广东省深圳市龙岗区智民实验学校2019-2020学年第二学期七年级期末教学质量监测数学试卷(word版,含答案)
广东省深圳市龙岗区2020至2021学年七年级下学期期末语文试题

广东省深圳市龙岗区2018-2019学年七年级下学期期末语文试题学校:___________姓名:___________班级:___________考号:___________一、选择题1.请选出下列词语中加点字读音不正确...的一项()A.修葺.(qì)无虞.(yú)校.对(jiào)心有灵犀.(xī)B.选聘.(pìng)契.约(qì)震悚.(shǒng)怏怏..不乐(yāng)C.羸.弱(léi)矜.持(jīn)拖沓.(tà)气冲斗.牛(dǒu)D.愧怍.(zuò)污秽.(huì)亘.古(gèn)酣.然入梦(hān)2.请选出下列句子中加点成语运用不正确...的一项()A.许多科学家为了人类科技的进步而鞠躬尽瘁....、无私奉献。
B.杜甫的《三吏》、《三别》等诗作,不只是作者悲天悯人....情感的宣泄,还表现了作者对美好生活的向往和追求。
C.老师批评了他,他还一副不以为然....的样子,明显没有认识到自己的错误。
D.当我们在学习中遇到难题时,我们就应该不耻下问....地向老师请教。
3.下列对病句的修改不正确的一项是()A.一个人能取得卓越的成就,并不在于他就读的学校是重点还是普通,而在于他是否具备成功的特质。
(在“一个人能”后面加“否”)B.农民工返乡和大学毕业生就业问题,广泛引起全社会关注。
(把“广泛”移到“全社会”后面)C.经过北京人民的共同努力,使北京的空气质量状况有了明显改善。
(把“有了”改成“得到了”)D.不管鸟儿的翅膀多么完美,即使不凭借空气,也无法飞上蓝天。
(把“即使”改成“如果”)4.请选出下列选项中排序正确....的一项()①一旦久了,我们的心灵被折磨得千疮百孔,对人世、对生活就失去了爱心。
②只要我们投入生活,难免会遇到来自外界的一些伤害,经历多了,自然有了提防。
③甚至是为了一些他人的闲言碎语,我们发愁、发怒,认真计较,纠缠其中。
深圳智民实验学校初中部七年级下册期末生物试卷

深圳智民实验学校初中部七年级下册期末生物试卷一、选择题1.“国际黑猩猩基因测序与分析联盟”宣布,黑猩猩与人类在基因上的相似程度达到96%以上,这个事实可以作为下列哪个观点的较为可靠的证据()A.人类由黑猩猩进化而来B.人类和黑猩猩有很近的亲缘关系C.黑猩猩是地球上和人最相似的生物D.人类和黑猩猩的共同祖先是森林古猿2.女性能够产生卵细胞,并分泌雌性激素的生殖器官是()A.子宫B.输卵管C.胎盘D.卵巢3.下列关于食物热价的叙述中,错误的是()A.热价可以表示食物所含能量的多少B.热价是1克食物氧化分解(或在体外燃烧)时所释放的能量C.蛋白质也可以氧化分解,为各项生命活动提供能量D.糖类的热价最高,是生物体内主要的能源物质4.如图是四种食品中四种营养成分的相对含量图,读图作答,选择图中的字母回答:以下列哪种食品为主食,最不容易患贫血病的是()最不容易患坏血病的是()A.B和A B.D和C C.B和C D.A和B5.如图示消化系统局部结构,据图分析,下列叙述错误的是()A.结构①能初步消化淀粉B.结构②能分泌胆汁C.②、③分泌的消化液均流入④D.②、③属于消化腺6.下图是某同学探究唾液淀粉酶对淀粉消化的实验操作过程,下列各项关于实验结果的描述中,正确的是()A.1变蓝,2变蓝B.1变蓝,2不变蓝C.1不变蓝,2变蓝D.1不变蓝,2不变蓝7.下列有关人体消化系统的描述中,不正确的是()A.所有的消化液都含有消化酶B.所有的消化腺都能分泌消化液C.消化系统由消化道和消化腺两部分组成D.小肠绒毛扩大了小肠消化和吸收的面积8.甲、乙图是人体两处的气体交换示意图,a、b、c、d四处血液中的二氧化碳浓度大小关系正确的是()A.a>b;c>d B.a<b;c<d C.a<b;c>d D.a>b;d>c9.如图是人体肺泡与血液之间的气体交换示意图,以下说法正确的是()A.箭头①表示二氧化碳穿过肺泡壁和毛细血管壁进入血液B.箭头②表示氧气穿过毛细血管壁和肺泡壁进入肺泡C.箭头①表示肺泡中的全部氧气穿过肺泡壁和毛细血管壁进入毛细血管D.箭头②表示二氧化碳穿过毛细血管壁和肺泡壁进入肺泡10.下图表示某人平静和运动两种状态下的呼吸情况,据图分析正确的是A.曲线Ⅰ为平静状态 B.曲线Ⅰ的呼吸频率为36次/分钟C.曲线Ⅱ状态时,呼吸深度较小 D.曲线Ⅱ状态时,气体交换效率较低11.小丽同学因感冒导致鼻炎,晚上睡觉时她张开嘴进行呼吸,第二天早上她感觉嗓子非常干燥,说明鼻腔的主要作用是()A.清洁灰尘B.加热空气C.湿润空气D.清除二氧化碳12.呼吸系统的主要器官是()A.鼻B.气管C.支气管D.肺13.一个A型血病人需要输血,他应该输()A.O型血B.A型血C.B型血D.AB型血14.医院妇产科产房内有一产妇急需输血,她的血型是AB型,在下列供血中,她应该输入的血液是 ( )A.A型B.B型C.O型D.AB型15.图是心脏、血管的示意图,“→”表示血流方向,下列表达正确的是()A.甲流出的血液为动脉血B.乙和丙都是静脉血管C.血液流动的方向是甲→乙→丁→丙D.血液流经乙→丁→丙后,静脉血变为动脉血16.如图是血液中血红蛋白和氧气结合情况和血液中二氧化碳含量情况的曲线图,则该图S、P分别表示的是()A.左心室、右心室B.毛细血管、肺静脉 C.肺动脉、肺静脉D.肺动脉、主动脉17.为了解血液在血管中的流动情况及血管的类型,某实验学校兴趣小组开展了“观察小鱼尾鳍内血液的流动”实验,如图甲为实验材料,图乙为显微镜下观察到的视野图,①②③表示血管。
深圳智民实验学校初中部数学七年级下学期期末数学试题

深圳智民实验学校初中部数学七年级下学期期末数学试题一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 3.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 4.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 95.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 6.不等式3+2x>x+1的解集在数轴上表示正确的是( ) A .B .C .D .7.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .8.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110° 9.七边形的内角和是( ) A .360°B .540°C .720°D .900° 10.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255 二、填空题11.计算:312-⎛⎫ ⎪⎝⎭= . 12.内角和等于外角和2倍的多边形是__________边形.13.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).14.()a b -+(__________) =22a b -.15.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 16.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____. 17.已知一个多边形的每一个外角都等于,则这个多边形的边数是 . 18.若2m =3,2n =5,则2m+n =______.19.比较大小:π0_____2﹣1.(填“>”“<”或“=”)20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____. 三、解答题21.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )22.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.23.如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,垂足为点E,∠BAC=100°,求∠EDB 的度数.24.计算:(1)2a(a﹣2a2);(2)a7+a﹣(a2)3;(3)(3a+2b)(2b﹣3a);(4)(m﹣n)2﹣2m(m﹣n).25.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.26.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.27.将下列各式因式分解(1)xy2-4xy(2)x4-8x2y2+16y428.如图,一个三角形的纸片ABC,其中∠A=∠C,(1)把△ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时 (如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .3.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.6.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x -x >1-3,合并同类项,得x >﹣2,不等式的解集在数轴上表示为:.故选:A .【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.7.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误;故选A .【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.8.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.9.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.10.C解析:C【分析】根据幂的乘方的知识,可得255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,再比较底数的大小,即可得结论.【详解】解:∵255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,又∵32<64<81,∴255<433<344.故选C.【点睛】本题考查了幂的乘方,解题的关键是根据幂的乘方的公式,转化为底数相同的幂.二、填空题11.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.12.六【解析】【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n 条边,由题意得:1解析:六【解析】【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n 条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).13.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).14.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.15.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x=3m+2,解得:x=325m+,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.16.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.17.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.18.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.19.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 20.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.22.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.23.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=12∠ABD=40°,进而得出答案.【详解】解:∵AC//BD,∠BAC=100°,∴∠ABD=180°﹣∠BAC=180°-100°=80°,∵BC平分∠ABD,∴∠CBD=12∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.24.(1)2a2﹣4a3;(2)a7+a﹣a6;(3)4b2﹣9a2;(4)n2﹣m2【分析】(1)由题意根据单项式乘以多项式法则求出即可;(2)根据题意先算乘方,再合并同类项即可;(3)由题意直接根据平方差公式求出即可;(4)由题意先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项即可.【详解】解:(1)2a(a﹣2a2)=2a2﹣4a3;(2)a7+a﹣(a2)3=a7+a﹣a6;(3)(3a+2b)(2b﹣3a)=4b2﹣9a2;(4)(m﹣n)2﹣2m(m﹣n)=m2﹣2mn+n2﹣2m2+2mn=n2﹣m2.【点睛】本题考查整式的混合运算,乘法公式等知识点,能正确根据整式的运算法则进行化简是解此题的关键.25.(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【分析】(1)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得:x=120°,即外角等于60°,根据外角和等于360°可得这个多边形的边数为:360 60=6,(2)先设内角为x,根据题意可得:外角为12x,根据相邻内角和外角的关系可得:,x+12x=180°,从而解得内角:x=120°,内角和=(6﹣2)×180°=720°.【详解】(1)设内角为x,则外角为12x,由题意得,x+12x =180°,解得:x=120°, 12x=60°,这个多边形的边数为:360 60=6,答:这个多边形是六边形,(2)设内角为x,则外角为12x,由题意得: x+12x =180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.26.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 27.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.28.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED (设为α),∠A′DE=∠ADE (设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A ,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A ,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C ,∴∠DFE=∠C ,∴BC ∥DF ;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED =180°, ∠2+2∠ADE =180°,∴∠1+∠2+2(∠ADE +∠AED)=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED+∠1=180°,2∠ADE-∠2=180°,∴2(∠ADE+∠AED)+∠1-∠2=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.。
2019-2020学年深圳市龙岗区七年级(下)期末数学试卷

2019-2020学年深圳市龙岗区七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列计算正确的是()A. (−2a)2=−4a2B. a3b2÷(a2b)=abC. (b2)5=b7D. m2⋅m5=m102.剪纸是我们国家特别悠久的民间艺术形式之一,它是人们用祥和的图案企望吉祥、幸福的一种寄托.下列剪纸图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()A. 不确定事件B. 不可能事件C. 可能性大的事件D. 必然事件4.中国网5月5日讯据沈阳市文化旅游和广牺电视局相关数据显示,今年五一长假期间,沈阳市主要景区接待315.4万人次,接待人数同比增长31.1%,将3154000用科学记数法表示为()A. 0.354×106B. 0.3154×107C. 3.154×106D. 3.154×1075.已知a,b,c分别是△ABC的三边长,且满足a2+b2+2c2=2ac+2bc,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形6.计算:2018−1=()A. −2018B. 2018C. 12018D. −120187.10.如图,在第1个△A 1BC中,∠B=30°,A 1B=CB;在边A 1B上任取一点D,延长CA 1到A 2,使A 1A 2=A 1D,得到第2个△A 1A 2D;在边A 2D上任取一点E,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是A. B. C. D.8.如图,下列能判定AB//CD的条件是()A. ∠3=∠4B. ∠1=∠2C. ∠D=∠5D. ∠D+∠BCD=180°9.计算(1−a)(−1−a)的结果是()A. a2−1B. 1−a2C. a2−2a+1D. −a2+2a−110.下列等式中,一定成立的是()A. (a−b)2=a2−b2B. a2+b2=(a+b)2C. (a−b)2=a2−2ab+b2D. (a+b)2=(a−b)2+2ab11.如图,某运动员P从半圆跑道的A点出发沿ÂB匀速前进到达终点B,若以时间t为自变量,扇形OAP的面积S为函数的图象大致是()A. B. C. D.12.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连CD,下列五个结论:①AC+CE=AB,②BD=,③BD=CD,④∠ADC=45°,⑤AB−BC=2MC;其中不正确结论的个数有().A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共4小题,共12.0分)13. 化简:c+2(b−c)=______ .14. 如下图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,在此平面内这样的三角形最多可以画出个。
2019-2020学年深圳市名校七年级第二学期期末学业水平测试生物试题含解析

4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本题包括35个小题,1-20题1分,21-35题每小题2分,共50分.每小题只有一个选项符合题意)
呼吸道包括鼻腔、咽、喉、气管、支气管,哮喘一般是由于吸入了过敏性物质引起的支气管感染,症状有咳嗽、喘息、呼吸困难、胸闷、咳痰等。典型的表现是发作性伴有哮鸣音的呼气性呼吸困难,严重时会导致肺泡的弹性回缩减弱,此情况将直接影响肺与外界的气体交换。严重者可被迫采取坐位或呈端坐呼吸,干咳或咯大量白色泡沫痰,甚至出现紫绀等。
【点睛】
解答此题的关键是掌握人工呼吸以及胸外心脏挤压这两种常用的急救措施,即解决题目,最好又会在必要的时候能用于救助他人。
4.下列叙述错误的是( )
A.神经细胞是神经系统结构和功能的基本单位
B.可以通过口服胰岛素治疗糖尿病
C.“红灯停、绿灯行”该反射的神经中枢位于大脑皮层,是人类特有的反射
D.只有呼吸和心跳而没有其他生命体征的“植物人”,脑干一般没有受到损伤
“红灯停,绿灯行”,需要由大脑皮层的语言中枢参与才可完成,因此属于人类特有的条件反射,C正确;
脑干灰质中,有一些调节人体基本生命活动的中枢,如心血管运动中枢、呼吸中枢等。如果这一部分中枢受到损伤,会立即引起心跳、呼吸停止而危及生命。所以只有呼吸和心跳而没有其他生命体征的“植物人”,肯定没有受损伤的部位是脑干,D正确。
故选:D。
【点睛】
回答此题的关键是明确治疗糖尿病的方法。
6.如图表示流入及流出人体某器官的血液内4种物质的相对含量,由此可判断该器官是( )
2019-2020学年深圳市名校七年级第二学期期末学业水平测试数学试题含解析

2019-2020学年深圳市名校七年级第二学期期末学业水平测试数学试题 考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为 A .1B .2C .3D .4【答案】C【解析】试题分析:首先能够找到所有的情况,然后根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:根据三角形的三边关系,得3,5,7;3,7,9;5,7,9都能组成三角形.故有3个.故选C .2.如图,在平面直角坐标系中, // //AB BG x 轴, // // // //BC DE HG AP y 轴,点以D 、C 、P 、H 、在x 轴上, ()1,2A ,()1,2B -,()3,0D -,(3,E --2),()3,2G -,把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A 处,并按A B C D E F G -------H P A --…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )A .()1,2B .()1,2-C .()1,0-D .()1,0【答案】D【解析】【分析】 先求出凸形ABCDEFGHP 的周长为20,得到2018÷20的余数为18,由此即可解决问题. 【详解】∵A (1,2),B (−1,2),D (−3,0),E (−3,−2),G (3,−2),∴“凸”形ABCDEFGHP 的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P 处上面1个单位的位置,坐标为(1,0).故选:D .【点睛】本题考查图形类规律,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.3.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .50【答案】C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、15=5,被开方数含分母,不是最简二次根式;故A 选项错误; B 、0.5=22,被开方数为小数,不是最简二次根式;故B 选项错误; C 、5,是最简二次根式;故C 选项正确;D .50=52,被开方数,含能开得尽方的因数或因式,故D 选项错误;故选C .考点:最简二次根式.4.如图,在等腰直角三角形ABD 中,,AD BD =点F 是AD 上的一个动点,过点A 作,AC BF ⊥交BF 的延长线于点,E 交BD 的延长线于点,C 则下列说法错误的是( )A . CD DF =B .AC BF = C .AD BE = D .45CAD ABF ∠+∠=︒【答案】C【解析】【分析】由ASA 证明∆BDF ≅∆ADC ,可得 CD DF =,AC BF =即可判断A 、B ,由∠CAD=∠FBD ,结合等腰直角三角形的性质,即可判断D ,由AD=BD <BF <BE ,即可判断C .【详解】∵在等腰直角三角形ABD 中,∠ADB=90°,AC BF ⊥,∴∠CAD+∠C=∠FBD+∠C=90°,∴∠CAD=∠FBD ,∵AD BD =,∠BDF=∠ADC=90°,∴∆BDF ≅∆ADC (ASA ),∴ CD DF =,AC BF =,故A 、B 正确;∵∠CAD=∠FBD , ∴18090452CAD ABF FBD ABF ABD ︒-︒∠+∠=+===︒∠∠∠, 故D 正确;∵AD=BD <BF <BE ,∴AD BE ≠,故C 错误,故选C .【点睛】本题主要考查三角形全等的判定和性质定理以及等腰直角三角形的性质定理,掌握三角形全等的判定和性质定理是解题的关键.5.把一根7米的钢管截成1米长和2米长两种规格的钢管,有几种不同的截法?( )A .3种B .4种C .5种D .6种 【答案】A【解析】【分析】截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x 根,1米长的y 根,由题意得到关于x 与y 的方程,求出方程的正整数解即可得到结果.【详解】解:截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x 根,1米长的y 根,由题意得,2x+y=7,因为x ,y 都是正整数,所以符合条件的解为:15x y =⎧⎨=⎩,x 23y =⎧⎨=⎩,31x y =⎧⎨=⎩, 则有3种不同的截法.故选:A .【点睛】此题考查了二元一次方程的应用,读懂题意,找出题目中的等量关系,得出x ,y 的值是解本题的关键,注意x ,y 只能取正整数.6.下列长度的三条线段,能组成三角形的是( )A .4,5,9B .8,8,15C .5,5,10D .6,7,14 【答案】B【解析】【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【详解】A 、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B 、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C 、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D 、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.【点睛】此题考查三角形三边的关系,难度不大7.已知方程组211x y x y +=⎧⎨-=-⎩,则x +2y 的值为( ) A .2B .1C .-2D .3【答案】A【解析】【分析】方程组中两方程相减即可求出x+2y 的值.211x y x y +=⎧⎨-=-⎩①② ①-②得:x+2y=2,故选A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 8.如果924a ka -+是完全平方式,那么k 的值是( )A .一12B .±12C .6D .±6【答案】B【解析】【分析】根据两数的平方和加上或减去两数积的2倍等于两数和或差的平方,即可得到k 的值.【详解】解:∵9a 2-ka+4=(3a )2±1a+22=(3a±2)2, ∴k=±1.故选B .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.下列统计中,能用“全面调查”的是( )A .某厂生产的电灯使用寿命B .全国初中生的视力情况C .某校七年级学生的身高情况D .“娃哈哈”产品的合格率 【答案】C【解析】【分析】根据抽样调查和全面调查的特点依次分析各项即可判断.【详解】A 、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B 、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C 、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D 、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查;故选C .本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识. 10.若x <y ,比较2-3x 与2-3y 的大小,则下列式子正确的是( )A .2-3x >2-3yB .2-3x <2-3yC .2-3x=2-3yD .无法比较大小 【答案】A【解析】【分析】根据不等式的基本性质对以下选项进行一一验证即可.【详解】解:在不等式x <y 的两边同时乘以-3,不等号的方向改变,即-3x >-3y .在不等式-3x >-3y 的两边同时加上2,不等号的方向不变,即2-3x >2-3y ,故选项A 正确.故选:A .【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题11.长方形的周长为24cm ,其中一边长为()x cm ,面积为()2y cm,则y 与x 的关系可表示为___.【答案】()12y x x =-【解析】【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解.【详解】解:∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,则y 与x 的关系式为()12y x x =-.故答案为:()12y x x =-.【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.12.如图,a//b ,点B 在直线b 上,且AB ⊥BC ,∠1=35°,那么∠2=______.【答案】55°【解析】【分析】先根据∠1=35°,由垂直的定义,得到∠3的度数,再由a ∥b 即可求出∠2的度数.【详解】∵AB ⊥BC ,∴∠3=90°﹣∠1=55°.∵a ∥b ,∴∠2=∠3=55°.故答案为55°.【点睛】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键. 13.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2019的智慧数共有_______ 个.【答案】1【解析】【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【详解】∵(n+1)2-n 2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1.故答案为:1.【点睛】此题考查了新定义,平方差公式,理解“智慧数”的定义是解题关键.14.三角形ABC 中,()4,2A --,()1,3B --,()2,1C --,将三角形ABC 向右平移m 个单位长度,使点A 恰好落在y 轴上,则B ,C 的对应点B '、C '的坐标分别为_______.【答案】()3,3-,()2,1-【解析】【分析】由点()4,2A --向右移动m 个单位,便落在y 轴上,得到图形的平移规律,利用规律直接得到答案.【详解】解:点()4,2A --向右移动m 个单位,便落在y 轴上,40m ∴-+=,4m =.()14,3B '-+-,即()3,3B '-;()24,1C '-+-,即()2,1C '-.故答案为:()3,3-,()2,1-【点睛】本题考查的是坐标系内图形移动与坐标的变化规律,掌握图形与坐标的变化规律是解题的关键. 15.16的算术平方根是 .【答案】4【解析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为416.如图,自行车的车架做成三角形的形状,该设计是利用三角形的_______.【答案】稳定性【解析】【分析】根据三角形具有稳定性解答.【详解】解:自行车的车架做成三角形,这是应用了三角形的稳定性;故答案为稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是熟记三角形的稳定性.17.直线12l //l ,一块含45角的直角三角板如图放置,185∠=,则2∠=______.【答案】40°【解析】【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等即可得到结论.【详解】∵l 1∥l 2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.【点睛】本题考查了平行线的性质,三角形外角的性质,熟记性质是解题的关键.三、解答题18.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =【答案】见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.19.解不等式组2(2)33134x xx x-≤-⎧⎪+⎨<⎪⎩并写出它的所有非负整数解.【答案】0,1,2.【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后写出非负整数解即可.【详解】2(2)33134x xx x-≤-⎧⎪⎨+<⎪⎩①②,解①得x≥-1,解②得x<3,∴-1≤x<3,∴非负整数解有:0,1,2.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.20.每年5月20日是中国学生营养日,按时吃早餐是一种健康的饮食习惯.为了解本校七年级学生饮食习惯,李明和同学们在七年级随机调查了一部分学生每天吃早餐的情况,并将统计结果绘制成如下统计图(不完整).图中A表示不吃早餐,B表示偶尔吃早餐,C表示经常吃早餐,D表示每天吃早餐.请根据统计图解答以下问题:(1)这次共调查了多少名学生?(2)请补全条形统计图;(3)这个学校七年级共有学生1200名,请估计这个学校七年级每天约有多少名学生不吃早餐?(4)请根据此次调查结果提一条合理的建议。
深圳市龙岗区2019年七年级下期末质量监测数学试题及答案

龙岗区2019~2019学年度第二学期七年级期末质量调研考试试题数学参考答案一、选择题:三、解答题:17.(1)解:原式=9318-+-…………………3分 =350-…………………5分 (2)解:原式=)2(22222222b ab a b ab a b a +--+++-…………………3分 =2222222422b ab a b ab a b a -+-+++-…………………4分 =226b ab -…………………5分 18. 解:33423(2)(912)3b b a ab a b ab --+÷ =b a b b a b 32324363---…………………3分 =b a 310-…………………4分 当2,1-=-=b a 时,原式=)2()1(103-⨯-⨯-…………………5分 =20-…………………6分19.解:(1)3316.0+=x y …………………3分(2)当150=x 时,4213311506.0=+⨯=y …………………4分 当352=y 时,3316.0352+=x ,解得35=x …………………5分 答:略…………………6分20.解:AB ∥CF,理由如下:…………………1分 在△AED 和 △CEF 中⎪⎩⎪⎨⎧=∠=∠=已知)对顶角相等)已知)(((FE DE CEF AED CE AE …………………3分 ∴△AE D ≌ △CEF (SAS )…………………4分∴A=∠ECF (全等三角形的对应角相等)…………………5分 ∴AB ∥CF (内错角相等,两直线平行)…………………6分 21. 解:(1)P (抽到的数字是奇数)=212010= …………………1分 ∴P (甲获胜)=P (乙获胜)∴游戏公平…………………3分(2)P (抽到是3的倍数)=103206==P (甲获胜) P (抽到是5的倍数)=51204==P (乙获胜)…………………4分103﹥51 ∴P (甲获胜) ﹥P (乙获胜)游戏不公平…………………6分22.解:(1) ⑤10+15=52…………………1分⑥15+21=62…………………2分 (2)22)1(2)1(n n n n n =++-…………………6分 23. (1)证明:∵OM 平分AOB(已知) …………………1分C D ⊥OA,CD ⊥OB(已知) …………………3分∴CD=CE (角平分线上的点到角两边的距离相等)…………………5分 (2)CD=CE 理由如下:…………………6分 过点C 作CF ⊥OC 交OB 于点F ∴∠OCF=900(垂直的定义) ∵∠DCE=900(已知) ∴∠OCF=∠DCE∴∠OCD+∠OCE=∠OCE+∠CEF ∴∠OCD=∠CEF …………………7分 ∵∠AOB =900,OM 平分∠AOB (已知) ∴∠COD=∠COF=450(角平分线的定义) ∵∠OCF=900(已证)∴∠CFE=450(三角形内角和定理)∴∠COD=∠COF=∠CFE (等量代换)…………………8分 ∴CO=CF (等角对等边)…………………9分 在△COD 和△CFE 中⎪⎩⎪⎨⎧∠=∠=∠=∠(已证)(已证)已证)FCE OCD (CF CO CFE COD ∴△COD ≌△CFE (ASA )…………………10分∴CD=CE (全等三角形的对应边相等)…………………11分。
深圳智民实验学校初中部数学七年级下学期期末压轴难题数学试题

深圳智民实验学校初中部数学七年级下学期期末压轴难题数学试题一、选择题1.如图,下列各角中,与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠52.下列图案可以由部分图案平移得到的是()A.B.C.D.3.在下列所给出坐标的点中,在第二象限的是()A.(0,3)B.(-2,1)C.(1,-2)D.(-1,-2)4.下列命题中是假命题的是()A.对顶角相等B.两直线平行,同位角互补C.在同一平面内,经过一点有且只有一条直线与已知直线垂直D.平行于同一直线的两条直线平行5.下列几个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A.1个B.2个C.3个D.46.下列说法不正确的是()A.125的平方根是±15B.﹣9是81的平方根C.0.4的算术平方根是0.2 D327-=﹣37.如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为()A .55°B .45°C .40°D .35°8.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)二、填空题9.若23(2)m n =0,则n m =________ .10.点()3,2A -关于y 轴对称的点的坐标是______.11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.如图,把一把直尺放在含30度角的直角三角板上,量得154∠=︒,则2∠的度数是_______.13.如图,折叠三角形纸片ABC ,使点B 与点C 重合,折痕为DE ;展平纸片,连接AD .若AB =6cm ,AC =4cm ,则△ABD 与△ACD 的周长之差为____________.14.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.15.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点2021A 的坐标为__________.三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8- 18.求下列各式中的 x .(1)228x = (2)3338x -= 19.如图,已知://AB CD ,180B D ∠+∠=︒.求证://BC DE .证明:∵//AB CD (已知),∴∠______=∠______(______).∵180B D ∠+∠=︒(______),∴∠______180D +∠=︒(等量代换).∴//BC DE (______).20.如图,三角形ABC 的顶点都在格点上,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:1A ______,1B ______,1C ______;(2)画出平移后三角形111A B C ;(3)求三角形ABC 的面积.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -462a b c ++的算术平方根.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数235)二十三、解答题23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?24.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.25.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADP ACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题1.D解析:D【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:由图可得,与∠1构成同位角的是∠5,故选:D .【点睛】本题主要考查了同位角的概念,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A、是旋转变换,不是平移,选项错误,不符合题意;B、轴对称变换,不是平移,选项错误,不符合题意;C、是平移,选项正确,符合题意;D、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C.【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.B【分析】根据平面直角坐标系中点的坐标特征逐项分析即可.【详解】解:A.(0,3)在y轴上,故不符合题意;B.(-2,1)在第二象限,故符合题意;C.(1,-2) 在第四象限,故不符合题意;D.(-1,-2) 在第三象限,故不符合题意;故选B.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.4.B【分析】根据对顶角的性质、平行线的性质、平行公理判断即可.【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,故原命题是假命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;D、平行于同一直线的两条直线互相平行,是真命题,故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4,故C错误,故选C.【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.D【分析】先根据平行线的性质得到∠3=55°,再结合平角的定义即可得到结论.【详解】解:如图,∵AB//CD,∴∠1=∠3=55°,∵∠2+90°+∠3=180°,∴∠2=35°,故选:D .【点睛】本题考查了平行线的性质,平角的定义,熟记平行线的性质是解题的关键.8.B【分析】根据点、、、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置.【详解】解:,,,,,,且四边形为长方形解析:B【分析】根据点A 、B 、C 、D 的坐标可得出AB 、BC 的长度以及四边形ABCD 为长方形,进而可求出长方形ABCD 的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置.【详解】解:(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,2AB CD ∴==,3AD BC ==,且四边形ABCD 为长方形,∴长方形ABCD 的周长()210ABCD C AB BC =+=长方形.2017201107=⨯+,7AB BC CD ++=,∴细线的另一端落在点D 上,即(1,2)-.故选:B .【点睛】本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键.二、填空题9.9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则==9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则n m =2(3)-=9.考点:非负数的性质.10.【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变, 则点关于y 轴对称的点的坐标是,故答案为:.【点睛】本题考查了点坐标解析:()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 11.α=β【详解】试题解析:当BF ∥DP 时,即:整理得:故答案为解析:α=β【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠=360.ABC ADC CBM CDN ∠+∠+∠+∠=.CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时, ()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠ 即:()1,2βαβ=+ 整理得:.αβ=故答案为.αβ=12.【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.【详解】已知可知直尺的两边平行故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:114︒【分析】由已知可知460∠=︒,由平行可知13∠=∠,根据三角形外角的性质可知234∠=∠+∠从而求得的答案.【详解】已知可知460∠=︒直尺的两边平行∴13∠=∠∴234145460114∠=∠+∠=∠+∠=︒+︒=︒故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 13.2cm【分析】由折叠的性质可得BD=CD,即可求解.【详解】解:∵折叠三角形纸片ABC,使点B与点C重合,∴BD=CD,∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长解析:2cm【分析】由折叠的性质可得BD=CD,即可求解.【详解】解:∵折叠三角形纸片ABC,使点B与点C重合,∴BD=CD,∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD,∴△ABD与△ACD的周长之差=6-4=2cm,故答案为:2cm.【点睛】本题考查了翻折变换,掌握折叠的性质是本题关键.14..【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3 -3-++解析:13 12.【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a=-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.15.(0,2)、(﹣4,﹣2).【分析】由点A (a-2,a ),及AB ⊥x 轴且AB=2,可得点A 的纵坐标的绝对值,从而可得a 的值,再求得a-2的值即可得出答案.【详解】解:∵点A (a ﹣2,a ),A解析:(0,2)、(﹣4,﹣2).【分析】由点A (a-2,a ),及AB ⊥x 轴且AB=2,可得点A 的纵坐标的绝对值,从而可得a 的值,再求得a-2的值即可得出答案.【详解】解:∵点A (a ﹣2,a ),AB ⊥x 轴,AB =2,∴|a|=2,∴a =±2,∴当a =2时,a ﹣2=0;当a =﹣2时,a ﹣2=﹣4.∴点A 的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.16.(1010,1)根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0),∴OA4n=4n÷2=2n,∴点A4n的坐标为(2n,0).∵2020÷4=505,∴点A2020的坐标是(1010,0).∴点A2021的坐标是(1010,1).故答案为:(1010,1).【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(21 2(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x -=;∴12x -=±∴x=3或x=-1(2)原式1122-+ 12=, 【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)或;(2).【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1),∴,∴;(2),∴,解析:(1)2x =或2x =-;(2)32x =. 【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1)228x =,∴24x =,∴2x =±;(2)3338x -=, ∴3278x , ∴32x =. 【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键.19.;C ;两直线平行,内错角相等;已知;C ;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得∠B=∠C ,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C解析:B ;C ;两直线平行,内错角相等;已知;C ;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得∠B=∠C ,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB ∥DE .【详解】证明:∵AB ∥CD ,∴∠B=∠C (两直线平行,内错角相等),∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴CB ∥DE (同旁内角互补,两直线平行).故答案为:B ;C ;两直线平行,内错角相等;已知;C ;同旁内角互补,两直线平行【点睛】本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.20.(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC 补全为长方形解析:(1)()4,7,()1,2,()6,4;(2)见解析;(3)192【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC 补全为长方形,然后利用作差法求解即可.【详解】解:(1)平移后的三个顶点坐标分别为:()14,7A ,()11,2B ,()16,4C ;(2)画出平移后三角形111A B C ;(3)1519255322 ABC ABE GBC AFCEBGFS S S S S=---=---=长方形.【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,3【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估46c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵67,可得c=6;∴a+2b+c=3;∴a+2b+c【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式,求出t的值,进而求出的度数;(3)根据灯B的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC∠=∠,理由如下:DE BA,//∴∠=∠,EDF BFDDF CA,//∴∠=∠,BABFD C∴∠=∠;EDF BACDE BA,理由如下:(2)//如图,延长BA交DF于点O,DF CA,//∴∠=∠,BAC BOD∠=∠,EDF BAC∴∠=∠,EDF BOD//∴;DE BA(3)由题意,有以下两种情况:∠=∠,理由如下:①如图3-1,EDF BAC//DE BA,E EAF∴∠+∠=︒,180DF CA,//E EDF∴∠+∠=︒,180∴∠=∠,EAF EDF由对顶角相等得:BAC EAF∠=∠,∴∠=∠;EDF BAC②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.25.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.EKD80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智民实验学校2019-2020学年第二学期七年级期末教学质量监测数学试卷
一、选择题(本部分共 12 小题,每小题 3 分,共 36 分)
1.新型冠状病毒主要通过呼吸道传播,传播方式为飞沫传播、飞沫核传播及尘埃传播,新冠病毒平均直径为100纳米,即0.0000001米,那么0.0000001可用科学记数法表示为( ) A.7101.0-⨯
B.7101-⨯
C.6101.0-⨯
D.6101-⨯
2.下列图形中,是轴对称图形且对称轴条数最多..
的是( ) A. B. C. D.
3.下列运算正确的是( ) A.532x x x =⋅ B.m m m =÷20192020
C.63212)4(a a -=-
D.823-=-
4.如图,关于图中角与角的位置关系,描述有误..的是( ) A.∠1与∠3是对顶角 B.∠2与∠5是同位角 C.∠3与∠4是内错角
D.∠1与∠4是同旁内角
5.如图,如果∠D+∠C=180°,那么( ) A.AB ∥DC B.AD ∥EF
C.EF ∥BC
D.AD ∥BC
6.蒋老师开车在高速上保持100km /h 的速度匀速行驶,当行驶时间为t (h ),行驶路程为s (km )时,下列说法错误..的是( ) A.s 与t 的关系式为t s 100=
B.s 与t 都是变量
C.100是常量
D.当t =1.5时,s =15
7.已知一个三角形的两条边长分别为4和6,则第三条边的长度不能..是( ) A.4
B.7
C.11
D.3
8.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;①AB=DE ,①B=①E ,BC=EF ;①①B=①E ,BC=EF ,①C=①F ;①AB=DE ,AC=DF ,①B=①E.其中能使①ABC①①DEF 的条件共有( ) A.1组 B.2组
C.3组
D.4组
9.下列各式中,不能..使用平方差公式计算的是( ) A.))((y x y x --+
B.))((y x y x ---
C.))((x y y x +-
D.))((y x x y ++-
10.已知一个质地均匀的正四面体的每个面上分别标有1,2,3,4四个数字,抛掷这个正四面体,则接地的那一面为偶数的概率为( ) A.
5
2
B.
21 C.4
1 D.
4
3 11.如图,①ABC①①ADE ,下列说法不.正确..的是( ) A.BC=DE B.①B=①D
C.①CAE=①BAD
D.AB ∥DE
12.在2020年的疫情期间,受疫情影响,同学们在户外运动时间较少.在一个星期天的下午,张明、李强两位同学在户外约定比赛跑步,两人各自一直保持自己的速度不变,到达终点的同学停止运动,两位同学的出发地点和到达终点均相同.已知跑步时,李强让张明抢跑2秒,且李强的速度为5米/秒,在整个跑步过程中,两个同学之间相距y (米)与李强同学开始跑步的时间t (秒)有如图的关系,则下列结论正确..的是( ) A.张明先到终点
B.比赛赛程600米
C.100秒两人相遇
D.q 的值为123
二、填空题(每题3分,共12分) 13.35424xy y x ÷-= .
14.如图,直线m l ∥,∠1=45°,∠2=35°,则∠3的度数为 . 15.已知4=-b a ,3=ab ,则22b a +的值为 .
16.如图,点D 、M 、N 分别为①AEB 与①AFC 的边与边的交点,AE ⊥BE ,AF ⊥CF ,垂足分别为E 、F ,AE=AF ,BE=CF ,则下列各个结论中:①①EAF=90°;①CN=BM ;①AN=BN ;①①MCD①①NBD.其中正确结论的序号为 .
三、解答题(共52分)
17.(8分)计算:(1)0
22020202021)1(⎪
⎭⎫
⎝⎛-⎪⎭⎫ ⎝⎛-⨯--π
(2))2)(1()13(2-+--a a a a
18.(7分)先化简,再求值:)3)(3()2(2+---m m m ,其中2
1
-=m .
19.(6分)在一个不透明的布袋里装有除颜色不同外,其它特点都一样的10个小球,其中有5个黑球,2个白球,3个黄球.
(1)任意摸出一个球,摸到白球的概率是多少? (2)任意摸出一个球,摸到不是黑球的概率是多少?
20.(8分)如图,在Rt①ABC中,①B=90°,用圆规分别以A、C为圆心,大于AC的一半的长度为半径画弧,产生如图所示的两个交点M、N,作直线MN,交AC于点D,交BC于点E.
(1)根据作法判断直线DE为线段AC的线;(3分)
(2)连接AE,若①C=36°,求①BAE的度数.(5分)
21.(7分)疫情期间小彭同学在家学习网课,在网课间隙休息的时间,小彭无意间发现弟弟的玩具中,有一些小的玩具木棒很有趣,他将那些木棒如图摆放,假设木棒的总数为y,木棒摆放的层数为n.
(1)请你观察上面的图形,完成下面的表格:(3分)
(2)请你写出y与n的关系式,并指出其中的自变量,因变量.(4分)
22.(8分)如图,已知AB∥CD,且∠B=20°,EB平分∠DEF,GE=GB.
(1)求证:AB∥EF;
(2)求∠D的度数.
23.(8分)如图1,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,AM⊥BC于点M,AN是△ABM的角平分线,过点A作AP⊥AN,过点C作CP⊥CB,AP与CP相交于点P.
(1)求证:BN=CP;
(2)如图2,在图1的基础上,在AB上截取点Q,使得BQ=2MN,连接QN.求证:QN⊥BC.
参考答案
一、选择题:
二、填空题:
三、解答题
17.(1)3(2)252+-a a 18.化简为:m 413-,当m =2
1
-
时,原式=15 19. (1)51(2)2
1
20.(1)垂直平分
(2)证△AED ≌△CED (SAS ),∠BAE=18° 21.(1)3;6;10; (2)n n n n y 2
1
212)1(2+=+=
;n 为自变量,y 为因变量 22.(1)证明略 (2)∠D=40°
23.(1)证△ACP ≌△ABN (ASA ),证明过程略
(2)过N 作NH ⊥AB 于H ,证△AMN ≌△AHN (AAS ),证明过程略。