2017-2018学年河南省南阳市新野县九年级(上)期中数学试卷

合集下载

河南省南阳市九年级上学期期中数学试卷

河南省南阳市九年级上学期期中数学试卷

河南省南阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选,一锤定音 (共10题;共20分)1. (2分)(2017·兰山模拟) 在等边三角形、平行四边形、矩形、菱形和圆中,既是轴对称图形又是中心对称图形的有()A . 1种B . 2种C . 3种D . 4种2. (2分) (2016九上·乐昌期中) 抛物线y= (x﹣2)2﹣3的顶点坐标是()A . (2,3)B . (2,﹣3)C . (﹣2,3)D . (﹣2,﹣3)3. (2分)方程x(x+2)=x+2的解是()A . x=1B . x1=0, x2=-2C . x1=-2,x2=1D . x1=1 ,x2=24. (2分)将方程x2+4x+1=0配方后得到的形式是()A . (x+2)2=3B . (x+2)2=﹣5C . (x+4)2=﹣3D . (x+4)2=35. (2分)下列方程属于一元二次方程的是()A .B .C .D .6. (2分)(2018·秀洲模拟) 下列命题是假命题的是()A . 三角形的内心到这个三角形三边的距离相等B . 有一个内角为60°的等腰三角形是等边三角形C . 直角坐标系中,点(a,b)关于原点成中心对称的点的坐标为(-b,-a)D . 有三个角是直角且一组邻边相等的四边形是正方形7. (2分)(2018·寮步模拟) 把抛物线y=- 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A . y=-(x-1)2-3B . y=-(x+1)2-3C . y=-(x-1)2+3D . y=-(x+1)2+38. (2分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次下降a%售价下调到每斤是5元,下列所列方程中正确的是()A . 12(1+a%)2=5B . 12(1-a%)2=5C . 12(1-2a%)=5D . 12(1-a2%)=59. (2分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A . (a﹣2,b)B . (a+2,b)C . (﹣a﹣2,﹣b)D . (a+2,﹣b)10. (2分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),对称轴为直线x=1,给出以下四个结论:①4ac-b2<0;②2a+b=0,③a+b+c<0;④若点B(,y1),C(,y2)为函数图象上的两点,则y1<y2;其中正确结论是A . ②③④B . ①③④C . ①②③D . ①②④二、耐心填空。

2017-2018第一学期九年级数学期中试卷

2017-2018第一学期九年级数学期中试卷

2017-2018学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 如图,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB =A .28ºB .54ºC .18ºD .36º2. 一元二次方程041242=+-x x 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断3.用配方法解方程x 2-6x -6=0时,配方后得到的方程是A .(x +3)2=15 B .( x +3)2 = 3 C .(x -3)2 = 15 D .( x -3)2 = 3 4.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1•x 2的值是A .2B .﹣2C .4D .﹣35.将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为 A .y =2(x -3)2+5 B .y =2(x +3)2+5 C .y =2(x -3)2-5 D .y =2(x +3)2-56.下列命题:①三角形的外心是三边垂直平分线的交点;②经过三个点一定可以作圆; ③三角形的内心到三角形各顶点的距离都相等;④长度相等的弧是等弧; 其中正确结论的个数有A .1个B .2个C .3.4个7.关于二次函数y =x 2-2x -3的图象,下列说法中错误的是A .函数图像的开口方向向上B .函数图像的顶点坐标是(1,-2)C .当x <0时,y 随x 的增大而减小D .函数图象与y 轴的交点坐标是(0,-3) 8.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦, 且AB ∥CD ∥EF ,AB =10,CD =6,EF =8,则图中阴影部分的面积是A .252π B .10π C .24+4π D .24+5π( 第1题 ) (第10题)B( 第8题 )二、填空题(每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9. 方程x 2-2x =0的解是_______▲________.10.四边形ABCD 内接于圆,若∠A =110°,则∠C = ▲ 度.11.已知圆弧所在圆的半径为24,所对的圆心角为60°,这条弧的长是 ▲ . 12.如图,P 是⊙O 外的一点,P A 、PB 分别与⊙O 相切于点A 、B ,C 是劣弧AB 上的任 意一点,过点C 的切线分别交P A 、PB 于点D 、E .若P A =4,则△PED 的周长为 ▲ . 13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是 ▲ .14.若点M (-2,1y ),N (8,2y )在抛物线x x y 2212+-=的图象上,则1y ▲ 2y (填“>”或“<”).15.关于x 的一元二次方程02=-+k x x 有两个不相等的实数根,则k 的取值范围是▲ . 16.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为 ▲ .17.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是2,则 圆锥的母线l = ▲ . 18. 如图,直线y =mx +n 与抛物线c bx ax y ++=2交于A (-1,p ), B (4,q )两点,则关于x 的不等式c bx ax n mx ++>+2的解集 是 ▲ .三、解答题(本大题共有7小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19. 解方程 (每题5分,共10分)(1) 2x 2 + 3x -1 = 0; (2) (x -3)(x -1)=3.( 第12题 )( 第13题 )( 第18题 )( 第17题 )20. (8分)已知⊙O 的直径AB 的长为4 cm ,C 是⊙O 上一点,∠BAC =30°,过点C 作 ⊙O 的切线交AB 的延长线于点P ,求BP 的长.21. (8分) 二次函数c bx x y ++=2的图象经过点(2,-3)、(0,5).(1) 求b 、c 的值;(2) 在所给坐标系中画c bx x y ++=2的图象; (3) 指出当x 满足什么条件时,函数值小于0?22. (8分) 如图,在宽为20m 、长为30m 的矩形地面上,修建两条同样宽且互相垂直的道路,余下部分作为耕地.要使耕地面积达到551m 2,道路的宽应为多少?23. (10分)实践操作:如图,△ABC 是直角三角形,90∠=︒ABC ,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留痕迹,不写作法).(1)作∠BCA 的平分线,交AB 于点O ; (2)以O 为圆心,OB 为半径作圆. 综合运用:在你所作的图中,(1)AC 与⊙O 的位置关系是 ▲ (直接写出答案); (2)若BC =6,AB =8,求⊙O 的半径.(第23题)( 第20题 )( 第21题 ) ( 第22题 )24. (12分) 某商店经销《超能陆战队》超萌“小白”玩具,“小白”玩具每个进价60元,每个玩具不得低于80元出售.销售“小白”玩具的单价m(元/个)与销售数量n (个)之间的函数关系如图所示.(1)线段AB所表示的实际优惠销售政策是▲;(2)写出该店当一次销售n(10<n<30)个时,所获利润w(元)与n(个)之间的函数关系式;(3)经过一段时间的销售,店长发现:当一次销售数量小于30个时,一次销售数量越多,所获利润不一定越多,你能用数学知识解释这一现象吗?并求出一次销售多少个时,所获利润最大,最大利润是多少元?25. (10分) 在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅.问题情境:(1)如图1,在△ABC中,∠A=30°,BC=2,则△操作实践:(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)迁移应用:(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m).过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为▲.( 第24题)( 第25题)。

河南省南阳市新野县2018届九年级化学上学期期中试题新人教 精品

河南省南阳市新野县2018届九年级化学上学期期中试题新人教 精品

河南省南阳市新野县2018届九年级化学上学期期中试题
2017年秋期期中九年级化学参考答案
一、选择题(每小题1分,共12分。


1——7 DCCCBDD 8——14 BBCADBC
二、填空題(每空1分,共16分)
15、① O 2 ② Ne ③CO 2
16、(1)实验对比 (2)合理即可 (3)吸附
17、合理即可
18、①H 2有可燃烧 ②分子构成不同 ③质子数相同
19、离子 过滤 Cl 2
20、+4 Cl 2+2N a ClO 2=2ClO 2+2N a Cl
三、简答題(共10分)
21、2分 不正确,反应产生CO 2扩散到了空气中 22、3分 (1)2KCl 3 ==== 2kCl+30 (2)4P+5O 2 === 2P 2O 5
(3)合理即可
23、3分(1)水由H 、O 两种元素组成
(2)水分子由H 、O 两种原子组成(合理即可)
24、3分(1)反应条件 (2)催化剂 (3)反应物氧气浓度
四、综合应用题。

(10分,每空1分)
1、试管 42K n M O === 2422↑
++K MnO MnO O
2、通过控制液体滴加速率和滴加量控制反应速率,2H 2O 2 ==== 2H2O+O 2↑
3、b ,量筒(合理即可)
4、④,装置简便易行,不加热,不耗电,能将CO 2变为O 2
5、(a +b -c )g
MnO 2

2
点燃 △ MnO 2。

河南省南阳市新野县2017年中考数学模拟试卷(含解析)

河南省南阳市新野县2017年中考数学模拟试卷(含解析)

2017年河南省南阳市新野县中考数学模拟试卷一、选择题(每小题3分,共24分)1.已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为()A.外离 B.相交 C.内切 D.外切2.将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为()A.y=x2﹣2 B.y=x2+2 C.y=(x+3)2+2 D.y=(x﹣3)2﹣23.近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10﹣4B.7.5×10﹣4C.75×10﹣6D.7.5×10﹣54.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,45.两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,则ab的值为()A.1 B.﹣1 C. D.6.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1、2、3、4、5,从中随机摸出一个小球,其标号小于3的概率为()A.B.C. D.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2﹣4ac>0 B.a>0 C.c>0 D.8.如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为()A.B.C.D.二、填空题(每题3分,共21分)9.对于一次函数y=kx+b,当自变量x的取值为﹣2≤x≤5时,相应的函数值的范围为﹣6≤y≤﹣3,则该函数的解析式为.10.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,P是BC边上一动点,设BP=x,若能在AC边上找一点Q,使∠BQP=90°,则x的范围是.11.已知关于x的方程(1﹣2k)x2﹣2x﹣1=0有两个不相等实数根,则k的取值范围为.12.在△ABC中,sinA=,AB=8,BC=6,则AC= .13.如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD= .14.已知抛物线y=﹣x2+3x+c与x轴相交于A(m,0)、B(n,0)两点,则m+n= .15.如图,在矩形ABCD中,AB=6,BC=8,G为AD中点,若E为AB边上一动点,当△CGE 的周长为最小值时,则AE的长为.三、解答题(本大题共8个小题,共75分)16.先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.郑州地铁1号线在2013年12月28日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了人;(2)请你把条形统计图补充完整;(3)假定该社区有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人?18.如图,AE是半圆O的直径,弦AB=BC=2,弦CD=DE=2,连结OB,OD,求图中两个阴影部分的面积和.19.“城市发展,交通先行”,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)请你直接写出车流量P和车流密度x之间的函数表达式;当x为多少时,车流量P(单位:辆/时)达到最大,最大值是多少?(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)20.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5千米的C处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.21.某学校开展“我的中国梦”演讲比赛,学校准备购买10支某种品牌的水笔,每支水笔配x(x≥2)支笔芯,作为比赛获得一等奖学生的奖品.A,B两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30元,每支笔芯的标价为3元.目前两家文具店同时在做促销活动:A文具店:所有商品均打九折(按标价的90%)销售;B文具店:买一支水笔送2支笔芯.设在A文具店购买水笔和笔芯的费用为y A(元),在B文具店购买水笔和笔芯的费用为y B(元).请解答下列问题:(1)分别写出与y A,y B与x之间的函数表达式;(2)若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠?(3)若每支水笔配15支笔芯,请你帮助学校设计出最省钱的购买方案.22.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.23.如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B,记点B关于抛物线对称轴的对称点为C(点B,点C不重合).连接CB,CP.(1)当m=时,求点A的坐标及BC的长;(2)当m>1时,连接CA,当CA⊥CP时,求m的值;(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E恰好落在坐标轴上?若存在,请直接写出所有满足条件的点E的坐标;若不存在,请说明理由.2017年河南省南阳市新野县新航中学中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为()A.外离 B.相交 C.内切 D.外切【考点】圆与圆的位置关系.【分析】由两圆的半径分别是3和4,圆心距的长为1,利用两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆的半径分别是3和4,圆心距的长为1,∵4﹣3=1,∴两圆的位置关系为内切.故选C.2.将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为()A.y=x2﹣2 B.y=x2+2 C.y=(x+3)2+2 D.y=(x﹣3)2﹣2【考点】二次函数图象与几何变换.【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【解答】解:原抛物线y=x2的顶点为(0,0),向下平移2个单位,再向右平移3个单位,那么新抛物线的顶点为(﹣3,﹣2).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x+3)2﹣2.故选D.3.近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10﹣4B.7.5×10﹣4C.75×10﹣6D.7.5×10﹣5【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,第一个不是0的数字7前面有5个0,确定出n=﹣5.【解答】解:0.000 075=7.5×10﹣5.故选D.4.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】众数;中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.5.两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,则ab的值为()A.1 B.﹣1 C. D.【考点】根与系数的关系.【分析】由两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0知a、b可看做方程x2+x﹣1=0的两个不相等的实数根,由韦达定理可得答案.【解答】解:∵两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,∴a、b可看做方程x2+x﹣1=0的两个不相等的实数根,∴ab=﹣1,故选:B.6.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1、2、3、4、5,从中随机摸出一个小球,其标号小于3的概率为()A.B.C.D.【考点】概率公式.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号小于3的概率为:.故选B7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2﹣4ac>0 B.a>0 C.c>0 D.【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、正确,∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0;B、正确,∵抛物线开口向上,∴a>0;C、正确,∵抛物线与y轴的交点在y轴的正半轴,∴c>0;D、错误,∵抛物线的对称轴在x的正半轴上,∴﹣>0.故选:D.8.如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意可以得到S与t的函数解析式,然后根据t的变化讨论S与t的函数图象,从而可以解答本题.【解答】解:设线段AB的长为b,点S的速度为a,则S=π(b﹣at)2=a2πt2﹣2abπt+b2π=a2π(t﹣)2,∵a2π>0,∴在点P从A到B的运动过程中,S随t的增大而减小,此时对应的函数图象开口向上,顶点坐标为(,0),当点P从点B向点A运动时,S随着t的增大而减小,此时对应的函数图象开口向上,顶点坐标为(,0),故选C.二、填空题(每题3分,共21分)9.对于一次函数y=kx+b,当自变量x的取值为﹣2≤x≤5时,相应的函数值的范围为﹣6≤y≤﹣3,则该函数的解析式为y=(﹣2≤x≤5)或y=﹣x﹣(﹣2≤x≤5).【考点】待定系数法求一次函数解析式.【分析】根据一次函数的增减性,可知本题分两种情况:①当k>0时,y随x的增大而增大,把x=﹣2,y=﹣6;x=5,y=﹣3代入一次函数的解析式y=kx+b,运用待定系数法即可求出函数的解析式;②当k<0时,y随x的增大而减小,把x=﹣2,y=﹣3;x=5,y=﹣6代入一次函数的解析式y=kx+b,运用待定系数法即可求出函数的解析式.【解答】解:分两种情况:①当k>0时,把x=﹣2,y=﹣6;x=5,y=﹣3代入一次函数的解析式y=kx+b,得,解得,则这个函数的解析式是y=(﹣2≤x≤5);②当k<0时,把x=﹣2,y=﹣3;x=5,y=﹣6代入一次函数的解析式y=kx+b,得,解得,则这个函数的解析式是y=﹣x﹣(﹣2≤x≤5).故这个函数的解析式为:y=(﹣2≤x≤5)或者y=﹣x﹣(﹣2≤x≤5).故答案为:y=(﹣2≤x≤5)或y=﹣x﹣(﹣2≤x≤5).10.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,P是BC边上一动点,设BP=x,若能在AC边上找一点Q,使∠BQP=90°,则x的范围是6≤x≤8 .【考点】相似三角形的判定与性质;勾股定理.【分析】先根据勾股定理计算出AC=10,由于∠BQP=90°,根据圆周角定理得到点Q在以PB 为直径的圆⊙M上,而点Q在AC上,则有AC与⊙M相切于点Q,连结MQ,如图,根据切线的性质得MQ⊥AC,MQ=BM=x,然后证明Rt△CMQ∽Rt△CAB,再利用相似比得到x:6=(8﹣x):10,最后解方程即可.【解答】解:∵∠ABC=90°,AB=6,BC=8,∴AC==10,∵∠BQP=90°,∴点Q在以PB为直径的圆⊙M上,∵点Q在AC上,∴AC与⊙M相切于点Q,连结MQ,如图,则MQ⊥AC,MQ=BM=x,∵∠QCM=∠BCA,∴Rt△CMQ∽Rt△CAB,∴QM:AB=CM:AC,即x:6=(8﹣x):10,∴x=6.当P与C重合时,BP=8,∴BP=x的取值范围是:6≤x≤8,故答案为:6≤x≤8.11.已知关于x的方程(1﹣2k)x2﹣2x﹣1=0有两个不相等实数根,则k的取值范围为0≤k<1且k≠.【考点】根的判别式;一元二次方程的定义.【分析】由x的方程(1﹣2k)x2﹣2x﹣1=0有两个不相等实数根,可得△>0,且1﹣2k ≠0,k≥0,三者联立求得答案即可.【解答】解:∵关于x的方程(1﹣2k)x2﹣2x﹣1=0有两个不相等实数根,∴△=(2)2﹣4×(1﹣2k)×(﹣1)=4k﹣8k+4>0,解得:0<k<1且1﹣2k≠0,k≥0,∴k的取值范围为0<k<1且k≠.故答案为:0≤k<1且k≠.12.在△ABC中,sinA=,AB=8,BC=6,则AC= .【考点】解直角三角形.【分析】分∠C为锐角和∠C为钝角两种情况,先在Rt△ABD中,求得BD=ABsinA=4、AD==4,再在Rt△BCD中,求得CD==2,结合图象可得答案.【解答】解:①当∠C为锐角时,如图1,过点B作BD⊥AC于点D,在Rt△ABD中,∵BD=ABsinA=8×=4,∴AD==4,在Rt△BCD中,∵CD===2,∴AC=AD+CD=42;②当∠C为钝角时,如图2,过点B作BD⊥AC,交AC延长线于点D,此时AC=AD﹣CD=4﹣2,故答案为:.13.如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD= 1:24 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设CF=a,DF=2a,S△CEF=S,则CD=3a.利用相似三角形的性质求出平行四边形的面积,即可解决问题.【解答】解:设CF=a,DF=2a,S△CEF=S,则CD=3a.∵四边形ABCD是平行四边形,∴AB=CD=3a,AB∥CE,∴△CFE∽△ABE,∴==,∴=,∴S△ABE=9S,∴S△BCF=3S,∴S平行四边形ABCD=2•S△ABC=24S,∴S△CEF:S▱ABCD=1:24,故答案为1:24.14.已知抛物线y=﹣x2+3x+c与x轴相交于A(m,0)、B(n,0)两点,则m+n= 3 .【考点】抛物线与x轴的交点.【分析】先根据抛物线上两点的纵坐标相等可知此两点关于对称轴对称,再根据中点坐标公式求出这两点横坐标的中点坐标就是对称轴.【解答】解:∵抛物线y=﹣x2+3x+c的对称轴x=,点A(m,0),B(n,0)是抛物线y=﹣x2+3x+c上的两点,∴=,∴m+n=3.故答案为:3.15.如图,在矩形ABCD中,AB=6,BC=8,G为AD中点,若E为AB边上一动点,当△CGE 的周长为最小值时,则AE的长为 2 .【考点】轴对称﹣最短路线问题;矩形的性质.【分析】如图,作G关于AB的对称点M,连接CM交AB于E,那么E满足使△CGE的周长最小.接着利用△MAE∽△MCD即可求出AE的长度.【解答】解:∵E为AB上的一个动点,∴作G关于AB的对称点M,连接CM交AB于E,那么E满足使△CGE的周长最小;∵在矩形ABCD中,AB=6,BC=8,G为边AD的中点,∴AG=AM=4,MD=12,而AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE==2;故答案为:2三、解答题(本大题共8个小题,共75分)16.先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值;估算无理数的大小.【分析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【解答】解:原式=÷…3分=•=…5分∵﹣<x<,且x为整数,∴若使分式有意义,x只能取﹣1和1…7分当x=1时,原式=.【或:当x=﹣1时,原式=1】…8分17.郑州地铁1号线在2013年12月28日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了300 人;(2)请你把条形统计图补充完整;(3)假定该社区有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由5元的人数除以所占的百分比,即可求出调查的总人数;(2)由2元的人数除以总人数求出所占的百分比,用单位1减去其他所占的百分比,求出3元所占的百分比,用总人数乘以3元与4元所占的百分比即可求出相应的人数,补充图形即可;(3)用10000乘以“起步价为3元”所占的百分比,即可求出相应的人数.【解答】解:(1)根据题意得:30÷10%=300(人),答:同学们一共随机调查了300人;故答案为:300.(2)2元所占的百分比为×100%=40%,3元所占的百分比为1﹣40%﹣10%﹣15%=35%,则3元的人数为300×35%=105(人),4元的人数为300×15%=45(人),补充图形,如图所示;(3)根据题意得:105÷300×10000=3500(人).答:该社区支持“起步价为3元”的市民大约有3500人.18.如图,AE是半圆O的直径,弦AB=BC=2,弦CD=DE=2,连结OB,OD,求图中两个阴影部分的面积和.【考点】扇形面积的计算.【分析】根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.【解答】解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G.则BF=FC=,CG=GD=1,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=1,过点N作NM⊥OF于点M,则MN=FC=,在等腰三角形MNO中,NO=MN=2,∴OG=ON+NG=3,在Rt△OGD中,OD===,即圆O的半径为,故S阴影=S扇形OBD==π.19.“城市发展,交通先行”,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)请你直接写出车流量P和车流密度x之间的函数表达式;当x为多少时,车流量P(单位:辆/时)达到最大,最大值是多少?(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)【考点】二次函数的应用.【分析】(1)直接利用待定系数法求一次函数解析式进而得出答案;(2)分别利用当0<x≤28时,当28<x≤188时,求出最值即可.【解答】解:(1)设一次函数表达式是V=kx+b,把两点坐标(28,80)分别代入,得,解之,得,∴V关于x的一次函数表达式是;(2)由题知:当0<x≤28时,P=Vx=80x≤2240.当28<x≤188时,.当x=94时,车流量P有最大值4418辆/时.所以当x=94时,车流量P有最大值4418辆/时.20.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5千米的C处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.【考点】解直角三角形的应用﹣方向角问题.【分析】(1)先求出∠BAC=90°,然后利用勾股定理列式求解即可得到BC,再求解即可;(2)作CE⊥l于E,设直线BC交l于F,然后求出CE、AE,然后求出AF的长,再进行判断即可.【解答】解:(1)由题意,得∠BAC=90°,∴BC==10,∴飞机航行的速度为:10×60=600(km/h);(2)能;作CE⊥l于点E,设直线BC交l于点F.在Rt△ABC中,AC=5,BC=10,∴∠ABC=30°,即∠BCA=60°,又∵∠CAE=30°,∠ACE=∠FCE=60°,∴CE=AC•sin∠CAE=,AE=AC•cos∠CAE=.则AF=2AE=15(km),∴AN=AM+MN=14.5+1=15.5km,∵AM<AF<AN,∴飞机不改变航向继续航行,可以落在跑道MN之间.21.某学校开展“我的中国梦”演讲比赛,学校准备购买10支某种品牌的水笔,每支水笔配x(x≥2)支笔芯,作为比赛获得一等奖学生的奖品.A,B两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30元,每支笔芯的标价为3元.目前两家文具店同时在做促销活动:A文具店:所有商品均打九折(按标价的90%)销售;B文具店:买一支水笔送2支笔芯.设在A文具店购买水笔和笔芯的费用为y A(元),在B文具店购买水笔和笔芯的费用为y B(元).请解答下列问题:(1)分别写出与y A,y B与x之间的函数表达式;(2)若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠?(3)若每支水笔配15支笔芯,请你帮助学校设计出最省钱的购买方案.【考点】一次函数的应用.【分析】(1)根据总价=水笔的价格+笔芯的价格就可以得出结论;(2)分类讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别建立不等式求出x的取值范围就可以求出结论;(3)根据只在一家文具店购买,所以既可以只在一家购买,也可以在两家混合购买,根据条件可以先求出在A文具店购买的价格,两家混合购买的价格就可以得出结论.【解答】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270,y B=10×30+3×10(x﹣2)=30x+240.∴y A,y B与x之间的函数表达式分别为:y A=27x+270,y B=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10;∴当2≤x<10时,到B文具店购买优惠;当x=10时,两个文具店一样优惠;当x>10时,在A文具店购买优惠.…(3)由题意知,没限制只在一家文具店购买,所以既可以只在一家购买,也可以在两家混合购买,因此分两种情况讨论:①若只在一家购买:因为x=15>10,所以选择在A文具店购买划算,费用为:y A=27×15+270=675(元);②若在两家混合购买:根据题意,可先在B文具店购买10支水笔,送20支笔芯,后在A 文具店购买剩下的笔芯10×15﹣20=130个,则共需费用:10×30+130×3×0.9=651(元).∵651<675,∴最省钱的方案是:∴先在B文具店购买10支水笔,后在A文具店购买130支笔芯.22.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【考点】等边三角形的性质;全等三角形的判定与性质;直角三角形的性质.【分析】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CQM的度数.(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°23.如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B,记点B关于抛物线对称轴的对称点为C(点B,点C不重合).连接CB,CP.(1)当m=时,求点A的坐标及BC的长;(2)当m>1时,连接CA,当CA⊥CP时,求m的值;(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E恰好落在坐标轴上?若存在,请直接写出所有满足条件的点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把m=,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△ACH∽△PCB,根据相似的性质得到:,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.【解答】解:(1)当m=时,y=﹣x2+5x;令y=0,得﹣x2+5x=0.∴x1=0,x2=5,∴A(5,0).当x=1时,y=4,∴B(1,4).∵抛物线y=﹣x2+5x的对称轴为直线x=,又∵点B,C关于对称轴对称,∴BC=3;(2)过点C作CH⊥x轴于点H(如图).由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB.又∵∠AHC=∠PBC=90°,tan∠ACH=tan∠PCB.∴.∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1).∵B(1,2m﹣1),P(1,m),∴BP=m﹣1.又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0).∴AH=1,CH=2m﹣1.∴,∴m=;(3)存在.∵B,C不重合,∴m≠1,分两种情况:①当m>1时,m=2,相对应的E点坐标是(2,0)或(0,4);②当0<m<1时,m=.,相对应的E点坐标是(,0);∴E点坐标是(2,0)或(0,4)或(,0).。

2019-2020学年河南省南阳市新野县九年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年河南省南阳市新野县九年级(上)期中数学试卷试题及答案(解析版)

② DAC DBC 180 ; ③ ADC ∽ BEC ; ④ CD AB ,其中成立的是 (
)
A .①②③
B .只有 ②④
二、填空题: (每小题 3 分,共 15 分)
C.只有 ① 和 ②
D. ①②③④
11. 18 8

12.一元二次方程 x( x 2) x 2 的根是

13.已知关于 x 的一元二次方程 ax2 2x 2 c 0 有两个相等的实数根,则
D. x 2
解得: x 2 .
故选: C .
2
2.已知一元二次方程 x kx 3 0 有一个根为 1,则 k 的值为 (
)
A. 2
B.2
C. 4
【解答】 解:把 x 1 代入方程得 1 k 3 0 ,
解得 k 2 .
故选: B .
D.4
3.已知 b 0 ,化简 a3b 的结果是 (
)
A . a ab
AC : BC : AB 2 : 2 : 10 1: 2 : 5 ,
A 、三边之比为 1: 5 : 2 2 ,图中的三角形(阴影部分)与
ABC 不相似;
B 、三边之比为 2 : 5 : 3 ,图中的三角形(阴影部分)与
ABC 不相似;
C 、三边之比为 1: 2 : 5 ,图中的三角形(阴影部分)与
D. x 2
2.已知一元二次方程 x2 kx 3 0 有一个根为 1,则 k 的值为 (
)
A. 2 3.已知 b 0 ,化简
B.2 a3b 的结果是 (
C. 4 )
D.4
A . a ab
B . a ab
C. a ab
D. a ab
4.计算: (4 2 3 6) 2 2 的结果是 (

2017-2018学年新人教版九年级上期中数学试卷含答案解析

2017-2018学年新人教版九年级上期中数学试卷含答案解析

九年级(上)期中数学试卷一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=06.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.914.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣216.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是,顶点坐标.三、解答题20.解方程:x2﹣2x=x﹣2.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.九年级(上)期中数学试卷参考答案与试题解析一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【考点】解一元二次方程﹣配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.6.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化﹣旋转.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.9【考点】抛物线与x轴的交点.【分析】根据二次函数y=ax2+bx的图象可知,开口向下,a<0,二次函数有最大值y=3,知,一元二次方程ax2+bx+m=0有实数根,知b2﹣4am≥0,从而可以解答本题.【解答】解:∵由二次函数y=ax2+bx的图象可知,二次函数y=ax2+bx的最大值为:y=3,∴.∴.∵一元二次方程ax2+bx+m=0有实数根,∴b2﹣4am≥0.∵二次函数y=ax2+bx的图象开口向下,∴a<0.∴m≥.∴m≥﹣3.即m的最小值为﹣3.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.14.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,能与原来图形重合,故错误;B、不是中心对称图形,不能与原来图形重合,故正确;C、是中心对称图形,能与原来图形重合,故错误;D、是中心对称图形,能与原来图形重合,故错误.故选B.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣2【考点】二次函数图象上点的坐标特征.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.16.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数图象与系数的关系.【分析】只需运用顶点坐标公式求出顶点坐标,然后根据b<0就可确定顶点所在的象限.【解答】解:二次函数y=x2﹣bx﹣1的图象的顶点为(﹣,),即(,),∵b<0,∴<0,<0,∴(,)在第三象限.故选C.二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是直线x=1,顶点坐标(1,3).【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=﹣x2+2x+2=﹣(x﹣1)2+3,∴抛物线对称轴为x=1,顶点坐标为(1,3),故答案为:直线x=1;(1,3).三、解答题20.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.【考点】抛物线与x轴的交点;二次函数的最值.【分析】(1)先计算判别式的值得到△=m2﹣4m+8,然后配方得△=(m﹣2)2+4,利用非负数的性质得△>0,于是根据抛物线与x轴的交点问题即可得到结论;(2)根据二次函数的最值问题得到=﹣,解方程得m1=1,m2=3,然后把m的值分别代入原解析式即可.【解答】(1)证明:y=x2﹣mx+m﹣2,△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)=﹣,整理得m2﹣4m+3=0,解得m1=1,m2=3,当m=1时,函数解析式为y=x2﹣x﹣1;当m=3时,函数解析式为y=x2﹣3x+1.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.【考点】二次函数的三种形式.【分析】(1)运用配方法把一般式化为顶点式,根据二次函数的性质求出对称轴和顶点坐标;(2)根据题意得到一元二次方程,解方程得到答案.【解答】解:(1)∵y=﹣0.5x2+4x﹣3.5,∴y=﹣0.5(x﹣4)2+4.5,对称轴是直线x=4,顶点坐标为(4,4.5);(2)﹣0.5x2+4x﹣3.5=0,解得,x1=7,x2=1,则函数图象与x轴的交点坐标是(7,0)、(1,0).24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程﹣因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m 的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x <0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.2017年3月1日。

2017-2018学年度九年级上学期数学期中考试卷及答案

2017-2018学年度九年级上学期数学期中考试卷及答案

2017-2018学年第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3± D.92. 若P(x,-3)与点Q(4,y)关于原点对称,则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx,则配方正确的是()A、3)2(2=+x B、5)2(2-=+x C、3)2(2-=+x D、3)4(2=+x6. 如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题,每小题3分,满分24分)7. 2-x在实数范围内有意义,则x的取值范围是.8. 221x-=的二次项系数是,一次项系数是,常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点,则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0,则m= . 11. 对于任意不相等的两个数a,b ,定义一种运算*如下:ba b a b a -+=*,如523232*3=-+=,那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是_________。

13. 有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转22.5︒,第.2.次.旋转后得到图①,第.4.次.旋转后得到图②…,则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根,则三角形的周长是.三、解答题(共4小题,每小题6分,共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--17. 下面两个网格图均是4×4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑,使整个网格图满足下列要求.图① 图② 图③ 图④18. 如图,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.四、(本大题共2小题,每小题8分,共16分)19. 数学课上,小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。

河南省南阳市新野县初三上学期期中质量调研数学试题(有答案)

河南省南阳市新野县初三上学期期中质量调研数学试题(有答案)

河南省南阳市新野县初三上学期期中质量调研数学试题(有答案)一. 选择题(每小题3分,共30分)1. 方程2)2(3-=-x x x 的根为( )A. x =2B.x=0C.0,221==x xD.31,221==x x 2. 下列二次根式中,与3不是同类二次根式的是( )A. 27-B.32C.31 D.75 3.关于x 的方程22213x x ax =+-是一元二次方程,则a 的取值范畴为( )A.a ≠0B.a >0C. a ≠2D.a >04.谋略22)6324(÷-的终于是( ) A.3232- B.331- C.32 D. 23 5、已知关于x 的一元二次方程2x 2-kx+3=0有两个相等的实数根,则k 的值为( )A. B. C.2或3 D. 6、如图,下列条件不能鉴定∆ADB ∽∆ABC 的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC.AB 2=AD•ACD.7、如图,某小区有一长为18米,宽为6米的矩形空地,筹划在此中修建两块相同的矩形绿地,它们面积之和为60cm 2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽32或6±62±BC AB AB AD =度为( )米. A.2 B.1 C.8或1 D.88、下列四个三角形,与右图中的三角形相似的是( )9、如图,在平面直角坐标系中,已知点A(-3,6) B(-9,-3),以原点O 为位似中心,相似比为31,把∆ABO 缩小,则点A 的对应点A’的坐标是( )A. (-1,2)B.(-9,18)C.(-9,18)或(9,-8)D.(-1,2)或(1,-2)10、关于x 的方程mx 2+x -m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;①当m ≠0时,方程有两个不相等的实数解;①无论m 取何值,方程都有一个负数解,此中正确的是( ) A.①① B.①① C.①① D.①①①二、填空(共15分)11、方程x 2-4x=0的解是_____________.12、关于x 的一元二次方程(k -1)x 2+6x+k 2-k=0的一个根是0,则k 的值是_________.13、如图,四边形ABCD 中,AD//BC,∠B=∠ACD=900,BC=2,DA=3,则∆ABC 与∆DCA 的面积比为____________.14、如图是一次函数y=kx+b 的图象的大抵位置,则关于x 的一元二次方程x 2-2x+kb+1=0的根的环境是______________________.15、如图,数学兴趣小组的小颖想丈量传授楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.5m,但当她马上丈量树高时,发觉树的影子不全落在地面上,有一部分影子落在传授楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为_____________.第13题图 第14题图 第15题图二. 解答题:(共75分)16、(6分)2223)23()23(2122315147-+-⨯÷-17、(1)(6分)解方程:3632-=x x(2)(7分)用配要领解方程:2432+=x x18.(8分)某商店一连一至四月销售额的增长率都相同,本年2月份的销售额是2万元,4月份的销售额是2.88万元.该商店销售额每月的增长率是几多?1月份的销售额是几多?19.(9分)小红家的阳台上部署了一个晒衣架,如图①.图②是晒衣架的侧面示意图,立杆AB 、CD 相交于点O,B 、D 两点在地面上,经丈量得到AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF=32cm,垂挂在衣架上的连衣裙总长度小于几多时,连衣裙才不会拖在地面上? ① ①20.(9分)如图,已知ED//BC,∠EAB=∠BCF. 求证:(1)四边形ABCD 为平行四边形;(2)OF OE OB •=2 21.(9分)已知关于x 的方程02)2(2=++-k x k x .(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,另双方长b 、c 恰恰是这个方程的两个根,求∆ABC 的周长.22、(10分)1.感知:如图①,在四边形ABCD 中,AB//CD,∠B=900,点P 在BC 边上,当∠APD=900时,求证:∆ABP ∽∆PCD.2.探究:如图①,在四边形ABCD 中,点P 在BC 边上,当∠B=∠C=∠APD时,∆ABP ∽∆PCD 是否仍然成立?并说明理由.3.拓展,如图①,在∆ABC 中,点P 是边BC 的中点,点D 、E 分别在边AB 、AC 上.若∠B=∠C=∠DPE=450,BC=24,CE=3,则DE 的长为___________.23、(11分)已知:如图,在平面直角坐标系中,∆ABC 是直角三角形,∠ACB=900,点A 、C 的横坐标是一元二次方程x 2+2x -3=0的两根(AO >OC ),直线AB 与y 轴交于D,D 点的坐标为)49,0((1)求直线AB 的函数表达式;(2)在x 轴上找一点E,相连EB,使得以点A 、E 、B 为极点的三角形与∆ABC 相似(不包括全等),并求点E 的坐标;(3)在(2)的条件下,点P 、Q 分别是AB 和AE 上的动点,相连PQ,点P 、Q 分别从A 、E 同时出发,以每秒1个单位长度的速度运动,当点P 抵达点B 时,两点中止运动,设运动时间为t 秒,问几秒时以点A 、P 、Q 为极点的三角形与∆AEB 相似.新野县2019学年秋期期中质量调研九年级数学参考答案一、选择题(每题3分,共30分)1、D2、B3、C4、A5、A6、D7、B8、B9、D 10、C二、填空题(每题3分,共15分)11、4021==x x 12、0 13、2:3 14、有两个不相等实根 15、4m 三、解答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河南省南阳市新野县九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.要使有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x<﹣12.下列运算正确的是()A. B.C.D.3.一元二次方程x2﹣2x﹣1=0的解是()A.x 1=x2=1 B.x1=1+,x2=﹣1﹣C.x 1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣4.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣15.用一条长40cm的绳子围成一个面积为64的矩形,设矩形的一边长为x,则可列方程()A.x(40﹣x)=64 B.x(20﹣x)=64 C.x(40﹣2x)=64 D.x(20﹣2x)=64 6.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,则下列式子不正确的是()A.=B.=C.=D.=7.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:58.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5) C.(3,5)D.(3,6)9.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.1110.如图,在△ABC中,∠A=90°,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,则BC的长为()A.4 B.4C.5D.2二、填空题(每小题3分,共15分)11.方程x2﹣3=0的根是.12.关于x的一元二次方程(k﹣1)x2+6x+k2=0的一个根是0,则k的值是.13.计算:=.14.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:,可以使得△FDB与△ADE相似.(只需写出一个)15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为.三、解答题(满分75分)16.(8分)计算:.17.(8分)用配方法解方程:2x2﹣3x﹣4=0.18.(9分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.19.(9分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?20.(9分)如图,在平行四边形ABCD中,对角线AC、B的交于点O、M为AD上点,且DM=2MA,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DMN的面积为4,求四边形ABNM的面积.21.(9分)如图,正方形ABCD中,M为BC上一点,ME⊥AM交AD的延长线于点E,若AB=8,BM=6.(1)证明:△ABM∽△EMA;(2)求NE的长.22.(11分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,BE是AC边上的中线,点D在BC边上,=,AD与BE相交于点P,求的值.小昊发现,过点C作CF∥AD,交BE的延长线于点F,通过构造△CEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:(1)如图3,在△ABC中,点D在BC的延长线上,,点E在AC上,且.求的值;(2)如图4,在△ABC中,点D在BC的延长线上,,点E在AC上,且,直接写出的值为.23.(12分)如图,在△ABC中,∠A=90°,AC>AB,AC、AB是一元二次方程x2﹣7x+12=0的两根.(1)求BC的长;(2)若点P由点C出发,以每秒1cm个单位长度的速度沿CA向点A运动,点Q由A出发,以每秒2cm的速度点B运动,(当Q运动到点B时,两点同时停止)连接PQ.①当t为何值时,S△APQ=S△ABC;②当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?并说明理由.2017-2018学年河南省南阳市新野县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.要使有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x<﹣1解:依题意得:x﹣1≥0.解得x≥1.故选:B.2.下列运算正确的是()A. B.C.D.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.3.一元二次方程x2﹣2x﹣1=0的解是()A.x 1=x2=1 B.x1=1+,x2=﹣1﹣C.x 1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x 1=1+,x2=1﹣.故选:C.4.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1解:当k=0时,方程化为﹣3x﹣=0,解得x=﹣;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选:C.5.用一条长40cm的绳子围成一个面积为64的矩形,设矩形的一边长为x,则可列方程()A.x(40﹣x)=64 B.x(20﹣x)=64 C.x(40﹣2x)=64 D.x(20﹣2x)=64解:设矩形的一边长为xcm,∵矩形的周长为40cm,∴另一边长为=(20﹣x)(cm),得x(20﹣x)=64.故选:B.6.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,则下列式子不正确的是()A.=B.=C.=D.=解:∵l1∥l2∥l3,∴=或=∴=.故选:D.7.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选:A.8.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.9.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.10.如图,在△ABC中,∠A=90°,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,则BC的长为()A.4 B.4C.5D.2解:在Rt△ADC中,∵∠A=90°,AD=1,AC=2,∴CD==,∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴=,∴=,∴BC=2.故选:D.二、填空题(每小题3分,共15分)11.方程x2﹣3=0的根是x=±.解:方程整理得:x2=3,开方得:x=±,12.关于x的一元二次方程(k﹣1)x2+6x+k2=0的一个根是0,则k的值是0.解:由于关于x的一元二次方程(k﹣1)x2+6x+k2=0的一个根是0,把x=0代入方程,得k2=0,解得,k1=k2=0所以k的值是0.13.计算:=2+1.解:原式=+=2+1.14.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:DF∥AC,或∠BFD=∠A,可以使得△FDB与△ADE相似.(只需写出一个)解:DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.故答案为DF∥AC,或∠BFD=∠A.15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为.解:∵AB∥GH,∴=,即=①,∵GH∥CD,∴=,即=②,①+②,得+=+==1,∴+=1,解得GH=.三、解答题(满分75分)16.(8分)计算:.解:原式=5﹣﹣(+5)=5﹣﹣6﹣10=﹣6﹣6.17.(8分)用配方法解方程:2x2﹣3x﹣4=0.解:由原方程,得x2﹣x=4,x2﹣x+()2=4+()2,(x﹣)2=,∴x﹣=±解得x1=,x2=.18.(9分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.19.(9分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2017年的利润能超过3.4亿元.20.(9分)如图,在平行四边形ABCD中,对角线AC、B的交于点O、M为AD上点,且DM=2MA,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DMN的面积为4,求四边形ABNM的面积.(1)解:∵四边形ABCD是平行四边形∴AD∥BC AD=BC OB=OD∴,∵,∴,∴,∴,∵ON=1∴OD=5 BD=10;(2)MD∥BC∴△DMN∽△BDC,∵∴∵S△BNC=9,,∴S△DCN=∴S△BCD=15S△BMN=15﹣4=1121.(9分)如图,正方形ABCD中,M为BC上一点,ME⊥AM交AD的延长线于点E,若AB=8,BM=6.(1)证明:△ABM∽△EMA;(2)求NE的长.解:(1)证明:∵四边形ABCD是正方形.∴∠B=90°,AE∥BC,∴∠EAM=∠AMB,∠B=∠AME=90°,∴△ABM∽△AME;(2)∵∠B=90°∴AM==10,由(1)得△ABM∽△AME,∴AE:AM=AM:BM,∴AE==∴DE=AE﹣AD=﹣8=∵∠E=∠BAM,∠B=∠EDN∴△EDN∽△ABM,∴DE:AB=EN:AM,∴EN==.22.(11分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,BE是AC 边上的中线,点D在BC边上,=,AD与BE相交于点P,求的值.小昊发现,过点C作CF∥AD,交BE的延长线于点F,通过构造△CEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:(1)如图3,在△ABC中,点D在BC的延长线上,,点E在AC上,且.求的值;(2)如图4,在△ABC中,点D在BC的延长线上,,点E在AC上,且,直接写出的值为.解:如图2,过点C作CF∥AD,交BE的延长线于点F,∴∠F=∠APF,∠FCE=∠EAP,∵BE为AC边的中线,∴AE=CE,∴△AEP≌△CEF,∴AP=FC,∵PD∥FC,∴△BPD≌△BFC,∴=,∴=,(1)如图3,过A作AF∥BC,交BP延长线于点F,∴△AFE∽△CBE,∴,∵,∴,设AF=3x,BC=2x,∵,∴BD=3x,∴AF=BD=3x,∵AF∥BD,∴△AFP∽△DBP,∴==1;(2)如图4,过E作EF∥AP交BD于F,∴△ADC∽△EFC,∴==,∵=,∴=,∴,∵EF∥PD,∴△EFB∽△PDB,∴=,∴EF=PD,∵=,∴=,∴=.23.(12分)如图,在△ABC中,∠A=90°,AC>AB,AC、AB是一元二次方程x2﹣7x+12=0的两根.(1)求BC的长;(2)若点P由点C出发,以每秒1cm个单位长度的速度沿CA向点A运动,点Q由A出发,以每秒2cm的速度点B运动,(当Q运动到点B时,两点同时停止)连接PQ.①当t为何值时,S△APQ=S△ABC;②当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?并说明理由.解:(1)∵AB、AC是方程x2﹣7x+12=0的两根,且AC>AB,∴AB=3,AC=4,∴BC===5.(2)当运动时间为t秒时,AP=(4﹣t)cm,AQ=2tcm.①∵S△APQ=S△ABC,∴×2t×(4﹣t)=××3×4,即t2﹣4t+3=0,解得:t1=1,t2=3.∵AQ=2t≤3,∴t≤,∴t=1.②当△AQP∽△ABC时,有=,∴=,∴t=;当△APQ∽△ABC时,有=,∴=,∴t=>(不合题意,舍去).综上所述:当t=秒时,以A、P、Q为顶点的三角形与△ABC相似.。

相关文档
最新文档