实例和问题引导学生理解和掌握一元二次方程。
三. 教学目标1.理解一元二次方程的定义和特点;2.学会求解一元二次方程的配方法、公式法等基本方法;3.能够应用一元二次方程解决实际问题;4.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.一元二次方程的定义和特点;2.一元二次方程的解法;3.一元二次方程在实际问题中的应用。
五. 教学方法1.实例导入:通过生活中的实际问题,引导学生认识一元二次方程;2.问题驱动:提出问题,引导学生探索求解一元二次方程的方法;3.小组合作:分组讨论,共同探索一元二次方程的解法;4.归纳总结:引导学生总结一元二次方程的解法,并应用于实际问题。
六. 教学准备1.教学课件:制作课件,展示一元二次方程的定义、解法等知识;2.实例材料:准备生活中的实际问题,用于导入和巩固知识;3.练习题库:准备一定数量的一元二次方程练习题,用于巩固和拓展知识。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线与x轴的交点问题,引导学生认识一元二次方程。
通过问题驱动,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义、特点和解法。
通过实例演示和讲解,使学生理解和掌握一元二次方程的基本解法。
3.操练(10分钟)学生分组讨论,共同探索一元二次方程的解法。
九年级数学上册 第二十一章 一元二次方程教案 (新版)新人教版

一元二次方程教材内容本单元教学的主要内容:1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用:一元二次方程在整个初中数学中,具有非常重要的作用,一方面是对方程学习的一个提高和汇总,在系统学习一次方程后,对于解方程的数学思想进行归类小结,学习和掌握归纳和转化的数学思想方法,同时对于一元二次方程的解法训练中,可以检测前面内容的学习情况,适当进行知识点的弥补和完善。
同时,一元二次方程的学习,也是学习函数的基础,解决实际问题也离不开一元二次方程,所以,这部分内容具有承上启下的作用,也是整个初中数学的重点。
教学目标1.以分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点重点:1.一元二次方程及其有关概念2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:1.一元二次方程及其有关概念2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用学情分析:学生在学习了一次方程后,积累了一些解方程的经验,这对学习本章内容有一定的基础,但本届学生的数学基础差,且学习习惯差,不爱学习数学,计算能力更是一塌糊涂,因此学习会感到困难,而且在列方程解应用题时,需要学习的分析问题和解决问题的能力,在知识的灵活性中,对于学生来说,无疑是雪上加霜,畏难情绪会更重。
所以,对老师提出了更高的要求,要引导学生学习、归纳,利用合作学习,形成共同探究的学习过程,更关注学生的发展,以及数学思想方法的形成。
九年级数学上册 21.1 一元二次方程教案 (新版)新人教版

教学难点
通过提出问题,建立一元二次方程的数学模型,•再由一元一次方 程的概念迁移到一元二次方程的概念.
教学过程设计
教学程序及教学内容
师生行为
设易方程,上初中后学 点题,板书课题. 联系曾经学
习了一元一次方程,二元一次方程组,可化为一 学生读题找等量关 习过的方程
方程,则 a 范围________.
3).已知方程 5x2+mx-6=0 的一个根是 x=3,则 m
的值为________
4).关于 x 的方程(2m2+m)xm+1+3x=6 可能是一元
二次方程吗? 四、小结归纳
1.一元二次方程的概念及其一般形式,能将一 个一元二次方程化为一般形式,并正确指出其各 项系数. 2.一元二次方程的根的概念,能判断一个数是 否是一个一元二次方程的根. 五、作业设计 必做:P4:1.2.4.6.7 选做:.P29:3.5.7
师巡视指导,了解 移提高
学生掌握情况,并 加深对概念理
概念归纳:
集中订正
解和运用,同
1.一元二次方程定义:
师生归纳总结,学 时对一元二次
分析:首先它是整式方程,然后未知数的个数是 生作笔记.
方程的根的情
1,最高次数是 2.
况初步感知
2.一元二次方程的一般形式:
使学生巩固
分析:
提高,
○1 .为什么规定 a ≠0?
2.下面哪些数是方程 x2+5x+6=0 的根? -4,-3,-2,-1,0,1,2,3,4.
3.你能用以前所学的知识求出下列方程的根 吗?
(1)x2-64=0(2)x2+1=0 (3)x2-3x=0 (4)
x2 2x 1 0 4.思考:一元一次方程一定有一个根,一元二 次方程呢? 5.排球邀请赛问题中,所列方程 x2 x 56 的根 是 8 和-7,但是答案只能有一个,应该是哪个? 归纳: ○1 一元二次方程的根的情况 ○2 一元二次方程的解要满足实际问题
新人教版九年级数学上册 第21章 《一元二次方程》全章教学设计

第二十一章一元二次方程21.1 一元二次方程【知识与技能】1.使学生理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项. 2.会判断一个数是否是一元二次方程的根.【过程与方法】经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.【情感态度】进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性. 【教学重点】一元二次方程的概念及其一般表现形式.【教学难点】从实际问题中抽象出一元二次方程的模型;识别方程中的“项”及“系数”.一、情境导入,初步认识(课件展示问题)雷锋纪念馆前的雷锋雕像高为2m,设计者当初设计它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,即下部高度的平方等于上部与全部的积,如果设此雕像的下部高为xm,则其上部高为(2-x)m,由此可得到的等量关系如何?它是关于x的方程吗?如果是,你能看出它和我们以往学过的方程有什么不同吗?二、思考探究,获取新知由上述问题,我们可以得到x2=2(2-x),即x2+2x-4=0.显然这个方程只含有一个未知数,且x的最高次数为2,这类方程在现实生活中有广泛的应用.探究1见教材第2页问题1.(课件展示问题)【教学说明】针对上述问题可给予5~8分钟时间让学生讨论,教师可相应设置如下问题帮助学生分析:如果设四角折起的正方形的边长为xm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600cm2,可得到的方程又是怎样的?【讨论结果】设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,由此可得到方程(100-2x)(50-2x)=3600,整理为:4x2-300x+1400=0,化简,得x2-75x+350=0,由此方程可得出所切去的正方形的大小.探究2见教材2~3页问题2.【教学说明】教学过程中,教师可设置如下问题:(1)这次排球赛共安排场;(2)若设应邀请x个队参赛,则每个队与其它个队各赛一场,这样共应有场比赛;(3)由此可列出的方程为,化简得.教师提出问题,引导学生思考方程的建模过程,同时注重激发学生解决问题的欲望和兴趣.(课件展示)【讨论结果】设应邀请x个队参赛,通过分析可得到12·x·(x-1)=28,化简,得x2-x=56,即x2-x-56=0.观察思考观察前面所构建的三个方程,它们有什么共同点?可让学生先独立思考,然后相互交流,得出这些方程的特征:(1)方程各项都是整式;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.【归纳结论】1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程称为一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.想一想1.二次项的系数a为什么不能为0?2.在指出二次项系数、一次项系数和常数项时,a、b、c都一定是正数吗?谈谈你的看法.探究3 从探究2中我们可以看出,由于参赛球队的支数x只能是正整数,因此可列表如下:可以发现,当x=8时,x2-x-56=0,所以x=8是方程x2-x-56=0的解,一元二次方程的解也叫做一元二次方程的根.思考1.一元二次方程的根的定义应怎样描述呢?2.方程x2-x-56=0有一个根为x=8,它还有其它的根吗?【探讨结论】1.一元二次方程根的定义:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的根;2.由于x=-7时,x2-x-56=49-(-7)-56=0,故x=-7也是方程x2-x-56的一个根.事实上,一元二次方程如果有实数根,则必然有两个实数根,通常记为x1=m,x2=n.三、典例精析,掌握新知例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10,移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.【教学说明】以上两例均可让学生独立思考,自主完成.教师巡视,了解学生的掌握情况,最后选取几个优秀作业和有代表性问题作业通过幻灯片展示给全班同学学习与思考,加深对本节知识的理解和掌握.四、运用新知,深化理解1.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式,指出其二次项系数、一次项系数及常数项:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的平方,求较短一段的长x.【教学说明】让学生当堂完成上述练习,达到巩固新知目的.最后全班同学核对答案即可.五、师生互动,课堂小结教师提出以下问题,让学生交流,加强反思、提炼及知识归纳.(1)一元二次方程的定义,一般式及二次项系数、一次项系数和常数项;(2)一元二次方程一般形式ax2+bx+c=0(a≠0)中的括号是否可有可无?为什么?(3)通过这节课的学习你还有哪些收获?1.布置作业:教材“习题21.1”第1,2,3题21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法【知识与技能】1.会利用开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.一、情境导入,初步认识问题我们知道,42=16,(-4)2=16,如果有x2=16,你知道x的值是多少吗?说说你的想法.如果3x2=18呢?【教学说明】让学生通过回顾平方根的意义初步感受利用开平方法求简单一元二次方程的思路,引入新课.教学时,教师提出问题后,让学生相互交流,在类比的基础上感受新知.解:如果x2=16,则x=±4;若3x2=18,则x=6.二、思考探究,获取新知探究一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 设一个盒子的棱长为xdm,则它的外表面面积为,10个这种盒子的外表面面积的和为,由此你可得到方程为,你能求出它的解吗?解:6x2,10×6x2,10×6x2=1500,整理得x2=25,根据平方根的意义,得x=±5,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm,故x=5dm. 【教学说明】学生通过自主探究,尝试用开平方法解决一元二次方程,体验成功的快乐.教师应关注学生的思考是否正确,是否注意到实际问题的解与对应的一元二次方程的解之间的关系,帮助学生获取新知.【归纳结论】一般地,对于方程x2=p,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根x1p,x2p(2)当p=0时,方程(Ⅰ)有两个相等的实数根x1=x2=0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程(Ⅰ)无实数根.思考2对上面题解方程(Ⅰ)的过程,你认为应该怎样解方程(x+3)2=5?学生通过比较它们与方程x2=25异同,从而获得解一元二次方程的思路.在解方程(Ⅰ)时,由方程x2=25得x=±5.由此想到:由方程(x+3)2=5,②得x+3=5,即55.③于是,方程(x+3)2=5的两个根为x1525【教学说明】教学时,就让学生独立尝试给出解答过程,最后教师再给出规范解答,既帮助学生形成用直接开平方法解一元二次方程的方法,同时为以后学配方法作好铺垫,让学生体会到类比、转化、降次的数学思想方法.【归纳结论】上面的解法中,由方程②得到③,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程②转化为我们会解的方程了.【教学说明】上述归纳结论应由师生共同探讨获得,教师要让学生知道解一元二次方程的实质是转化.三、典例精析,掌握新知例解下列方程:(教材第6页练习)(1)2x2-8=0; (2)9x2-5=3;(3)(x+6)2-9=0; (4)3(x-1)2-6=0;(5)x2-4x+4=5; (6)9x2+5=1.解:(1)原方程整理,得2x2=8,即x2=4,根据平方根的意义,得x=±2,即x1=2,x2=-2.(2)原方程可化为9x2=8,即x2=8/9.两边开平方,得x=±223,即x1=223,x2=-223.(3)原方程整理,得(x+6)2=9,根据平方根的意义,得x+6=±3,即x1=-3,x2=-9.(4)原方程可化为(x-1)2=2,两边开平方,得x-1=±2,∴x1=1+2,x2=1-2;(5)原方程可化为(x-2)2=5,两边开平方,得x-2=±5,∴x1=2+5,x2=2-5.(6)原方程可化为9x2=-4,x2=-4/9.由前面结论知,当p<0时,对任意实数x,都有x2≥0,所以这个方程无实根.【教学说明】本例可选派六位同学上黑板演算,其余同学自主探究,独立完成.教师巡视全场,发现问题及时予以纠正,帮助学生深化理解,最后师生共同给出评析,完善认知.特别要强调用直接开平方法开方时什么情况下是无实根的.四、运用新知,深化理解1.若8x2-16=0,则x的值是.2.若方程2(x-3)2=72,那么这个一元二次方程的两根是.3.如果实数a、b满足3a+4+b2-12b+36=0,则ab的值为.4.已知方程(x-2)2=m2-1的一个根是x=4,求m的值和另一个根.【教学说明】让学生独立完成,加深对本节知识的理解和掌握.五、师生互动,课堂小结教师可以向学生这样提问:(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.【教学说明】教师可引导学生提炼本节知识及方法,感受解一元二次方程的降次思想方法.1.布置作业:教材“习题21.2”第1题.21.2.1配方法(第2课时)教学过程教学反思:21.2.2 公式法教学目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导. 教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=52 解: (1)移项,得:6x 2-7x=-1二次项系数化为1,得:x 2-76x=-16配方,得:x 2-76x+(712)2 = -16+(712)2(x-712)2 = 25144x-712= ±512 x 1=512+712=7512+=1 , x 2=-512+712=7512-=16(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 二、探索新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a≠0)且b 2-4ac≥0,试推导它的两个根x 1x 2=2b a--分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2ba )2即(x+2b a)2=2244b ac a - ∵b 2-4ac≥0且4a 2>0∴2244b aca -≥0直接开平方,得:x+2ba即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac≥0时,将a 、b 、c 代入式子(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1b 2-4ac=(-4)2-4×2×(-1)=24>0== ∴x 1x 2 (2)将方程化为一般形式3x 2-5x-2=0a=3,b=-5,c=-2 b 2-4ac=(-5)2-4×3×(-2)=49>0576±= x 1=2,x 2=-13(3)将方程化为一般形式3x 2-11x+9=0a=3,b=-11,c=9 b 2-4ac=(-11)2-4×3×9=13>0∴x=(11)11236--±=⨯ ∴x 1=116+x 2=116-(3)a=4,b=-3,c=1b 2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根. 三、巩固练习教材P 12 练习1 第1题21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9 x)=0.∴x =0或10-4.9 x =0,∴x 1=0, x 2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x (x -2)+ x -2=0; (2)5 x 2-2 x -14= x 2-2 x +34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2, x2=-1. (2)原方程整理为4x 2-1=0.因式分解,得(2x +1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12, x 2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B. (x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D. x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.布置作业:教材“习题21.2”第6题.。
(完整版)数学人教版九年级上册一元二次方程第一课时教案

21. 1 一元二次方程教课内容一元二次方程观点及一元二次方程一般式及相关观点. 教课目的认识一元二次方程的观点;一般式 ax 2+bx+c=0 ( a ≠ 0)及其派生的观点; ?应用一元二次方程观点解决一些简单 题目.1.经过设置问 题,成立数学模型, ?模拟一元一次方程观点给一元二次方程下定义. 2.一元二次方程的一般形式及其相关观点. 3.解决一些观点性的 题目. 4.态度、感情、价值观5.经过生活学习数学,并用数学解决生活中的问 题来激发学生的学习热忱.重难点要点1.?要点:一元二次方程的观点及其一般形式和一元二次方程的相关观点并用这些观点解决问 题.2.难点打破:经过提出问 题,成立一元二次方程的数学模型, ?再由一元一次方程的观点迁徙到一元二次方程的观点.教课过程 一、复习引入问题 1:( 1)什么是一元一次方程?( 2)一元一次方程的一般形式是什么?问题 2:学生议论沟通达成前言: 要设计一座 2 m 高的人体塑像, 使塑像的上部 (腰以上) 与下部(腰以下)的高度比,等于下部与所有的高度比,塑像的下部应设计为多高?设塑像下部高 x m ,于是得方程。
问题 3:如图,有一块矩形铁皮,长 100 cm ,宽 50 cm ,在它的四角各切一个相同的正方形, 而后将周围突出部分折起, 就能制作一个无盖方盒, 假如要制作的无盖方盒的底面积为 3 600cm 2,那么铁皮各角应切去多大的正方形?设切去的正方形的边长为 x cm ,则盒底的长为( 100- 2x )cm ,宽为( 50- 2x )cm ,依据方盒的底面积为3 600 cm 2,得。
问题 4:要组织一次排球邀请赛,参赛的每两个队之间都要竞赛一场,依据场所和时间等条件,赛程计划安排 7 天,每日安排 4 场竞赛,竞赛组织者应邀请多少个队参赛?设应邀请 x 个队参赛,每个队要与其余( x - 1)个队各赛 1 场,因为甲队对乙队的竞赛和乙队对甲队的竞赛是同一场竞赛,所以所有竞赛共1x x 1场.可列方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同点:方程中未知数的最高次数是2;而一元一次方程的未知数最高次数是1。
想一想:为什么要限制a≠0?b、c可以为零吗?
强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
⑸上述一元二次方程还有哪些相同点和不同点?你能类比一元一次方程的一般形式得出一元二次方程的一般形式吗?
⑹什么叫做一元二次方程的解?
阅读提纲,
(1)~(6)
4、组织学生自学
指导学生阅读课本P2---4课文,并回答问题。
学生自学得出结论组内交流,互助互教。
二、自学反馈
汇报或检测
1.一元二次方程的概念:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.
什么是一元一次方程?他的一般形式是怎样的?
回忆
2、出示学习目标
充分了解一元二次方程的概念,正确掌握一元二次方程的回答云图中的问题
⑵阅读教材第2页问题2回答云图中的问题
⑶回答方程①②③有什么共同点?你能给这种不同于一元一次方程的新方程起个名字吗?
⑷归纳一元二次方程的定义
重点
掌握一元二次方程的概念及一般形式,会将一元二次方程化为一般形式
难点
从实际问题中抽象出一元二次方程;正确识别一般形式中的“项”及“系数”
教法、学法
引导、启发自主学习、合作交流
课型
新授课
教学准备
小黑板
教学流程
教师活动
学生活动
二次备课
一、自主学习
1、知识回顾
你还记得什么叫做方程么?什么叫做方程的解么?
一元二次方程
教学目标
知识与技能
通过对本节课的教学,使学生充分了解一元二次方程的概念,会判断一个数是否是一元二次方程的根,正确掌握一元二次方程的一般形式
过程与方法
培养学生分析问题、解决问题的能力以及对数学概念理解的完整性和深刻性,帮助学生掌握初步的研究问题的方法
情感态度与价值观
帮助学生树立转化的思想和严谨的科学态度;培养学生用数学的意识
2.一元二次方程的一般形式:
我们把一元二次方程按未知数的降幂排列有:.这种形式叫做一元二次方程的一般形式.其中a叫做二次项系数,b叫做一次项系数,c叫做常数项.
回答老师提出的问题
三、质疑精讲
1、学生质疑,师生共同解疑
提出质疑,师生共同解决
2、教师横向拓展和纵向挖掘
这些方程和一元一次方程有什么共同点和不同点?
3、作业:课堂
必做:教材第4页1题
选做:教材第4页2题
家庭
教材第4页习题21.1第1---7题
板书设计
21.1一元二次方程
定义:例题练习
一般形式:
教后记
聆听、思考、回答
四、总结提高
1、出示精选习题
例将方程化成一元二次方程的一般形式,并写出其中的二次项系数及常数项.
练习
1.将下列方程化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)
(2)
2.当_____时,关于的方程是一元二次方程.
根据所学内容解答习题
2、总结归纳
谈谈本节课的收获?