电冰箱温度控制系统设计
实验六 电冰箱控制系统

实验六电冰箱控制系统一、实验目的熟悉电冰箱的控制系统,能进行简单维护维修。
二、实验原理(一)控制电路中常用的元器件电冰箱电气控制系统的主要作用,是根据使用要求,自动控制电冰箱的起动、运行和停止,调节制冷剂的流量,并对电冰箱及其电气设备实行自动保护,以防止发生事故。
电冰箱的控制电路是根据电冰箱的性能指标来确定。
但其电气控制系统还是大同小异的,一般由动力、起动和保护装置、温度控制装置、化霜控制装置、加热与防冻装置,以及箱内风扇、照明等部分组成。
常用压力式温度控制器见下图。
1. 温度控制器:温度控制器简称温控器,是电冰箱、房间空调器等制冷设备调温、控温的装置。
它的主要作用是:(1)通过调节温度控制器旋钮,可以改变所需要的控制温度。
(2)可根据电冰箱内或空调房间内的温度要求,对制冷压缩机进行开、停的自动控制,使电冰箱内或房间内的温度保持在控制范围内。
温度控制器的种类很多,常用的温感压力式温度控制器。
温感压力式温度控制器主要用于人工化霜的普通“直冷式”单、双门电冰箱,或用于全自动化霜的“间冷式”双门电冰箱对冷冻室的温度进行控制。
温度控制器主要由感温元件、毛细管、感压腔和一组微动开关等机构组成。
感温元件也叫温压转换部件,是一个密闭的腔体,由感温管感温剂和感压腔三部分组成。
感压腔内充入的感温剂一般是氯甲烷或是R12。
它的作用是将蒸发器表面的温度变化转换为压力变化,从而引起快跳触点的动作。
2. 起动继电器:(1)重锤式起动继电器:重锤式起动继电器的结构主要包括电流线圈、重力衔铁、弹簧、动触点、T形架、绝缘壳体等;(2) PTC起动继电器:PTC是正温度系数的热敏电源电阻英文的缩写。
PTC起动继电器的工作原理:电冰箱在室温下起动时,PTC元件的电阻很小(约20Ω),而在较短的时间(0.1~0.2s)内通过基本恒定的电流,呈导通状态,之后随着其元件本身的发热温度升高,其阻值迅速增大,此时,PTC处于“断开”状态。
3. 过载保护器:过电流和过热保护器称为过载保护器,是压缩机电动机的安全保护装置。
电冰箱的控制系统

第四章电冰箱的机械控制系统电冰箱以电为能源,靠电动机来驱动压缩机,一般还要配上启动继电器才能工作。
为了避免由于种种原因引起的超负荷现象造成电机烧毁,都装有过载保护器。
此外,为了控制箱内温度,还要用机械式温度控制器,有时它还兼有控制化霜功能。
电冰箱的控制系统依据系统中所采用温控器的不同分为“机械温控系统”和“电子温控系统”。
本章主要介绍机械温控原理及机械式温度控制器。
第一节常见机械温控系统一.机械温控系统组成常见机械式冰箱温控系统:图4-1 冰箱电气原理图表4-1 机械式电冰箱温控系统部件二.机械式温控器1.温控器的类型与作用温度控制器(简称温控器),是一种能自动控制器具的温度,使其保持在两个特定值之间,并且可以由使用者设定的装置。
广泛应用于各种家用电器中,以下为列表:表4-2 常用温控器类型本教材中温控器均为冰箱用温控器的技术参数、要求等,主要介绍温感压力式温度控制器,以下简称“温控器”。
温控器属于温度控制系统中的一个主要的部件,其主要作用是控制压缩机压缩机开、停时间,以保持电冰箱内的温度在确定的范围内。
常见的温度控制器有温感压力式、热敏电阻式和风门温度调节器等。
2.温感压力式温度控制器由感温组件、温度设定主体组件、执行开闭的微动开关或自动风门等三部分组成。
是通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为密闭空间压力或容积的变化,以达到温度设定值时,通过弹性元件和快速瞬动机构,自动开闭触点或风门,以达到自动控制温度。
表4-3 温感压力式温度控制器分类及用途常用术语:●接通点(ON)温控器触点闭路时的温度;●断开点(OFF)温控器触点开路时的温度;●调节范围温控器的调节机构给定的最大和最小接通点或断开点之间的温差;●差动值(DIFF)调节机构整定于某一温度位置时的接通点和断开点之间的温度差;●感温部件把控制对象的温度变换为充入工质(气体或液体)压力的部分;●毛细管把感温部分的压力变化传递到波纹管或膜盒的细管。
电冰箱控制系统设计

HEFEI UNIVERSITY自动化综合设计设计题目:冰箱温度控制设计系别:11 电子系专业班级:自动化2班指导老师:丁健姓名学号:董祥(1105032020)吴兵(1105032022)王万里(1105032023)丁超超(1105032028)_钱心远()摘要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以与针对具体应用对象特点的软件结合,以作完善。
电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度以与蒸发表面温度。
通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。
本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。
通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。
关键词:单片机;温度传感器;电冰箱;温度控制一、设计内容家用电冰箱一般是双门冰箱,分为冷冻室和冷藏室两个部分。
冷冻室用于冷冻食品和制冰。
长时间存放,食品中的水份也会凝结成冰。
冷冻室的温度为-6~-18℃。
为保证冷冻室良好的制冷效果。
当霜厚达3mm 时,能自动检测霜厚并进行除霜。
冷藏室用于在较低的温度中存放食品。
要求有一定的保鲜而不冻伤食物的功能。
冷藏室的温度一般为 0~10℃。
对家用电冰箱的要求是:较高的温度控制精度和最优的节能效果。
系统结构框图:二、硬件设计直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启动与停止,使冰箱内的温度保持在设定的温度范围内。
本电冰箱控制系统要完成冷冻室与冷藏室的温度检测和动态显示的功能,霜厚检测与除霜的功能,温度设置功能,。
控制系统硬件结构如图所示,主要由电源电路,AT89C52最小系统,温度传感器,功能按键, ADC0809转换电路,时钟电路,键盘电路,显示电路,复位电路,测霜、除霜装置。
冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计目录第一章概论..................................... 错误!未定义书签。
一.电冰箱的系统组成 (2)二.工作原理: (3)三.本系统采用单片机控制的电冰箱主要功能及要求 (4)第二章硬件部分 (4)一.系统结构图 (4)二.微处理器(单片机) (5)三.温度传感器 (8)四.电压检测装置 (8)五.功能按键 (9)六.压缩机,风机、电磁阀控制 (9)七.故障报警电路 (9)第三章软件部分 (10)一、主程序:MAIN (10)二、初始化子程序:INTI1 ......................... 错误!未定义书签。
三、键盘扫描子程序:KEY ......................... 错误!未定义书签。
四.打开压缩机子程序:OPEN (13)五.关闭压缩机:CLOSE (15)六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。
七.延时子程序.................................. 错误!未定义书签。
第四章分析与结论.................................. 错误!未定义书签。
电冰箱温度测控系统设计目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃.传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择.一.电冰箱的系统组成液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。
电冰箱自动控制系统的设计

目录1.引言 (2)2 设计要求及分析 (3)2.1电冰箱温度自动调节功能 (3)2.3电源过欠压保护功能 (3)2.4压缩机开启延时功能 (3)2.5故障报警功能 (3)3. 自动控制系统硬件结构设计 (4)3.1主要部件选择与功能实现 (4)3.1.1 单片机选型及功能介绍 (4)3.1.2 A/D转换器选型及功能介绍 (5)3.1.3 74LS373简介 (5)3.2检测及控制电路 (6)3.2.1 传感器的选择与温度自动调节功能的实现 (6)3.2.2 电冰箱的过欠压保护电路及功能实现 (8)3.2.3 电冰箱的开启延时电路及功能的实现 (9)3.2.4 自动除霜功能的实现 (10)3.2.5 报警器 (11)总结 (13)参考文献 (14)电冰箱自动控制系统的设计1.引言冰箱自动控制系统在正常工况下工作,当运行过程中需要进行自动调节时,系统能通过预设程序进行调节,要求控制系统应有一定的应变能力。
对于冰箱性能的主要调节指标是箱体温度由此实现的功能有自动温度调节,自动除霜等。
要求维持冰箱的冷藏冷冻室温度维持在预先设定的数值,当箱内温度高于或低于这一值时判断启动或关闭压缩机,使温度回归。
系统还要求累计压缩机运行时间和检测环境温度,来判断是否满足化霜条件,当满足化霜条件时,接通化霜加热丝,同时断开压缩机和风机,当完成化霜工作后恢复压缩机风机的工作。
另外当运行达到安全极限时,要求系统能采取一些相应的保护措施,促使运行离开安全极限,返回到正常情况,以防事故。
属于生产保护性措施的有两类:一类是硬保护措施;一类是软保护措施。
例如电源的过欠压保护,压缩机开启延时,故障自检报警等.本系统通过监控环境温度,冰箱的冷冻,冷藏室温度,电源电压等数据,通过处理判断调整冰箱的运行以达到预期的运行效果。
使冰箱在节能,储藏效果,安全方面都能进行自动有效的控制。
2 设计要求及分析2.1 电冰箱温度自动调节功能该功能是电冰箱应具备的主要功能。
一种电冰箱电子温控器的设计构想

温控 器
多功 能
1 除 霜 电路 . 2
电子温控器 由电源电路 、温度传感器 电路 、温度控制 电路和除霜 电路组 成。它实现两方面 的控制 :一是冷藏室的温度控制 ;另一个是 冷冻室的除霜控制 。操作面板布置如图l 所示 ,电路原理 如图2 所示 。 直冷式 电冰箱的冷藏室 蒸发器 和冷冻室蒸发器是 串联起来 的。两
2 控 制器 与 电冰 箱 的 实 际 接 线
电路 ,用于压缩机启 、停信 号的产生与选择 。I81 C 0组成R 触发器 , s 对启 、 停信号进行锁存 。比较 电路 的④ 、⑤ 、 ②脚及外围元件构成开 机信号电路 ,⑦ 、 、 ⑥ ①脚 及外围元件构 成停机信号 电路 。 + . 的 6V 8 直流电压加至R 0 和R 0 组成 的分压 电路上, 8 1 82 经分压后⑤脚 被固定在 4 。R 2是 滑动 电位器 ,改变其 位置即改变⑥ 脚的 电压 ,决定压缩 V 14 机停机 时⑦脚应达到的 电压值 。冷藏室温度传感器是个负温度系数热 敏电阻 ,它与R 0 串联分 压后电压]  ̄ l 8 2 86 J l 0 的④ 、 lJ l C ⑦脚 。刚开机时 冷藏室温度较高 ,分压后运放⑦脚 电压较大 ,两个 比较器的⑦脚 电压 大于⑥脚 电压 ,④脚 电压大于⑤脚 电压 ,故输出端①脚为高电平 ,输 出端②脚 为低 电平 。此信 号输入R 触发器 的① 、⑥脚 ,使输 出端③ S
由叠科 莓 21 1 0 : o0 0 16 年第 期
一
种 电 冰 箱 电 子 控 的 设 计 构 想 温 器
吴 敏
( 重庆 工 贸 职 业 技 术 学 院 信 息 工 程 系 )
摘
要
早先的电冰箱全部采用感温囊式温控 器控 制,它是 利用感温荆( 一般 为氟利 昂1或氯烷) 2的热涨冷缩原理控制 电路通断 ,从
3电冰箱系统设计

3电冰箱系统设计电冰箱是现代生活中常见的家用电器之一,其设计需要考虑到制冷功能、储藏空间、能源效率以及用户友好性等因素。
下面是一个关于电冰箱系统设计的范文,共计1200字。
一、设计目标在设计电冰箱系统时,我们的目标是提供一个高效、节能、安全并且用户友好的产品。
我们希望通过优化制冷系统和增加储藏空间等方式,提高电冰箱的性能,并减少能源消耗。
二、制冷系统设计1.制冷剂选择:我们选择了环保型制冷剂,如R-600a或R-134a,以减少对大气层的污染。
2.制冷循环:我们采用了压缩机制冷循环系统。
制冷循环由压缩机、换热器、膨胀阀和蒸发器组成。
制冷剂在压缩机中被压缩成高压气体,然后通过换热器和膨胀阀,在蒸发器中蒸发,从而带走室内的热量。
3.优化换热器设计:为了提高制冷效率,我们采用了高效的换热器设计。
换热器通过增大换热面积和优化换热器内部管路设计,提高了热量传递效率。
4.温度控制系统:为了保持恒定的温度,我们采用了电子控制系统,通过传感器监测室内温度,并自动调节制冷器的运行时间和速度。
三、储藏空间设计1.多功能储藏空间:电冰箱内部被划分为多个储藏空间,包括主室、冷冻室和可调节的储藏室。
主室用于存放食物和饮料,冷冻室用于冷冻食物,可调节的储藏室可以根据需要进行调整。
2.智能储藏空间管理:我们的电冰箱配备了智能储藏空间管理系统,可以根据食物的类型和储存需求,自动调节储藏室的温度和湿度,以延长食物的保鲜期。
3.储藏空间优化:为了最大程度地提高储藏空间的利用率,我们在设计中考虑到了不同尺寸和形状的食物容器,增加了可折叠和可调节的储物架以及门上的储物盒等功能。
四、能源效率设计1.高效制冷器:我们的电冰箱采用了高效的制冷器设计,以提高制冷效率,减少能源消耗。
2.省电模式:我们的电冰箱配备了省电模式按钮,用户可以根据需要选择开启或关闭省电模式。
省电模式可以减少制冷器的功率,以降低能源消耗。
五、用户友好性设计1.信息显示屏:我们的电冰箱配备了信息显示屏,可以显示温度、湿度、制冷器运行状态等信息,方便用户了解和控制电冰箱的工作状态。
家用电冰箱温度控制系统工作原理

家用电冰箱温度控制系统工作原理家用电冰箱是现代家庭中常见的电器之一。
它的主要功能是为家庭提供冷藏和冷冻食物的储存空间。
为了保持食物的新鲜和安全,电冰箱内部的温度需要得到控制和调节。
家用电冰箱的温度控制系统是一个自动化系统,由几个关键组件组成,包括传感器、控制器和执行器。
这些组件相互配合,以确保冰箱内部的温度始终保持在设定的合适范围内。
电冰箱内部安装有一个温度传感器。
传感器的作用是感知冰箱内部的温度,并将此信息传递给控制器。
传感器通常是基于热敏电阻原理工作的,当温度发生变化时,它的电阻值也会随之变化。
传感器将电阻值的变化转化为电信号,然后传送给控制器。
控制器是温度控制系统的核心部件。
它接收传感器传递过来的温度信号,并与预设的温度设定值进行比较。
如果温度超过了设定值,控制器会发出指令,启动制冷系统以降低温度。
如果温度低于设定值,控制器则会停止制冷系统的工作,以保持温度在合适的范围内。
执行器是控制器的输出部件,它负责执行控制器发出的指令。
在家用电冰箱中,执行器通常是压缩机。
当控制器发出制冷指令时,执行器会启动压缩机,使其开始工作。
压缩机的作用是通过压缩制冷剂使其温度升高,并通过排热的方式将热量释放到外部环境中,从而降低冰箱内部的温度。
除了传感器、控制器和执行器,家用电冰箱的温度控制系统还包括其他辅助组件,如电源供应和显示屏。
电源供应为整个系统提供电能,确保其正常运行。
显示屏通常位于冰箱的控制面板上,用于显示当前的温度和设定值,方便用户掌握冰箱的工作状态。
在家用电冰箱的温度控制系统中,传感器、控制器和执行器之间通过电路连接起来,形成一个闭环反馈控制系统。
传感器感知温度,控制器根据温度信号作出决策,并通过执行器来实现控制目标。
这样的系统能够实时监测和调节冰箱内部的温度,保持食物的新鲜和安全。
需要注意的是,家用电冰箱的温度控制系统并不是绝对精确的。
由于传感器的误差、控制器的响应时间以及执行器的性能等因素,冰箱内部的温度可能会存在一定的波动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验设计报告学院:自动化工程学院专业:测控技术与仪器学生姓名:学号:实验设计名称:测控系统控制原理与设计实验设计题目:电冰箱温度控制系统设计指导教师:目录一、引言 (3)二、电冰箱温度控制系统硬件电路设计 (4)1. 总体设计方案 (4)2. 主控制部分方案 (5)2.1 AT89S51主要性能特点 (5)2.2管脚说明 (5)2.3下载程序 (7)2.4 AT89S51单片机的中断系统 (10)2.5 AT89S51单片机的优势 (12)3.测温模块的选择方案 (13)3.1 DS18B20简介 (13)3.2 DS18B20的工作时序 (16)3.3 DS18B20的连接电路 (17)4.各单元的设计 (18)4.1单片机时钟电路及复位电路 (18)4.2 键盘 (20)4.3温度控制及超温和超温警报单元 (21)4.4数码管的显示电路 (22)4.5蜂鸣器电路 (24)4.6接口通讯单元 (24)5.程序设计 (26)5.1程序结构分析 (26)5.2主程序 (27)三、课程设计总结及心得 (27)参考文献 (28)一、引言电冰箱是每个家庭现代化厨房必备的家用电器之一,它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其他物品的家用电器设备。
它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的,即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。
从1918年世界上第一台电机压缩式电冰箱研制成功,随着科学技术的飞速发展电冰箱也在不断的演变和更新尤其是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。
现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。
因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。
传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。
一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。
随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。
采用单片机进行控制,可以使电冰箱的控制更准确、灵活、直观。
本次所设计的就是基于51单片机的电冰箱温度控制系统,以AT89C51单片机为核心控制压缩机的启动和停止,解决了传统电冰箱控制系统存在的不足,可以使控制更准确、更灵活。
本次设计的目的是设计一个温度控制系统,要求:1.利用键盘分别控制冷藏室、冷冻室温度(0~5℃,-7 ~ -18℃);2.显示各室的温度值;3.制冷压缩机运行后若突然断电要有30秒延时;4.各个门开后超过2分钟要报警。
本次设计的意义是通过此次设计加深对测控系统原理与设计课程的理解,掌握微机化测控系统设计的思路,了解一般设计过程。
二、电冰箱温度控制系统硬件电路设计1. 总体设计方案以AT89S51单片机为核心,来实现各个模块的功能。
温度传感器模块、键盘输入模块作为系统的输入模块,液晶显示模块、温度控制器模块、报警模块作为系统的输出模块,构成基本电路,原理框图如图2-1所示:温度传感器(经指导老师建议,使用DS18B20,因其自带A/D转换模块)从设备环境的不同位置采集温度,单片机AT89S51获取采集的温度值,经处理得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。
当采集的温度经处理后超过设定温度上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器),当采集的温度经处理后低于设定温度下限时,单片机通过三极管驱动继电器开启升温设备 (加热器)。
图2-1 冰箱控制原理图当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。
系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。
2. 主控制部分方案AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,AT89S51在众多嵌入式控制应用系统中得到广泛应用。
2.1 AT89S51主要性能特点1、4k Bytes Flash片内程序存储器;2、128 bytes的随机存取数据存储器(RAM);3、32个外部双向输入/输出(I/O)口;4、2个中断优先级、2层中断嵌套中断;5、6个中断源;6、2个16位可编程定时器/计数器;7、2个全双工串行通信口;8、看门狗(WDT)电路;9、片内振荡器和时钟电路;10、与MCS-51兼容;11、全静态工作:0Hz-33MHz;12、三级程序存储器保密锁定;13、可编程串行通道;14、低功耗的闲置和掉电模式。
2.2管脚说明VCC:电源电压输入端。
GND:电源地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
PDIP 封装的AT89S51管脚图P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH 编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口除了作为普通I/O口,还有第二功能:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(T0定时器的外部计数输入)P3.5 T1(T1定时器的外部计数输入)P3.6 /WR(外部数据存储器的写选通)P3.7 /RD(外部数据存储器的读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。
读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。
只有读端口时才真正地把外部的数据读入到内部总线。
89C51的P0、P1、P2、P3口作为输入时都是准双向口。
除了P1口外P0、P2、P3口都还有其他的功能。
RST:复位输入端,高电平有效。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:地址锁存允许/编程脉冲信号端。
当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE 的输出可在SFR8EH地址上置0。
此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
PSEN:外部程序存储器的选通信号,低电平有效。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
EA/VPP:外部程序存储器访问允许。
当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:片内振荡器反相放大器和时钟发生器的输入端。
XTAL2:片内振荡器反相放大器的输出端。
2.3下载程序AT89SXX系列单片机实现了ISP下载功能,故而取代了89CXX系列的下载方式,也是因为这样,ATMEL公司已经停止生产89CXX系列的单片机,现在市面上的AT89CXX多是停产前的库存产品。
1.控制线,共4根。
(1)输入:RST——复位输入信号,高电平有效。
在振荡器工作时,在RST上作用两个机器周期以上的高电平,将器件复位。
EA/Vpp——片外程序存储器访问允许信号,低电平有效。
在编程时,其上施加12V的编程电压。
(2)输入,输出:ALE/PROG——地址锁存允许信号,输出。
用做片外存储器访问时,低字节地址锁存。
ALE以1/6的振荡频率稳定速率输出,可用做对外输出的时钟或用于定时。
在EPROM编程期间,作输入。
输入编程脉冲。
ALE可以驱动8个LSTTL 负载。
(3)输出:PSEN——片外程序存储器选通信号,低电平有效。
在从片外程序存储器取指期间,在每个机器周期中,当PSEN有效时,程序存储器的内容被送上P0口(数据总线)。
PSEN可以驱动8个LSTTL负载。
2.I/O口:4个口,32根单片机51系列共有四个8位双向并行I/O通道口,分别是P0、P1、P2、P3,各具有特殊的电路结构,每位均有自己的锁存器、输出驱动器和输入缓冲器。
这种结构,在数据输出时可锁存,即输出新的数据之前,通道口上原数据一直保持不变,但对输入信息是不锁存的,因此从外部输入的信息必须保持到取数指令执行完为止。