凝聚态物理导论-中科院课件-苏刚Chapter4
凝聚态物理导论

一,超导储能与输电 二,超导故障电流限制器 三,高温超导电机 四,高温超导变压器 五,超导悬浮列车
约瑟夫森
弱电领域的应用主要根据超导体的 Josephson效应。
主要产品有超导计算机、超导量子干涉仪(SQUID) 超导微波器件、超导天线、高温超导滤波器件 电子对通过两块超导金属间 无损检测等。
超导历史简介
在 1985 年之前,人们发现的最高的超导转变温度的超 导体为 Nb3Ge,它的超导转变温度为 23K。 1986 年,超导转变温度大于 23K 的 LaBaCuO 体系被 发现,它的超导转变温度为 35K。 在 1987 年,高于液氮温度(77K)的超导体 YBa2Cu3O7 被发现了,且它的超导转变温度为93K这之后,大量的 铜氧化物超导体被发现 2008 年,铁基材料在 O 位掺杂 F 发现其具有超导电性。 这一现象的出现又一次引发了世界范围内有关研究超导体 的热潮。
温度和其原子核外电子排布的关系发现平均原子价电 子数(R)稍小于5时,超导转变温度趋向于达到最大 值。但是最近发现过渡金属及其化合物还有锝(Tc) 却有更高的R值。
文献目的:解释这种异常现象,使得理论可以包含解
释最近发现的化合物、合金和金属。
相关文献阅读
科学家首先发现元素锝有接近11K的超导 转变温度,然后意识到R值稍小于5时超导 转变值最大是不合理的。因为Tc的R值为7
Meissner
超导历史简介
1957 年,巴丁(J. Bardeen)、库珀(L. V. Cooper)和 施里弗(J. R. Schrieffer)从大量的实验中发现了影响超导电性 的物理规律,并建立了著名的 BCS 理论。
他们认为:电子在晶格中 移动时会吸引邻近格点上的正 电荷导致格点的局部畸变,形 成一个局域的高的正电荷区域。 这个局域的高的正电荷区 域会吸引自旋相反的电子,和 原来的电子以一定的结合能相 结合形成所谓的“copper”对。 在很低的温度下,这个结合能可能高于晶格原子振动的能量。 这样,“copper”对将不会和晶格发生能量交换,也就没有电阻, 形成所谓“超导”。 在很长一段时间内,BCS 理论成功推出了大多数超导体的许多性质。
凝聚态物理导论

凝聚态物理导论陆小力EMAIL:xllu@电话:158********办公室:东大楼,208A1预备知识:固体物理+量子力学学习目标:两个深化+两个面向•方法上: 固体(多体)理论•体系上:凝聚态物理•面向学科发展前沿•面向实际体系2, 北京大学出版社, 上海科学技术出版社第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章第十二章第十三章成绩平时成绩(20%)+考试成绩(80%)平时成绩:考勤+projectProject 报告(命题阅读报告,基于阅读多篇文献后的读书报告)口头ppt+报告电子版word期末考试:闭卷7凝聚态物理从微观角度出发,研究相互作用多粒子系统组成的凝聚态物质(固体和液体)的结构和动力学过程, 及其与宏观物理性质之间关系的一门科学.凝聚态物理的重要性(1)它为力学,流体力学,电子学,光学,冶金学及固态化学等经典科学提供了量子力学基础.(2)它为高技术的发展作出了巨大贡献. 如它是晶体管,超导磁体,固态激光器, 高灵敏辐射能量探测器等重大技术革新的源头. 对通信,计算以及利用能量所需的技术起着直接的作用, 对非核军事技术也产生了深刻的影响.810(1922.7.18-1996.6.17)121.1 范式1.什么叫范式? (Paradigm)An example that serves as pattern or model.样式作为样本或模式的例子2.学科的范式联贯的理论体系一个学科的成熟以其范式的建立为标准范式对学科从整体上把握有重要意义133. 学科发展的范式科学的演化是经过不同阶段循环发展的过程。
1.前范式阶段(pre-paradigm)2.常规科学阶段(normal science)3.反常阶段(anomaly)4.危机阶段(crisis)5.科学革命阶段(scientific revolution)6.新范式阶段(new paradigm).科学发展过程中,范式的转换构成了科学革命。
凝聚态物理学导论及金属自由电子气体模型

• 阎守胜 编著 《固体物理基础》(第 二版)北京大学出版社,2003
教材与参考书目
课外读物
• P. W. Anderson, Concepts in Solids, World Scientific, 1977 • 文小刚 著, 胡滨 译,《量子多体 理论》,高等教育出版社,2004
人类历史是以人类理解和控制凝聚态 材料的进程来命名的:石器时代,青 铜时代,黑铁时代,高分子时 代?... ...
如果我们已经知道了自然界的 一切基本定理,知道了所有的基本粒 子。使用这一些知识,我们能够理解 我们日常所见的物理现象吗?比如说 黄金能导电,而塑料是绝缘体?为什 么液体具有流动性,而固体具有刚性? 等等
上世纪下半叶开始了凝聚态物理的时凝聚态物理的前身是固体物理研究波在周期结构中的传播bloch定理光子晶体声子晶体位形空间与动量空间的凝聚相变对称性破缺序参量守恒定律气液相变液固相变临界点连续对称性破缺与弹性的起源理想聚合物的生长在空间上是各向同性的
凝聚态物理学导论
望文生意,凝聚态物理是做什么的?
重要性
主要参考书
• P. M. Chaikin & T. C. Lubensky, Principles of condensed matter physics, Cambridge University Press, 1995
教材与参考书目
• 陆坤权 刘寄星 主编《软物质物理 学导论》北京大学出版社, 2006
金属自由电子气体模型
单位体积自由电子气体的基态能量由
费米球内所有单电子能级能量相加得
凝聚态光物理学.ppt

2.1.2 Vibrational oscillators
Classical model of a polar molecule (an ionic optical medium)
0
KS 1012 1013 Hz
Infrared spectral region
Clausius-Mossotti relationship
Model used to calculate the local field by the Lorentz correction. A imaginary spherical surface drawn around a particular atom divides the medium into nearby dipoles and distant dipoles. The field at the centre of the sphere due to the nearby dipoles is sunned exactly, while the field due to the distant dipoles is calculated by treating the material outside the sphere as a uniformly polarized dielectric.
Free electrons, Ks = 0, 0 = 0 Drude-Lorentz model
2.2 The dipole oscillator model 2.2.1 The Lorentz oscillator
The macroscopic polarization of medium P:
2.1.1 Atomic oscillators
凝聚态物理前沿讲座共61页PPT资料

Our Method
1. First-principles calculations based on DFT 2. Plane-wave basis 3. Ultra-soft Pseudo-potential 4. LDA, GGA, LDA+U, etc… 5. Virtual crystal approximation (VCA) 6. Real space RMM for larger systems 7. Full parallelization by MPI 8. SGI, IBM-SP, Alpha, Cray, VPP, PC-
V iP o ,x( S n r) (1 x )V iP o ,a ( S n r) xiP o V ,b ( S n r)
Solve Schrodinger equation
V
PS x
For virtual ato to solve the single particle problem
31.03.2020 Pseudopotential, ASA, …
Other Problems in Simulations
1. Exchange-correlation functional 2. Strongly-correlated systems 3. Force calculation & Molecular dynamics 4. Magnetic, optical & electronic properties 5. Excited States 6. Non-equilibrium & Time-dependent process 7. Order (N) method & Large scale 8. Catalysis, Chemical reaction, Bio-systems 9. …
凝聚态光物理学4

En = E g −
RX n2
Strong optical absorption line at energies equal to En that appear in the spectra at energies just below the fundamental band gap Free excitons can only be observed in the absorption spectrum of very pure samples, because impurities release free elecrons and holes that can screen the Coulomb interaction in the exciton and thereby strongly reduce the binding froces.
凝聚态物理导论-中科院课件-苏刚Chapter5

Chapter 5 Fundamentals of Transport TheoryIt is the description of the conduction of electricity and heat in metals.§5.1 Boltzmann equationLudwig Eduard Boltzmann(February20, 1844 –September 5, 1906) was anAustrian physicist famous for his foundingcontributions in the fields of statisticalmechanics and statistical thermodynamics.He was one of the most importantadvocates for atomic theory when thatscientific model was still highlycontroversial./wiki/Ludwig_BoltzmannIn general, the distribution function of electrons is affected by the external magnetic field, the temperature gradient, scatterings by impurities, phonons, defects, other electrons, etc.In a steady state, there is no change in f, and the above equation vanishes.Boltzmann equation.In the presence of an external electric field εand an external magnetic field B,The diffusion term from the temperature gradient isVelocity of an electron wave packet centered at k.Up to now, we do not consider the distribution of phonons. As theelectron and phonon systems are coupled, the distribution function of phonons satisfiesIn most cases, for electron systems the phonon distribution is assumed to be in the thermal equilibrium. So, we shall not consider the above equation.The electric current density isThe heat current Q isenergyIt can be seen that if we get the form of scattering (collision) term, we may put it into the Boltzmann equation (BE), and solve BE to find f(k,r). Then, we can get electric and heat currents.(i)(ii)(i)(ii)This equation is inserted into the BE, and you will find that it is a nonlinear integral equation for the distribution function, which is difficult to solve.Suppose that the external fields and temperature gradients are small. Then we can get a solution of BE.Auxiliary function直接微分即可得到。
《凝聚态物理学基础知识讲座250页PPT

2, c
VI. c: 1nm,为 金 属 中 两 个 电 子 的 平 均 距 离
VII. 因为等离子波必须只有当其波长大 于电子之间的距离才能存在。
V. 作图
VI. Bohm-Pines在1951-1953年提出:
∆ 电子气体中电子-电子之间的二体库 仑相互作用会引起电子之间的长程关 联运动
∆ 电子气体以电子密度集体振荡的方式 来体现电子-电子之间二体库仑相互 作用的长程效应。 电子气体的等离子集体振荡能量量 子——元激发(准粒子)称为:等离 子激元(plasmon),是玻色子。
5. 金属中,由相互作用电子气体的一种 分别元激发——电子-空穴对。
I. 电子-空穴对算符,是分别激发算符, 定义为:
ˆvv qk
aˆkvqvaˆkv
II. ˆ v v 的本征值方程: qk Hˆ,ˆqvkvqvkvˆqvkv
III. 采用固体的凝胶模型:
Hˆ Hˆ0 Hˆ
① 如果讨论的是自由电子系,其哈密顿量 ,
e 记r ri rj 2
uv uv
40 ri rj
r
vv
v Vqveiqgr,
q
式中Vv q
4 e2
q2
可见:电子系中电子-电子间的二体库仑
势的傅立叶展开中的长波部分 0qqc
已用于产生等离子激元,故库仑势傅立叶 展开中只剩下短波成分了,即
vv
V短程
v r
4e2
vv
eiqgr
振荡频率:
2=
0
4 e
m
2
0
③ 式中不能出现 h ,是经典频率
等离子体频率:
2=
PL
4 e2
m
0
④ 元激发稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The ground-state wavefunction of the many-body interacting electrons in condensed matter is unimaginably complicated and rather interesting. It is also impossible to get an exact solution in absolutely most cases. Then, how to describe the responses of the solids (condensed matter) to experimental probes such as photons, beams of atoms or ions, the electrons emerging from an STM tip, or changes in temperature? What determines the electrical or thermal transport properties of solids (condensed matter) ? All these questions are beyond the scope of a ground-state theory.
Note that the use of term quasiparticle seems to be ambiguous. Some authors use the term in order to distinguish them from real particles, others (including author of the above passage) to describe an excitation similar to a single particle excitation as opposed to a collective excitation. Both definitions mutually exclude each other as with the former definition collective excitations which are no "real" particles are considered to be quasiparticles. The problems arising from the collective nature of quasiparticles have also been discussed within the philosophy of science, notably in relation to the identity conditions of quasiparticles and whether or not they should be considered "real" by the standards of, for example, entity realism.
Joaquin Luttinger
Lev Davidovich Landau
Similarities to Fermi gas: The Fermi liquid is qualitatively analogous to the non-interacting Fermi gas, in the following sense: The system's dynamics and thermodynamics at low excitation energies and temperatures may be described by substituting the noninteracting fermions with so-called quasiparticles, each of which carries the same spin, charge and momentum as the original particles. Physically these may be thought of as being particles whose motion is disturbed by the surrounding particles and which themselves perturb the particles in their vicinity. Each many-particle excited state of the interacting system may be described by listing all occupied momentum states, just as in the non-interacting system. As a consequence, quantities such as the heat capacity of the Fermi liquid behave qualitatively in the same way as in the Fermi gas (e.g. the heat capacity rises linearly with temperature). Differences from Fermi gas: Energy, specific heat, compressibility, interactions, dressed particlesnger liquid
Fermi liquid is a generic term for a quantum mechanical liquid of fermions that arises under certain physical conditions when the temperature is sufficiently low. The interaction between the particles of the many-body system does not need to be small (see e.g. electrons in a metal). The phenomenological theory of Fermi liquids, which was introduced by the Soviet physicist Lev Davidovich Landau in 1956, explains why some of the properties of an interacting fermion system are very similar to those of the Fermi gas (i.e. non-interacting fermions), and why other properties differ. Liquid He-3 is a Fermi liquid at low temperatures (but not low enough to be in its superfluid phase.) He-3 is an isotope of Helium, with 2 protons, 1 neutron and 2 electrons per atom; because there is an odd number of fermions inside the atom, the atom itself is also a fermion. The electrons in a normal (nonsuperconducting) metal also form a Fermi liquid.
Electron-hole excitation
Quasiparticle
From Wikipedia, the free encyclopedia
/wiki/Quasiparticle
In the language of many-body quantum mechanics, a quasiparticle is a type of lowlying excited state of the system (a state possessing energy very close to the ground state energy) that is known as an elementary excitation. As a result of this closeness, most of the other low-lying excited states can be viewed as states in which multiple quasiparticles are present, because interactions between quasiparticles become negligible at sufficiently low temperatures. By investigating the properties of individual quasiparticles, it is possible to obtain a great deal of information about low-energy systems, including the flow properties and heat capacity. Most many-body systems possess two types of elementary excitations. The first type, the quasiparticles, correspond to single particles whose motions are modified by interactions with the other particles in the system. The second type of excitation corresponds to a collective motion of the system as a whole. These excitations are called , and they include phenomena such as zero sound, plasmons, and spin waves. The idea of quasiparticles originated in Lev Landau's theory of Fermi liquids, which was originally invented for studying liquid helium-3. For these systems a strong similarity exists between the notion of quasi-particle and dressed particles in quantum field theory. The dynamics of Landau's theory is defined by a kinetic equation of the mean-field type. A similar equation, the Vlasov equation, is valid for a plasma.