八年级数学下册第18章_勾股定理单元复习测试人教版

合集下载

人教版数学八年级下册单元测试第18章勾股定理一

人教版数学八年级下册单元测试第18章勾股定理一

周口市2010----2011学年度下期八年级第18章《勾股定理》检测题一.填空题,(30分)1、 在Rt △ABC 中∠C=090 则 (1)a=5 b=12 则 c=______(2) b=8 c=17 则 a=______2、 如果梯形低端离建筑物9m 那么15m 长的梯形可达到建筑物的高度是________3、 直角三角形的两直角边长分别为3m 4m 则斜边长为________ 斜边上的高为_______4、 在Rt △ABC 中∠C=090 若 a:b=3:4 c=20 则a=________ b=_______5、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高______米6、如图所示,要从电线杆高4m 的点处向地面斜拉一根长5m 的缆绳 固 定点A 到电线杆底部B 的距离AB=_____7、一个直角三角形的三边长是不大于10的三个连续的偶数,则它的周长是__________ 8、 一个三角形的三边长分别是 12-m 、 2m 、 12+m 则三角形中最大的角是________ 9、 若三角形的三边a b c 满足222c a b -= 则边______所对的角是直角10、 在三角形ABC 中 若三边分别是 9 、 12 、 15 则以两个这样的三角形所拼成的矩形面积为_________二 选择题1、 下列各组数为勾股数的是( )A 7 、12、 13B 3、 4 、7C 8、 15、 17D 、2 、 2、下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=, b=2, c=3 B 、a=7, b=24, c=25C 、a=6, b=8, c=10D 、a=3, b=4, c=5 3、若线段a ,b ,c 组成Rt △,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶74、如果Rt △ABC 两直角边的比为5∶12,则斜边上的高与斜边的比为( )A 、60∶13B 、5∶12C 、12∶13D 、60∶1695、如果Rt △的两直角边长分别为n 2-1、2n (n>1),那么它的斜边长是( ) DBCAA 、2nB 、n+1C 、n 2-1D 、n 2+16、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 27、 在三角形ABC 中 AB=15 AC=13 高AD=12 则三角形ABC 的周长为( ) A 42 B 32 C 42或 32 D 37 或 33 8、 若直角三角形中 有两边长是12和5 则第三边的平方为( ) A 169 B 169或119 C 13或15 D 159、 直角三角形有一直角边长为11 另外两条边长是两个连续的自然数 则周长是( ) A 132 B 121 C 120 D 12310、 三角形ABC 的三边分别为a= b= c=2cm 则∠C 是( )A 锐角B 直角C 钝角D 以上三种都有可能三 解答题1、 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4阴影部分的面积是______.ABDCE2、 某菜农修建一个塑料大棚(如图),若棚宽a =4m ,高b =3m ,长d =35m ,求覆盖在顶上的塑料薄膜的面积.abc d3、 如图,正方形ACDE 的面积为25cm ,测量出AB =12cm,BC =13cm,问E 、A 、B 三点在一条直线上吗?为什么?DEAB4、 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。

2018年人教版数学八年级下册《勾股定理》单元测试卷含答案

2018年人教版数学八年级下册《勾股定理》单元测试卷含答案

勾股定理单元测试题一、选择题:1.由线段a、b、c组成的三角形不是直角三角形的是( )A.=7,b=24,c=25;B.a=,b=,c=;C.a=,b=1,c=;D.a=,b=4,c=5;2.如图,在边长为1个单位长度的小正方形组成的网格中,A、B都是格点,则线段AB的长度为()A.5B.6C.7D.253.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是( )A. B.﹣ C. D.﹣5.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.56.已知一个直角三角形的两边长分别为3和5则第三边长是()7.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.608.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米9.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.74D.8010.一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A.10米B.15米C.25米D.30米11.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:212.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或10二、填空题:13.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为三角形.14.一个三角形的三边长之比为5:12:13,它的周长为120,则它的面积是.15.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD 的长为半径画弧,交线段AB于点E,则点E表示的实数是.16.某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.17.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.18.如图,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE 周长的最小值是.三、解答题:19.如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.20.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?21.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,BC=4CE,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.22.如图,在△ABC中,点O是AC边上的一点.过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于F.(1)求证:EO=FO;(2)若CE=4,CF=3,你还能得到那些结论?23.如图,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.24.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.参考答案1.B2.A3.B4.D5.D6.D7.A8.C9.C10.B11.B12.C13.答案为:直角;14.答案是:480.15.答案为:-1 ;16.答案为2.5;17.答案为:126或66.18.答案为:10;19.解:∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=2,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD===2,∴BC=BD+CD=2+2,∴S△ABC=BC•AD=(2+2)×2=2+2.20.21.解:由勾股定理得AE2=25,EF2=5,AF2=20,∵AE2= EF2 +AF2,∴△AEF是直角三角形.22.解:(1)∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可得OF=OC,∴OE=OF;(2)∵CE是∠ACB的平分线,∴∠1=∠2,∵CF是∠OCD的平分线,∴∠4=∠5,∴∠ECF=90°,在Rt△ECF中,由勾股定理得EF=.∴OE=OF=OC=0.5EF=2.5.23.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.24.(1)结论:DE=DF.证明:如图1中,连接AD,作DN⊥AB,DM⊥AC垂足分别为N、M.∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵BD=DC,∴∠BAD=∠CAD,∴DN=DM,∵∠EDF=120°,∴∠EDF+∠BAC=180°,∠AED+∠AFD=180°,∵∠AED+∠DEN=180°,∴∠DFM=∠DEN,在△DNE和△DMF中,,∴△DNE≌△DMF,∴DE=DF.(2)能围成三角形,最大内角为120°.证明:如图2中,延长FD到M使得DF=DM,连接BM,EM.在△DFC和△DMB中,,∴△DFC≌△DMB,∴∠C=∠MBD=60°,BM=CF,∵DE=DF=DM,∠EDM=180°﹣∠EDF=60°,∴△EDM是等边三角形,∴EM=DE,∴EB、ED、CF能围成△EBM,最大内角∠EBM=∠EBC+∠DBM=60°+60°=120°.(3)如图1中,在△ADN和△ADM中,,∴△ADN≌△ADM,∴AN=AM,∴AE+AF=AN﹣EN+AM+MF,由(1)可知EN=MF.∴AE+AF=2AN,∵BD=DC=,在RT△BDN中,∵∠BDN=30°,∴BN=BD=,∴AN=AB﹣BN=,∴AE+AF=.。

八年级数学第十八章《勾股定理》测试题

八年级数学第十八章《勾股定理》测试题

八年级数学第十八章《勾股定理》测试题班级姓名成绩一、选择题(每题 4 分,共 32 分)1 、以下各组数中,能组成直角三角形的是()A、4,5,6B、1,1, 2C、6,8,11D、5,12,232、在 Rt△ABC中,∠ C= 90°, a=6,b=8,则 c 的长为()A、12B、18C、20D、103、在平面直角坐标系中,已知点P 的坐标是 (3,4) ,则 OP的长为()A、3B、4C、5D、 74、如图 , 点 A 表示的实数是()A、3B、5 C 、5D、35、以下定理中 , 没有逆定理的是()A、两直线平行,内错角相等 B 、直角三角形两锐角互余C、对顶角相等D6、若一个三角形的三边长为、同位角相等,两直线平行3、4、x,则使此三角形是直角三角形的x 的值是()A、5B、6C、7 D 、5或77 、等边三角形的边长为2,则该三角形的面积为()A、4 3B、3C、 2 3D、38、已知a、b、c 是三角形的三边长,假如知足(a6)2b8c100 ,则三角形的形状是()A、底与边不相等的等腰三角形B、等边三角形C、钝角三角形D、直角三角形二、填空题(每题 4 分,共 40 分)9、三角形的三边长分别为3,4,5,则这个三角形的面积是。

10、如下图,以Rt ABC 的三边向外作正方形,其面积分别为S1,S ,2S , 且 S14, S28,则S3;11、将长为10 米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为 6 米,则梯子的底端到墙的底端的距离为;12 、如图,C ABD90 ,AC4, BC3,BD12,则AD=;13 、若三角形的三边知足 a : b : c 5 :12 :13 ,则这个三角形中最大的角为;14、已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为;15 、写出一组全部是偶数的勾股数是16、木匠师傅要做一个长方形桌面,做好后量得长为;80cm,宽为60cm,对角线为100cm,则这个桌面(填“合格”或“不合格” );17、如图,已知一根长8m的竹杆在离地3m处断裂,竹杆顶部抵着地面,此时,顶部距底部有m;18、定理“内错角相等,两直线平行”的逆定理是三、解答题(每题7 分,共 28 分)19、如图,为修通铁路凿通地道 AC,量出∠ A=40°∠ B=50°,AB= 5 公里,BC=4 公里,若每日凿地道 0.3 公里,问几日才能把地道 AB凿通?20、如图,每个小方格的边长都为1.求图中格点四边形ABCD的面积。

2021年人教版数学八年级下册《勾股定理》单元测试三(含答案)

2021年人教版数学八年级下册《勾股定理》单元测试三(含答案)

2021年人教版数学八年级下册《勾股定理》单元测试一、选择题:1、下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=3,b=4,c=52、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是()3、如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC 的距离是( )A.3 B.4 C.5 D.64、如图,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+5、直角三角形的边长分别为 a,b,c,若a2=9,b2=16,那么 c2 的值是()A.5B.7C.25D.25 或 76、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm27、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米8、三角形的三边长分别为6,8,10,它的最短边上的高为( )A.6B.4.5C.2.4D.89、如图,一只蚂蚁在正方体的一个顶点A处,它能爬到顶点B处寻找食物,若这个正方体的边长为1,则这只蚂蚁所爬行的最短路程为( )A.8 B. C. D.10、在Rt△ABC中,斜边AB=3,则AB2+AC2+BC2=( )A.9B.18C.10D.2411、如图,分别以直角三角形的三边为直径作半圆,则三个半圆的面积S1,S2+S3之间的关系是()A.S1>S2+S3B.S1=S2+S3C.S1<S2+S3D.无法确定12、如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A.0.4 B.0.6 C.0.7 D.0.8二、填空题:13、△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c= ;(2)若c=41,a=40,则b= ;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.14、如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.15、如图,3×3•网格中一个四边形ABCD,若小方格正方形的边长为1,则四边形ABCD的周长是_______.16、如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积= .17、如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD=.18、已知△ABC 的三边长分别为17,8,15,则此三角形的面积为__________.19、在Rt △ABC 中,其中两条边的长分别是3和4,则这个三角形的面积等于 。

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。

人教版八年级数学下册期末复习资料《勾股定理》复习题

人教版八年级数学下册期末复习资料《勾股定理》复习题

八年级数学期末复习资料《勾股定理》期末复习题1勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c ,那____________________勾股定理的逆定理:如果三角形的三边长a,b,c 满足222c b a =+,那么这个三角形是 __________1. 在Rt △ABC 中,∠C=90°,若c=13,b=12,则a=________;2.已知直角三角形的两条边长分别是3和4,则此三角形的第三边长度为_____________3.直角三角形的两直角边分别为5、12,则斜边上的高为________.4.在直角坐标系中,点P (-2,3)到原点的距离是__________5.如图,一根树在离地面9米处断裂,树的顶部落在离底部 12米处.树折断之前有______米.6在等腰△ABC 中,AB=AC=13,BC=10,则高AD 的长为________7、命题“全等三角形的面积相等”的逆命题是________________________, 它是 ________(填入“真”或“假”)命题。

8.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE则CD 等于_________cm.9. 在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列结论错误的是( )A. a 2+b 2=c 2B.b 2+c 2=a 2C.a 2-b 2=c 2D.a 2-c 2=b 210、如果正方形ABCD 的面积为92,则对角线AC 的长度为( );11.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米, (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米, 那么梯子的底端在水平方向滑动了几米?12.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.《勾股定理》期末复习题21.下列各组不能构成直角三角形的是( )A.11 12 15B. 5 5 25C.45 143 D. 1 3 22.在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15cm ,则△ABC 的面积 等于( )A 108cm 2B 90cm 2C 180cm 2D 54cm 2 3.直角三角形的两直角边分别为5、12,则斜边上的高为________.4. 如下图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F分别对应的数是_________。

人教版八年级下册数学 勾股定理 单元解答专项训练

人教版八年级下册数学  勾股定理  单元解答专项训练

人教版八年级下册数学勾股定理 单元解答专项训练1. 已知直角三角形的两边长6,8AB cm BC cm ==,求第三边的长.2. 已知△ABC 的三边分别为a ,b ,c ,且满足a+b =4,ab =1,c =,求证△ABC 为直角三角形.3. 学校校内有一块如图所示的三角形空地ABC ,其中AB =13米,BC =14米,AC =15米,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为60元,学校修建这个花园需要投资多少元?4. 如图,在△ABC 中,AD ⊥BC ,垂足为点D ,AB =13,BD =5,AC =15.(1)求AD 的长;(2)求BC 的长.5. 两块三角板如图放置,已知∠BAC =∠ADC =90°,∠ABC =45°,∠ACD =30°,BC =6cm .(1)分别求线段AD ,CD 的长度;(2)求BD 2的值.6. 如图,在5×4的正方形网格中,每个小正方形的边长都是1. (1)分别求出AB ,CD 的长度;(2)在图中作EF ,使得EF 的长为,以AB ,CD ,EF 三条线段能否构成直角三角形,请说明理由.7. 如图,在三角形纸片ABC 中,90513ACB BC AB ∠=︒==,,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,点A 与BC 延长线上的点D 重合. (1)AC 的长=________.(2)求CE 的长8. 如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.9. 如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).10.如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.11.教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.(3)试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2,画在如图4的网格中,并标出字母a,b所表示的线段.12.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.13.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,CD=PC=2,CD⊥CP,求∠BPC的度数.14.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.15(1)请你分别观察a,b,c与n之间的关系,用含自然数n(n>1)的代数式表示a,b,c,则a=n2-1,b=2n,c=n2+1;(2)猜想:以a,b,c为边的三角形是否为直角三角形?证明你的结论.16. 如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上.BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)在探究长方形ACDF的面积S时,我们可以用两种不同的方法:一种是找到长和宽,然后利用长方形的面积公式,就可得到S;另一种是将长方形ACDF看成是由△ABC,△BDE,△AEF,△ABE组成的,分别求出它们的面积,再相加也可以得到S.请根据以上材料,填空:方法一:S=.方法二,S=S△ABC+S△BDE+S AEF+S△ABE=ab+b2﹣a2+c2.(2)由于(1)中的两种方法表示的都是长方形ACDP的面积,因此它们应该相等,请利用以上的结论求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.17.如图,一艘轮船以30km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h 的途度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km.(1)如果这艘轮船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航行速度和航向不变,轮船受到台风影响一共经历了多少小时?。

2021年人教版数学八年级下册《勾股定理》单元测试二(含答案)

2021年人教版数学八年级下册《勾股定理》单元测试二(含答案)

2021年人教版数学八年级下册《勾股定理》单元测试一.选择题1.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,132.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.913.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是()A.15尺B.16尺C.17尺D.18尺4.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A. B.C.D.5.一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10 B.13,10,12 C.13,12,12 D.13,10,116.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A.5 B13C.4 D.37.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m8.张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为()A.30m B.40m C.50m D.70m9.如图,△ABC中,∠BAC=90°,AD⊥BC于点D,若AD=455,BC=25,△ABC的周长为()A.6+25B.10 C.8+25 D.1210.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个二.填空题11.在4×4的方格中,△ABC的三个顶点均在格点上,其中AB=5,BC=22,AC=17.则△ABC中AC边上的高的长为.(保留根号)12.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路53千米的地方有一居民点B,A、B的直线距离是103千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)13.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3= .14.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是.15.已知一个三角形的三边长分别为2,6,2,则这个三角形的面积为.16.请你任意写出二组勾股数.17.已知:如图,四边形ABCD,AB=1,BC=34,CD=134,AD=3,且AB⊥BC.则四边形ABCD的面积为.18.观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a= .(提示:5=,13=,…)三.解答题19.如图,在4×4的方格纸中,每个小正方形的边长都为1,△ABC的三个顶点都在格点上,已知AC=25,BC=5,画出△ABC,并判断△ABC是不是直角三角形.20.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.22.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c223.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)24.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?参考答案一.选择题(共10小题)1. C. 2. C. 3. C. 4. C. 5. B. 6. B. 7. A. 8. C 9. A. 10. D.二.填空题(共8小题)11..(保留根号) 12.3813.18 .14. 4,3,5(答案不唯一). 15.2.16.3、4、5,5、12、13 . 17.94. 18. 17 .三.解答题(共6小题)19.如图,在4×4的方格纸中,每个小正方形的边长都为1,△ABC的三个顶点都在格点上,已知AC=25,BC=5,画出△ABC,并判断△ABC是不是直角三角形.【分析】根据勾股定理结合网格结构,求出AB2=42+32=25,画出AC=25,BC=5,再利用勾股定理的逆定理判断△ABC是直角三角形.【解答】解:如图,△ABC即为所求.∵55∴AC2+BC2=20+5=25,∵AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了勾股定理.20.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.【分析】(1)仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,根据此规律及勾股定理公式不难求得b,c的值.(2)根据第一问发现的规律,代入勾股定理公式中即可求得b、c的值.(3)将第二问得出的结论代入第三问中看是否符合规律,符合则说明是一组勾股数,否则不是.【解答】解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.【点评】此题主要考查学生对勾股数及规律题的综合运用能力.21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.【分析】(1)根据角平分线的性质可知CD=DE=4cm,由于∠C=90°,故∠B=∠BDE=45°,△BDE是等腰直角三角形,由勾股定理得可得BD,AC的值.(2)由(1)可知:△ACD≌△AED,AC=AE,BE=DE=CD,故AB=AE+BE=AC+CD.【解答】解:(1)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD=4cm,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∴∠B=∠BDE=45°,∴BE=DE=4cm.在等腰直角三角形BDE中,由勾股定理得,BD=42,∴AC=BC=CD+BD=4+42cm).(2)∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴∠ADE=∠ADC,∴AC=AE,又∵BE=DE=CD,∴AB=AE+BE=AC+CD.【点评】本题考查的是角平分线的性质,等腰直角三角形的性质,比较简单.22.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,5 32+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c2【分析】(1)根据表格找出规律再证明其成立;(2)把已知数据代入经过证明成立的规律即可.【解答】解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.【点评】本题考查了勾股数、勾股定理的逆定理;解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.23.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),∵此人以0.5m/s的速度收绳,10s后船移动到点D的位置,∴CD=13﹣0.5×10=8(m),∴(m),∴)(m).答:船向岸边移动了)m.【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.24.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?【分析】(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.【解答】解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则3x,BC=2x在Rt△ABD中,∠BAD=45°则3x,26x由AC+CD=AD得3x解得:3故26答:港口A到海岛B的距离为302106(2)甲船看见灯塔所用时间:302+106-54.115≈小时乙船看见灯塔所用时间:1203+20-51++ 4.0220≈小时所以乙船先看见灯塔.【点评】此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章勾股定理单元复习测试
(时间:100分钟分数:120分) 得分________ 一、精心选一选,相信你一定能选对!(每题3分,共30分)
1.已知△ABC中,∠A=1
2
∠B=
1
3
∠C,则它的三条边之比为().
A.1:1
.1
2 C.1
D.1:4:1
2.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是().
A.5
2
B.3 C
D
3.下列各组线段中,能够组成直角三角形的是().
A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,5 4.下列各命题的逆命题成立的是()
A.全等三角形的对应角相等
B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等
D.如果两个角都是45°,那么这两个角相等
5.若等边△ABC的边长为2cm,那么△ABC的面积为().
A
cm2 B.
m2 C.
cm2 D.4cm2
6.在Rt△ABC中,已知其两直角边长a=1,b=3,那么斜边c的长为().
A.2 B.4 C.
D
7.如图所示,△ABC中,CD⊥AB于D,若AD=2BD,AC=5,BC=4,则BD的长为().
A
C.1 D.
1
2
8.下面四组数中是勾股数的有().
(1)1.5,2.5,2 (2
2
(3)12,16,20 (4)0.5,1.2,1.3
A.1组 B.2组 C.3组 D.4组
9.直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为().
A.182 B.183 C.184 D.
185
10.如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合,•则CN的长为().
A.7
2
B.
25
8
C.
27
8
D.
15
4
(第10题) (第12题)
二、细心填一填,相信你填得又快又准!(每题3分,共18分)
11.已知直角三角形的两边分别为3、4,则第三边为_____.
12.你听说过亡羊补牢的故事吗?
如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需_____m长.
13.如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC 的长为_______米.
(第13题) (第14题)
14.已知,如图所示,Rt△ABC的周长为AB的长为,则Rt△ABC•的
面积为_____.
15.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.
(第15题) (第16题)
16.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.
三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,对而不全酌情给分)
17.在Rt△ABC中,∠C=90°,∠A=30°,则下列结论中正确的是()。

A.AB=2BC B.AB=2AC C.A C2+AB2=BC2 D.A C2+BC2=AB2
18.在Rt△ABC中,若,,AB=3,则下列结论中不正确的是()。

A.∠C=90° B.∠B=90°
C.△ABC是锐角三角形 D.△ABC是钝角三角形
四、仔细想一想,相信你一定行!
19.(8分)如图,在一棵树的10米高B处有两只猴子,•其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?
20.(8分)已知,如图所示,折叠长方形的一边AD,使点D落在BC边的点F•处,•如果
AB=8cm,BC=10cm,求EC的长.
21.(8分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,•已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?
22.(9分)如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD•的顶点在正方形MNPQ的4条边的小方格顶点上.
(1)设正方形MNPQ网格内的每个小方格的边长为1,求:
①△ABQ,△BCM,△CDN,△ADP的面积;
②正方形ABCD的面积.
(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程.
答案:
1.B 2.D 3.D 4.C 5.A 6.D 7.A 8.A 9.A 10.B
11.5 12.1.5 13..1 15.2 16.略 17.AD
18.BCD 19.树高15m . 提示:BD=x ,则(30-x )2-(x+10)2=202
20.连结AE ,则△ADE ≌△AFE ,所以AF=AD=10,DE=EF .
设CE=x ,则EF=DE=8-x ,,CF=4.
在Rt △CEF 中,E F 2=CE 2+CF 2,即(8-x )2=x 2+16,故x=3
21.当CD 为斜边上的高时,CD 最短,从而水渠造价最价
∵CD ·AB=AC ·BC ∴CD=
AC BC AB =48米
∴=米
所以,D 点在距A 点64米的地方,水渠的造价最低,其最低造价为480元.
22.(1)S n =12·1=12 (2)OA 10
(3)S 12+S 22+…+S 102=(
2)2+(2)2+)2…+ 2 =14(1+2+…+10)=554
. 23.(1)①S △ABQ =S △BCM =S △CDN =S △ADP =6
②S 正方形ABCD =S 正方形MNPQ -4S △ABQ =25
(2)勾股定理或完全平方公式或平方差公式,推理过程略.
24.(1)设直角三角形的两条边分别为a 、b (a>b ),则依题意有:
22513
a b a b +=⎧⎨+=⎩ ①2-②,得ab=6,(a-b )2=(a+b )2-4ab=1, ∴a-b=1,故小正方形的面积为1.
(2)
25.(1)过A 作AC ⊥BF 于C ,则AC=12
AB=150<200,
∴A市会受到台风影响.
(2)过A作AD=200km,交BF于点D.
∴=,
=10小时.。

相关文档
最新文档