MgSnCa

合集下载

snca分子量

snca分子量

SNCA分子量1. 介绍SNCA(α-突触核蛋白)是一种在神经系统中广泛表达的蛋白质,也被称为帕金森病相关蛋白1(Parkinson’s disease protein 1)。

它是由SNCA基因编码的,该基因位于人类染色体4上。

SNCA的分子量是指该蛋白质分子的质量,通常以千道尔顿(kDa)为单位。

分子量是通过测量蛋白质的相对运动速度、电泳迁移率或质谱分析等方法来确定的。

2. SNCA的结构和功能SNCA是一种富含亮氨酸的蛋白质,主要存在于突触前质膜和突触囊泡中。

它具有多种功能,包括调节突触传递、调控突触可塑性和抗氧化应激等。

SNCA的结构包括一个N-端的α-螺旋区域(NAC区域)和一个C-端的非结构化区域。

NAC区域是SNCA聚集的关键区域,它可以通过形成β-折叠构象而促进SNCA的聚集。

SNCA的聚集被认为与帕金森病等神经退行性疾病的发生和发展密切相关。

3. SNCA分子量的测定方法3.1 凝胶电泳凝胶电泳是一种常用的测定蛋白质分子量的方法。

通过将蛋白质样品在凝胶中进行电泳分离,可以根据其迁移速度来估算其分子量。

常用的凝胶电泳方法包括聚丙烯酰胺凝胶电泳(SDS-PAGE)和聚丙烯酰胺凝胶电泳-免疫印迹(Western blotting)。

3.2 质谱分析质谱分析是一种高效准确的测定蛋白质分子量的方法。

通过将蛋白质样品进行质谱分析,可以确定其分子量。

常用的质谱分析方法包括质谱仪(Mass spectrometry)和飞行时间质谱(Time-of-flight mass spectrometry)。

4. SNCA分子量的研究进展4.1 帕金森病相关的SNCA突变研究发现,SNCA基因的突变与帕金森病的发生和发展密切相关。

一些突变型SNCA蛋白质具有增强的聚集能力,导致突触核蛋白的异常聚集和神经元的损伤。

这些研究结果揭示了SNCA在帕金森病发病机制中的重要作用。

4.2 SNCA的聚集与神经退行性疾病SNCA的异常聚集被认为是帕金森病等神经退行性疾病的共同特征。

Yoosee IP摄像头应用程序用户手册说明书

Yoosee IP摄像头应用程序用户手册说明书

Cámaras IP con Aplicación YooseeManual de Usuarioaplicación1)Con su celular conectado al Wifi dondeesta conectada la cámara entramos a la app,la cual nos pide registrarnos,dando clic en Registro rápido2)Se selecciona el método que se desea, ya sea mediante un número telefónico o un correo y se selecciona confirmar3)Una vez confirmado el registro,se procede a iniciar sesión para hacer uso de la aplicaciónConexión cableadaInstalación:1)Se conecta el cable de RED a la cámara y al router2)Luego se conecta el cable de corrienteCámara IP3) Para añadir la cámara a la aplicación,se presiona el botón+4) Se presionaAñadir nuevo dispositivo5)Se selecciona el modo de conexión ypresiona siguiente para continuar con elproceso 6)Se realiza la búsqueda del dispositivo y se selecciona el dispositivo encontradoen la etiqueta de la cámaraañadidavisualización desde la aplicaciónConexión Remota1) Para añadir la cámara a la aplicación,se presiona el botón +2) Se presionaAñadir nuevo dispositivo3) Se introduce el ID (que se encuentra en una etiqueta debajo de la cámara)4) Se asigna un nombre al dispositivo a añadir5) Se introduce la contraseña del dispositivo (se encuentra en la etiqueta debajo de la cámara)6) Se presiona Guardar para finalizar la operaciónInalámbrica1) Para añadir la cámara a la aplicación,se presiona el botón +2) Se presionaAñadir nuevo dispositivo3)Se selecciona el modo de conexión ypresiona siguiente para continuar con elproceso 6)Se introduce la contraseña del WIFI donde estáconectado el teléfono y al cual se desea conectar lacámara5)Se verifica que el equipo se encuentreencendido y se presiona el botón Heoído el timbre de aviso para conectar 6)Se coloca el teléfono cercano a la cámara para que esta pueda serescuchada5)Se espera a que el dispositivo escuche el timbre emitido por el teléfono y se espera que se añadaen la etiqueta de la cámaraañadidavisualización desde la aplicaciónMovimientoPara que la cámara gire, se deberá deslizar el dedo sobre la pantalla donde se está visualizando su cámara.Deslizando para arriba o para abajo se conseguirá el movimiento vertical de hasta 120°.Deslizando para la derecha o izquierda se conseguirá el movimiento horizontal de hasta 355°.Grabación2) Para la grabación, se deberá ir a la configuración y seleccionar la Configuración de grabación3) Se podrá seleccionar la grabación manual la cual iniciará la grabaciónde forma inmediata4) La grabación de alarma se activará cuando un movimiento sea detectado5) Con el temporizador de grabación se configurará a qué hora del día se desea iniciar y terminar la grabación1) Apague la cámara e inserte una tarjeta micro SD (La capacidadmáxima varía según el modelo)GrabacionesPara la visualización de grabaciones manuales o programadas se debe presionar el botón Reproducción en la pantalla principal de la aplicaciónAquí podrá seleccionar el video que desea visualizar. Este video se encuentra grabado en la memoria SD instalada en su cámara.Cambio a red WIFIEn el menú de configuraciones se selecciona la Configuración de RedSe cambia el tipo de Red a WIFI y seleccione la red a la que se va a conectar e introduzca la contraseña de la redUna vez introducida la contraseña, el equipo podrá ser desconectado del cable de red y se mantendrá en líneaAlarmasEn la configuración se selecciona el Ajuste de alarmaSe selecciona si se desea recibir lanotificación de la alarmaSe escoge el sonido que se desea escuchar al activarse en ZumbadorSe puede activar la Detección de movimiento y escoger la sensibilidad.Para las notificaciones al correo, se presiona la opción Email de alarmaSe selecciona el correo el cual se utilizará para la notificación Se inicia sesión en el correo y se espera la confirmación de inicio de sesión。

三星电子数码商品说明书

三星电子数码商品说明书

Samsung ER-5200 and ER-5215 and ER-5240 operating and programming SPANISH ManualCaja Registradora Electrónica ER 5200/40/15Manual de Operación yProgramaciónTodas las especificaciones de este manual están sujetas a cambios sin previo avisoContenidoIntroducción 1 Sobre la Serie ER-5200 (1)Desembalaje (1)Instalación del Papel (2)Características Básicas y Funciones (6)Hardware Standard (6)Hardware Opcional (6)Características de Software (6)Visor (7)Cerradura de Control (11)Teclados (12)Operaciones 17 Descripción de las Teclas de Función (17)Asignación de Empleados (21)Asignación Directa (21)Asignación por Código (21)Tiquet Sí/No (22)Registro de PLUs (23)Entrada de PLU abierto del Teclado (24)Entrada de PLU prefijado del Teclado (24)Entrada repetida de PLU del Teclado (25)Multiplicación de PLU del Teclado (26)Multiplicación Decimal de PLU del Teclado (27)Precio Partido de PLU del Teclado (28)PLU del teclado de Venta única (29)Entrada de PLU abierto por Código (30)Entrada de PLU prefijado por Código (30)Multiplicación de PLU por Código (31)Multiplicación Decimal de PLU por Código (32)Precio Partido de PLU por Código (32)Operaciones de Anulación y Corrección (33)Anula Última (33)Corrección (34)Retorno (35)Llave VOID (Anulación de Transacción) (36)Anula Tíquet (37)Operaciones de Cobro (38)Efectivo (38)Cheque (39)Crédito (40)Cobro Partido (41)Cambio Posterior (41)Interrupción de Empleados (42)Modo de Entrenamiento (43)Caja Registradora ER-5200/40/15 iNúmero de Referencia (44)Apertura de Cajón (44)Recibido a Cuenta (45)Pagos (46)Conversión de Divisas (47)Funciones de Manager 48 Introducción (48)Declaración de Caja (49)Informes de Sistema (50)Realizar un Informe – Instrucciones Generales (50)Tabla de Informes (51)Modo de Pc Online (52)Listado de Configuración de Memoria (52)Configuración de Memoria (53)Borrado de Totales (54)Borrado de Gran Total (54)Borrado de PLUs (54)Información de Eprom (54)Programación 55 Programación por Defecto (55)Asignación de Teclas de Función (56)Programación de IVAs (58)Programación de Porcentaje de IVA (59)Programación de PLUs (60)Programa 100 – Programación del estado de PLU (61)Programa 150 – Asignación de Grupo de PLU (64)Programa 200 – Programación de Precio/Límite de PLU (65)Programa 250 – Programación de Stock de PLU (66)Programa 300 – Programación de la descripción de PLU (67)Programa 350 – Programación de PLU Conectado (70)Programa 400 – Borrado de PLUs (71)Programa 450 – Programación de Ofertas de PLU (72)Programación de Opciones de Sistema (73)Tabla de Opciones de Sistema (74)Programación de Opciones de Impresión (77)Tabla de Opciones de Impresión (78)Programación de Teclas de Función (82)Programa 70 – Opciones de Teclas de Función (83)Programa 80 – Descripción de Teclas de Función (84)Programa 90 – Límite de Teclas de Función (85)SUMA CHEQUE – Programa de Tecla Función (86)ANULA TIQUET – Programa de Tecla de Función (87)TOTAL – Programa de Tecla de Función (88)CREDITO1-8 – Programa de Teclas de Función (89)CHEQUE – Programa de Tecla de Función (90)CANJEO CHEQUE – Programa de Tecla de Función (91)ENDORSO CHEQUE – Programa de Tecla Función (92)FACTURA # - Programa de Tecla de Función (93)DIVISAS - Programa de Teclas de Función (94)SERVI-AUTO/TOMAR EN LOCAL/PARA LLEVAR – Programa de Teclas deFunción (95)ii Caja Registradora ER-5200/40/15ANULA ÚLTIMA – Programa de Tecla de Función (96)SUBTOTAL CUPON – Programa de Tecla de Función (96)COBRO CUPON – Programa de Tecla de Función (97)COMENSALES – Programa de Tecla de Función (98)NIVEL1-2 – Programa de Teclas de Función (98)#/CAJON – Programa de Tecla de Función (99)RETORNO – Programa de Tecla de Función (100)MODIFICADOR 1-5 – Programa de Teclas de Función (101)PAGO MESAS – Programa de Tecla de Función (102)SALDO – Programa de Tecla de Función (102)INVITACION – Programa de Tecla de Función (103)PAGOS 1-3 – Programa de Tecla de Función (104)IMPRIME FACTURA – Programa de Tecla de Función (105)RECIBIDO A CUENTA 1-3 – Programa de Teclas de Función (106)BALANZA – Programa de Tecla de Función (107)SERVICIO – Programa de Tecla de Función (108)SUBTOTAL – Programa de Tecla de Función (109)MESA – Programa de Tecla de Función (109)TARA – Programa de Tecla de Función (110)EXENTO IVA – Programa de Tecla de Función (111)PROPINA – Programa de Tecla de Función (112)VALIDACION – Programa de Tecla de Función (113)CORRECCION – Programa de Tecla de Función (114)MERMA – Programa de Tecla de Función (115)%1- %5 - Programa de Teclas de Función (116)Programación de Empleados (118)Programa 800 – Programación de Código Secreto (119)Programa 801 – Asignación de Cajón y Programación de Empleado deEntrenamiento (119)Programa 810 - Programación de Descripción de Empleado (120)Programación de Ofertas (121)Programa 600 – Programación de Cantidad (122)Programa 601 – Programación de Precio (122)Programa 610 – Programación de Descripción de Oferta (123)Programación de Grupos (124)Programaciones Varias (126)Programación de Teclas de Macro (126)Programación de Descripciones (127)Programación de los Códigos NLU (132)Programación de Límite de Efectivo en Cajón (133)Programación de Límite de Cambio de Cheque (134)Programación de la Fecha y la Hora (135)Programación de Peso de Tara (136)Programación de Número de Máquina (137)Programación de las opciones de los Puertos RS-232 (138)Listados de Programación (140)Caja Registradora ER-5200/40/15 iiiThis is a “Table of Contents preview” for quality assuranceThe full manual can be found at /estore/catalog/ We also offer free downloads, a free keyboard layout designer, cable diagrams, free help andsupport. : the biggest supplier of cash register and scale manuals on the net。

公共场所卫生检验方法 第5部分:集中空调通风系统-最新国标

公共场所卫生检验方法 第5部分:集中空调通风系统-最新国标

公共场所卫生检验方法第5部分:集中空调通风系统1 范围本文件描述了公共场所集中空调通风系统中嗜肺军团菌、细菌总数、真菌总数、空调送风中β-溶血性链球菌、新风量、空调送风中可吸入颗粒物(PM10)、空调风管内表面积尘量和空气净化消毒装置的检测方法。

本文件适用于公共场所集中空调通风系统,其他场所使用的集中空调通风系统参照执行。

本文件中同一个指标如果有两个或两个以上检验方法时,根据技术条件选择使用,但以第一法为仲裁法。

2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB 4789.28 食品安全国家标准食品微生物学检验培养基和试剂的质量要求GB/T 6682 分析实验室用水规格和试验方法GB/T 18204.1 公共场所卫生检验方法第1部分:物理性指标GB/T 18204.2 公共场所卫生检验方法第2部分:化学性指标GB/T 18883 室内空气质量标准GB 19489 实验室生物安全通用要求GB/T 34012 通风系统用空气净化装置3 术语和定义下列术语和定义适用于本文件。

嗜肺军团菌Legionella pneumophila两端钝圆,有鞭毛,无芽孢和荚膜的革兰氏阴性杆菌,具有在含有L-半胱氨酸和三价铁盐缓冲液的活性炭-酵母提取液培养基上生长的特性,经生化试验和血清学试验鉴定确认的一种具有致病性的军团菌,是引起军团菌病的主要菌型。

细菌总数 total bacteria count在营养琼脂培养基上经36 ℃±1 ℃培养48 h所生长发育的嗜中温性需氧和兼性厌氧菌落的总数。

真菌总数 total fungal count在沙氏琼脂培养基上经28 ℃±1 ℃、5 d培养所形成菌落数。

β-溶血性链球菌β-hemolytic streptococcus能产生溶血素,血平板上在菌落周围形成界限分明、完全透明的溶血环(β-型溶血)的化脓(或A群)链球菌(Streptococcus pyogenes)和无乳(或B群)链球菌(Streptococcus agalactiae)。

USM图形规范手册说明书

USM图形规范手册说明书

1usm.clMANUAL DE NORMAS GRÁFICAS UNIVERSIDADTÉCNICA FEDERICO SANTA MARÍAACTUALIZACIÓN AÑO 202067usm.clMANUAL DE NORMAS GRÁFICASUNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍACAPITULO I NORMAS DE CONSTRUCCIÓNDESCARGAR ARCHIVO ILLUSTRATOR8COLORESCORPORATIVOSPALETA PARA CUATRICROMÍA (Impresión offset)PALETA HEXADECIMAL (Versiones digitales)Pantone DS 224-2 C:100 M:30 Y:0 K:35#004B85Pantone DS 268-1 C C:100 M:0 Y:80 K:20#008452Pantone DS 87-1 C C:0 M:100 Y:90 K:10 #D60019Pantone DS 18-1 C C:0 M:35 Y:100 K:0#F7AE00Pantone DS Process Black C C:100 M:100 Y:100 K:100#000000Para su correcta aplicación, todo uso de la marca institucional debe ser visada por la Dirección General de Comunicaciones.9usm.clVERSIONES EN BLANCO Y NEGRODe existir restricciones cromáticas en las piezas gráficas donde se deba ocupar, se presentan dos alternativas junto a su paleta para utilizar nuestra marca.Pantone DS Process Black C C:100 M:100 Y:100 K:100:C: 0 M: 0 Y: 0 K: 70MANUAL DE NORMAS GRÁFICASUNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍACAPÍTULO I NORMAS DE CONSTRUCCIÓN10VERSIONES SOBRE FONDOSEn caso que nuestra marca se deba presentar sobre fondososcuros, hay dos formas para agregarla.Como primera alternativa con el escudo en sus colores cor-porativos regulares.Para su correcta aplicación, todo uso de la marca institucional debe ser visada por la Dirección General de Comunicaciones.11usm.clComo segunda opción en color blanco en el caso que debacontrastar con esa paleta.MANUAL DE NORMAS GRÁFICASUNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍACAPÍTULO I NORMAS DE CONSTRUCCIÓN12TIPOGRAFÍALa familia tipográfica corporativa es la Times New Roman, en sus versiones normal, cursiva y negrita cursiva.Para el logotipo se usaron solo las mayúsculas o altas.13usm.clTimes New RomanRegularTimes New RomanBoldTimes New RomanItalicTimes New RomanBold ItalicRoboto CondensedQWERTYUIOPASDFGÇHJKLÑZXCVBNM qwertyuiopasdfgçhjklñzxcvbnm 1234567890!”·$%&/()=?¿`+´ç,.-^*¨QWERTYUIOP ASDFGÇHJKLÑZXCVBNM qwertyuiopasdfgçhjklñzxcvbnm 1234567890!”·$%&/()=?¿`+´ç,.-^*¨QWERTYUIOPASDFGÇHJKLÑZXCVBNM qwertyuiopasdfgçhjklñzxcvbnm 1234567890!”·$%&/()=?¿`+´ç,.-^*¨QWERTYUIOPASDFGÇHJKLÑZXCVBNM qwertyuiopasdfgçhjklñzxcvbnm 1234567890!”·$%&/()=?¿`+´ç,.-^*¨QWERTYUIOPASDFGÇHJKLÑZXCVBNM qwertyuiopasdfgçhjklñzxcvbnm 1234567890!”·$%&/()=?¿`+´ç,.-^*¨MANUAL DE NORMAS GRÁFICASUNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍACAPÍTULO I NORMAS DE CONSTRUCCIÓN14ÁREA DE RESERVAEl área de reserva es el espacio de protección que no debe ser ocupado por ningún elemento gráfico, lo que nos asegura mayor legibilidad.El área de reserva de nuestra marca vertical corresponde a la se-paración que generan dos aspas del escudo izquierdo, ubicados desde la esquina superior izquierda y la esquina inferior dere-cha.TAMAÑO MÍNIMO PERMITIDOSe ha estipulado un tamaño mínimo permitido para laconstrucción y aplicación de la marca vertical, asegurandouna óptima legibilidad.1,5 cmMANUAL DE NORMAS GRÁFICAS UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA CAPÍTULO I NORMAS DE CONSTRUCCIÓNPara dudas y consultas sobre el correcto uso de la marca institucional, escribir a:************122。

玛卡系列产品简介及营养

玛卡系列产品简介及营养

玛卡——全球瞩目的保健食品玛卡(Maca)是十字花科植物玛卡独行菜Lepidium meyenii Walp.形似萝卜样肥大的根茎,原产于秘鲁中部基宁(Jinin)及帕斯科(Pasco)附近4000米以上的安第斯山区,该地区低温、强风,生态条件恶劣,不适于其他作物生长,因而玛卡便成了生活在高山地区印加人的食物来源之一。

它的鲜根可以和肉或其他蔬菜一起炒熟食用,也可以晒干后用水或牛奶煮熟食用,当地土著人常把鲜根加蜂蜜和水果榨汁作为一种饮料饮用。

食用玛卡可使体力增强、精力充沛、消除焦虑、提高性功能,因而其在当地民间有“秘鲁国宝”和“南美人参”的美誉。

最近,Maca频繁出现于因特网和国内外的报刊杂志上,说明其保健作用已在全球范围内受到广泛青睬。

联合国粮农组织:1992年罗马宣言向世界推荐玛卡为多功能食品。

中华人民共和国卫生部2011年5月18日批准玛卡为“新资源食品”(卫生部公告 2011年第13号)。

长期以来,国际植物学和医药专家对玛咖的营养成分和药理作用研究,验证了玛咖在提高哺乳动物生育力、抗疲劳、抗抑郁等方面的作用。

至今为止,国际研究者们揭示了玛咖具有的多种独特药用保健价值:增强精力、改善性功能、提高生育力、治疗更年期综合征及其相关症状、抗抑郁、抗贫血。

而且最近日本的科学研究又发现,玛咖还具有潜在的治疗白血病的功效。

因此,玛咖的药用保健价值得到国际医药公司和保健品公司的广泛关注,越来越多的玛咖产品从美国、秘鲁、日本、澳大利亚、西班牙、英国、法国等国纷纷推出,产品功能以增强精力、改善性功能和缓解女性更年期综合征为主,而且玛咖产品的形式也由早期的玛咖粉末、玛咖饮料等向玛咖胶囊、玛咖片剂、玛咖浓缩口服液、玛咖复方保健品、玛咖提取精华胶囊等第二代玛咖产品发展。

玛咖迅速成为国际保健品市场中的一颗新星,受到广大消费者尤其是中老年人群、体育运动员、健美爱好者、女性更年期综合征患者的广泛喜爱。

近几年全球玛咖产品的年销售额近40亿美元,而且销售量呈快速增长趋势。

mvenus荧光蛋白序列

mvenus荧光蛋白序列

mvenus荧光蛋白序列关于mVenus荧光蛋白序列的文章。

引言:荧光蛋白是一种广泛应用于生物科学研究的工具,其发光特性使得它在细胞成像、荧光标记和蛋白质定位研究中发挥着重要的作用。

其中,mVenus 荧光蛋白是一种常用的荧光标记蛋白,其发光波长适合于许多现有的荧光探针和显微镜系统。

本文将以mVenus荧光蛋白序列为主题,一步一步回答你可能有的疑问。

一、什么是mVenus荧光蛋白?mVenus荧光蛋白是一种由柯西研究所(Kosugi Research Institute)的Atsushi Miyawaki和Roger Y. Tsien合作发现的荧光蛋白。

它属于绿色荧光蛋白家族的一员,其发光波长为528纳米。

mVenus荧光蛋白具有较高的亮度和光稳定性,可应用于许多不同的研究领域。

二、mVenus荧光蛋白序列是什么?mVenus荧光蛋白序列是指mVenus荧光蛋白的氨基酸序列。

mVenus 荧光蛋白的序列共有238个氨基酸,其核心结构由11个β段和10个α段组成。

这些段落的摺迭形状和连接方式使mVenus荧光蛋白具有其特有的发光性质。

三、mVenus荧光蛋白序列的构成是怎样的?mVenus荧光蛋白序列是由一系列编码氨基酸的密码子组成的。

根据mVenus荧光蛋白的序列信息,我们可以使用DNA合成技术来合成编码该蛋白的DNA序列。

mVenus荧光蛋白的序列中包括了起始密码子(AUG)和终止密码子(如TAA,TAG,TGA),它们分别标志着蛋白的起始和终止。

四、mVenus荧光蛋白序列的功能特点有哪些?mVenus荧光蛋白的功能特点使得它在生物学研究中得到广泛应用。

它具有高亮度和较长的荧光寿命,使得其在显微镜成像和细胞标记实验中表现出较好的性能。

此外,mVenus荧光蛋白的光学性质使得其可以和其他荧光蛋白或探针共同使用,实现多重荧光标记或探测。

五、mVenus荧光蛋白序列如何应用于生物研究?mVenus荧光蛋白的序列可以用于构建荧光蛋白表达载体,通过转染或转化等方法将其导入到目标生物体内。

snca分子量

snca分子量

snca分子量SNCA(synuclein alpha或称α-synuclein)是一种在神经系统中广泛存在的蛋白质。

它具有丰富的功能,包括参与细胞信号传导、膜运输以及神经递质释放等重要生理过程。

本文将探讨SNCA的分子量及其在神经系统中的功能。

一、SNCA的分子量SNCA是由140个氨基酸组成的蛋白质,其分子量约为14.5千道尔顿(kDa)。

正常情况下,SNCA以单体形式存在,但在某些情况下,它也可以形成寡聚体或纤维聚集体。

寡聚体是指几个SNCA蛋白质的结合形成的较小颗粒,而纤维聚集体则是由SNCA蛋白质形成的纤维结构。

这些寡聚体和纤维聚集体的形成与一些神经系统相关疾病的发生有关。

二、SNCA在神经系统中的功能1. 参与神经递质释放SNCA在突触前端的囊泡膜上定位,并参与调节神经递质的释放。

神经递质是神经细胞之间传递信号的物质,SNCA通过与神经递质囊泡膜相互作用,调节神经递质的包装、释放和重吸收过程。

2. 膜运输SNCA可以与细胞膜相互作用,参与细胞内物质的运输。

它的存在可以促进细胞质向突触前端的囊泡运输,从而维持正常的细胞功能。

3. 调节神经元的形态和可塑性SNCA通过与细胞骨架蛋白相互作用,调节神经元的形态和可塑性。

它能够影响神经元的轴突生长、突触形成以及突触可塑性的发生。

4. 参与神经细胞的存活和凋亡调节SNCA还参与调节神经细胞的存活和凋亡。

在正常情况下,SNCA通过抑制线粒体的功能,保护神经细胞免受氧化应激和细胞凋亡的损伤。

然而,当SNCA异常聚集形成纤维聚集体时,它会产生毒性效应,导致神经细胞的损伤和死亡。

5. 参与神经退行性疾病的发生由于SNCA的寡聚体和纤维聚集体在某些神经系统相关疾病如帕金森病中的积累,因此SNCA在神经退行性疾病的发生中扮演重要角色。

这些聚集体可以引发炎症反应、细胞毒性和线粒体功能障碍等病理过程,导致神经细胞的损伤和死亡。

综上所述,SNCA是一种分子量约为14.5kDa的蛋白质,在神经系统中具有多种重要的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Phase equilibria,thermodynamics and solidification microstructures of Mg e Sn e Ca alloys,Part 1:Experimental investigation and thermodynamic modeling of the ternary Mg e Sn e Ca systemA.Kozlov a ,M.Ohno a ,1,R.Arroyave b ,2,Z.K.Liu b ,R.Schmid-Fetzer a ,*aInstitute of Metallurgy,Clausthal University of Technology,Robert-Koch-Str.42,D-38678Clausthal-Zellerfeld,GermanybThe Pennsylvania State University,University Park,PA 16801,USAReceived 6July 2007;received in revised form 4October 2007;accepted 30October 2007Available online 21December 2007AbstractThe phase equilibria of the Mg e Sn e Ca system for the entire composition and temperature ranges have been clarified based on the Calphad method.To obtain a reliable thermodynamic description,we performed key experiments for the phase boundary data and also utilized the first-principle results of the finite-temperature properties for the binary and ternary compounds.Experimental works for the phase equilibria,which consist of thermal,crystallographic and microstructural analyses,and the thermodynamic modeling combined with finite-temperature first-principle calculations are reported.The satisfying agreements between the experimental and calculated results support the reliability of the proposed thermodynamic description.The phase diagram for overall composition and temperature ranges of the ternary system based on the thermodynamic calculations is presented.In a second study this result is applied to obtain details of the phase formation during solidification for practically important Mg-rich as-cast alloys.Ó2007Elsevier Ltd.All rights reserved.Keywords:A.Ternary alloy systems;B.Phase diagrams;B.Thermodynamic and thermochemical properties;E.Phase diagram,prediction;F.Electron microscopy,scanning1.IntroductionIn recent years,magnesium alloys have become a center of interest among material engineers and scientists.The combi-nation of lightweight,high specific strength and good castabil-ity makes Mg alloys a promising engineering material of the automotive and aviation industries [1,2].Most commercial Mg alloys are Mg e Al based (AZ and AM series)with addi-tions of Zn,Mn and/or Ca,Sr,Si,RE (RE:rare earth mischme-tal),which demonstrate good room-temperature strength andductility with satisfying salt-spray corrosion resistance and ex-cellent castability [3].On the other hand,Al-free Mg alloys are currently attracting attention as a next generation of com-mercial Mg alloys,in the light of the fact that grain refinement can effectively be realized by the addition of Zr,which is not possible in the Al-containing AZ and AM series because of detrimental Al e Zr compound formation.Mg e Sn e Ca (TX series)as well as Mg e Zn e Zr (ZK series)is among the most important systems for the Al-free Mg alloys.It has been sug-gested in Ref.[4]that the addition of Sn improves strength at the expense of ductility in Mg alloys.Some precipitates in-volving Ca could be considered relevant to this behavior.The effects of additional elements on the phase equilibria in alloys are of great importance in material design and manufac-ture.The focused optimization of alloy composition and heat treatment conditions is virtually impossible without the knowl-edge of pertinent phase equilibria.Therefore phase diagrams of*Corresponding author.Tel.:þ495323722150;fax:þ495323723120.E-mail address:schmid-fetzer@tu-clausthal.de (R.Schmid-Fetzer).1Present address:Research Center for Integrated Quantum Electronics (RCIQE),Hokkaido University,North 13West 8,Sapporo 060-8628,Japan.2Present address:ENPH 119,Texas A&M University,College Station,TX 77843-3123,USA.0966-9795/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.intermet.2007.10.010Available online at Intermetallics 16(2008)299e315multi-component Mg-systems are indispensable information. Despite its importance mentioned above,the phase diagram of the ternary Mg e Sn e Ca system has not been established yet.Even isolated equilibrium phase boundary data could not be found in the literature.The aim of this work is to clarify the phase equilibria of this important ternary system over the entire composition and temperature ranges,for thefirst time, based on a combination of the Calphad methodology,first-principle calculations and own key experiments.The Calphad method has been recognized as a powerful method to provide the phase equilibria and thermodynamic quantities in multi-component systems with high accuracy [5,6].Within this approach,the Gibbs free energies for all the phases involved in the system of interest are quantified with relatively simpler mathematical expression and/or statis-tical mechanics formula based on various kinds of experimen-tal data.Hence,the reliability of the Calphad method is largely dependent on the available experimental data.As mentioned above,however,little has been clarified for the Mg e Sn e Ca phase equilibria.Therefore,we performed our own painstak-ing experiments for the determination of the phase equilibria by means of X-ray diffraction(XRD),scanning electron mi-croscopy with energy-dispersive X-ray analysis(SEM/EDX), differential thermal analysis(DTA)and differential scanning calorimetry(DSC).These experimental results are then fully employed in the Calphad modeling.In order to obtain a highly reliable thermodynamic description,furthermore,we utilize thefinite-temperaturefirst-principle results as detailed below.Alloys with considerable content of Ca often involve the difficulty to realize true equilibrium,due to the high reactivity and high vapor pressure and also the low purity of commonly used Ca.A recent work on the Calphad modeling of the Ca e Sn system by the present authors[7]has clarified that the forma-tion enthalpy of compounds from Ca-rich part experimentally determined in the early work[8]is unrealistic.In Ref.[7]the authors performed two types of Calphad modeling,one is based only on the experimental data and the other is based on thefirst-principle output offinite-temperature properties of compounds and,then,the detailed comparison between them indicates that the latter description is more realistic than the former one.In this regard,careful attention should be paid to the present ternary system where,in addition to the Ca e Sn binary compounds,a Mg e Ca binary compound (Mg2Ca)and two ternary compounds exist,as described in the next section.Thefinite-temperature properties of these compounds should be subjected to thefirst-principle investiga-tion.Especially,there have been no thermodynamic data avail-able for two reported ternary compounds.In the present work, therefore,we extend the combined approach of the Calphad andfinite-temperaturefirst-principle methods recently attemp-ted in Ref.[7]to the present ternary system.The details of the methods for the presentfirst-principle calculations are found in Refs.[9,10]and also in Ref.[7]for the Ca e Sn binary phases, and the main concern of this study is the thermodynamic mod-eling based on these outputs.As mentioned above,this is thefirst investigation of phase equilibria of the Mg e Sn e Ca ternary system over a wide range of composition and temperature,consisting of the detailed experiments on phase equilibria and the Calphad modeling combined withfinite-temperaturefirst-principle calculations and,furthermore,the solidification process for the Mg-rich alloys.We report our extensive work on Mg e Sn e Ca alloys in a series of two publications.In this paper(part I of this series), the Calphad modeling combined withfinite-temperaturefirst-principle calculations and the experimental work on the phase equilibria are presented,using ternary key samples selected at strategic intermediate compositions(16e67at.%Mg).This is followed by the comparison between the calculated and ex-perimental results concerning liquidus surface,isothermal sections at various temperatures,invariant reactions and se-quence of phase formation during solidification process to demonstrate the consistency of the constructed thermody-namic description.The second report[11](denoted‘‘part II’’here)is devoted to an application to practically important Mg-rich(92e 96.5wt.%Mg)as-cast alloys,demonstrating the satisfying consistency between the phase formation obtained by compu-tational thermochemistry using the constructed description and the solidification behavior revealed in an experimental investigation.2.Literature data2.1.Binary subsystemsSuccessful Calphad modeling for each of the constituent binaries Mg e Ca,Mg e Sn and Ca e Sn has been already per-formed.In the following,we briefly refer to the Calphad mod-eling relevant to the present work and demonstrate the calculated phase diagrams for the discussion of ternary phase equilibria given in Section6.The Calphad modeling of the Mg e Sn system was reported in Ref.[12]and subsequently corrected in Ref.[13].In the Mg e Sn system,the existing phases are liquid,hcp-(Mg),bct-a Sn,diamond-b Sn,and the intermediate compound Mg2Sn. No solubility of Mg in b Sn has been experimentally observed, but there is a small amount of solubility of Sn in(Mg).There are two eutectic reactions:one is L4(Mg)þMg2Sn at 563 C on the Mg-rich side and the other is L4b SnþMg2Sn at204 C on the Sn-rich side.The congruent melting of Mg2Sn occurs at774 C.Fig.1shows the calculated phase diagram for the Mg e Sn system based on the corrected version[13].The thermodynamic modeling of the Ca e Sn system has been recently reported by the present authors[7].In that work,due to a discrepancy between the experimental and first-principle data of formation enthalpy of compounds,two types of thermodynamic modeling were attempted:one is based on thefirst-principle output(model I)and the other based on the experimental data(model II).The detailed com-parison between the several types of experimental data and the corresponding calculated results revealed that model I is supe-rior to model II.Shown in Fig.2is the phase diagram calcu-lated by model I.One sees that there are seven compounds in300 A.Kozlov et al./Intermetallics16(2008)299e315this system.Among them,three compounds,Ca 2Sn,CaSn and CaSn 3melt congruently,while the other four compounds melt through peritectic reactions.The thermodynamic modeling of the Mg e Ca system has been reported in Refs.[14,15].The Mg e Ca system exhibits a simple phase diagram consisting of the five phases,liquid,hcp-(Mg),fcc-a Ca,bcc-b Ca,and Mg 2Ca.There are three in-variant reactions:one is on the Mg-rich side,L 4(Mg)þMg 2Ca at 517 C,the second one on Ca-rich side L 4b Ca þMg 2Ca at 446 C and the third one is congruent melting of Mg 2Ca compound L 4Mg 2Ca at 710 C.The dashed line in Fig.3represents the phase diagram calculated from the parameters of Ref.[14].This line is almost completely superimposed on the solid line which is obtained from the present thermodynamic modeling as discussed in Section 3.2.2.Ternary systemFor the Mg e Sn e Ca system,neither phase diagram nor thermodynamic data have been reported in the literature.Only information about one ternary Ca 6.2Mg 3.8Sn 7compound and one ternary solid solution originating from the binary Ca 2Sn compound are available in the literature [16e 19].The existence of ‘‘ternary compound’’CaMgSn has been reported by Eisenmann et al.[16,17].They synthesized the composition CaMgSn and determined its crystal structure.It was found that CaMgSn crystallizes as the ordered anti-PbCl 2-type (orthorhombic Co 2Si-type)structure and therefore this was expected to be related to the binary compound Ca 2Sn,which forms the anti-PbCl 2-type too.Ganguli et al.[19]confirmed the existence of CaMgSn ‘‘ter-nary compound’’and found that this phase actually is the ter-nary solid solution of Ca 2Sn,which is denoted (modeled)as Ca 2Àx Mg x Sn in the present study,and terminates at the compo-sition x ¼1,i.e.CaMgSn.The alloys were prepared by melting elements in Ta crucibles at 1030 C for 2days,quickly cooled,and then investigated by X-ray powder diffraction analysis.All powder patterns over this region indicate that there are not only the orthorhombic Ca 2Sn and CaMgSn or their solid solution,but additional Mg 2Sn was also present for x >1.Ganguli et al.[18]synthesized the ternary compound Ca 6.2Mg 3.8Sn 7and determined its crystal structure.The alloys with various compositions in the ratio (Ca,Mg)5Sn 3were pre-pared by melting elements in Ta crucibles.The sample was heated at 925 C for 6h,then cooled to 600 C and annealed for 6days,which yields 85%of the subject phase.X-ray powder diffraction patterns were obtained from samples mounted on a frame between pieces of cellophane tape in the glove box to protect them from the atmosphere.An Enraf-Nonius Guinier camera with Cu K a radiation and reference Si as an internal standard were employed to obtain powder diffractiondata.Fig.1.Mg e Sn binary phase diagram calculated from the data set given in Ref.[13].Fig.3.Mg e Ca binary phase diagram calculated from the data sets given in Ref.[14]and this work.(Difference cannot be distinguished on the graph.).301A.Kozlov et al./Intermetallics 16(2008)299e 315Alloys with composition Mg e5Sn e0.04Ca and Mg e5Sn e 0.5Ca(in wt.%)have been investigated in Ref.[20].It was found that0.04wt.%of Ca did not introduce any characteristic features into the system and the microstructure of alloy Mg e 5Sn e0.04Ca has shown only solid solution of(Mg)containing small amount of Mg2Sn.Microstructure of alloy Mg e5Sn e 0.5Ca has shown also solid solution of(Mg)containing small amount of Mg2Sn grain boundaries.In addition,the authors re-vealed Ca as the primary constituent in rod-or plate-shaped precipitates in(Mg)and denoted this phase as Mg2Ca.How-ever,more recent investigations of alloys with composition Mg e5Sn e0.5Ca[21,22]have shown that the primary constit-uent is CaMgSn instead of Mg2Ca and this result is in good agreement with present thermodynamic calculation as dis-cussed in Section4.The solid phases in the present system are listed in Table1, comparing the crystallographic data from the literature[23e25] with present results for the most important intermetallic phases.3.Modeling3.1.First-principle calculations offinite-temperature propertiesThe details of the methods used for the presentfirst-princi-ple calculations are reported in Ref.[9,10].In the following, hence,we briefly summarize the essential points of thefi-nite-temperaturefirst-principle method utilized in this work.First-principle total energy calculations of three pure ele-ments and binary and ternary compounds at the ground state were carried out based on the Projector Augmented Wave (PAW)method[26,27]within the Generalized Gradient Approximation(GGA)[28].A cutoff energy was set to be 350eV for all the calculations and the brillouin zone integra-tions were performed using a Monkhorst e Pack mesh[29] with at least5000k points per reciprocal atom.Self-consistent static calculations were performed,following the full relaxa-tion for the structure and volume based on the Methfessel e Paxton order1smearing method[30].Thefinite-temperature properties(T>0K)for the solid phases were calculated using the supercell approach.Within the quasi-harmonic approximation,the vibrational free energy was obtained by computing the force constant tensor and the corresponding phonon density of state(DOS)as a function of volume.The temperature dependence of vibrational contri-bution was determined by minimizing the vibrational free energy with respect to volume at each temperature.Further-more,the electron-excitation contribution to the free energy was evaluated through the integration of the electronic DOS at each volume.From thesefinite-temperature calculations, we obtained the free energies of the solid phases atfinite-temperatures.The present calculations are applied to three pure elements, all the binary compounds and ternary phase CaMgSn which corresponds to the end member of the ternary solid solution Ca2Àx Mg x Sn modeled in the present study.In addition to these phases,there exists a ternary compound Ca6.24Mg3.76Sn7of which no thermodynamic data have been reported.Since the large unit cell of this ternary compound requires a substantial computational time in the supercell approach,we performed only the ground state calculations and thefinite-temperature property of this phase is obtained from the compositional average which is detailed in the following section.Since the calculated results for the other binary phases are reported in detail in Ref.[10],we present the calculated results only for Mg2Ca,Ca2Àx Mg x Sn with x¼1and Ca6.24Mg3.76Sn7 phases in Table2,which are relevant to the present thermody-namic modeling of the ternary system,and compare to exper-imental literature data[31e33].It is to be noted that the tabulated data in Ref.[10]for the enthalpy of formation corre-spond to the values at0K,while thefirst-principle data for Mg2Ca and CaMgSn phases shown in Table2are theTable1Crystallographic data of solid phases occurring in the Mg e Sn e Ca systemPhase/temperature range, C Pearson symbol/prototypeLattice parameters(A˚)Referenesa b c(b Ca)/842to443cI2/W 4.480e e[23](a Ca)/<443cF4/Cu 5.5884e e Pure Ca at25 C[23] (Mg)/<650hP2/Mg 3.2094e 5.2107Pure Mg at25 C[23] (b Sn)/231.97to13tI4/b Sn 5.8318e 3.1818Pure Sn at25 C[23] (a Sn)/<13cF8/C(diamond) 6.4892e e[23]Mg2Ca/<711hP12/MgZn2 6.23,6.251(4)e10.15,10.141(7)[24][This work]Mg2Sn/<773cF12/CaF2 6.7645(3),6.760(2)e e[19][This work] CaSn3/<630cP4/AuCu3 4.741(2)e e[25]CaSn/<1010oC8/CrB 4.813(2)11.544(2) 4.351(1)[25]Ca7Sn6/<1000oP52/Ca7Sn67.867(1)23.818(2)8.465(1)[25]Ca31Sn20/<w1130tI204/Pu31Rh2012.521(2)e39.87(2)[25]Ca36Sn23/<w1130tP118/Yb36Sn2312.499(1)e22.883(5)[25]Ca5Sn3a/<1130tI32/Cr5B38.117(2)e15.429(7)[25]Ca2Sn/<1340oP12/Co2Si7.992(3),7.981(2) 5.037(3),5.043(1)9.554(5),9.566(2)[25,19]Ca2Àx Mg x Sn/(x¼0e1)7.8731(8),7.86(2),7.847(8)4.6941(3),4.66(2),4.678(7)8.7538(7),8.74(2),8.749(8)x¼1,[19],x¼1,[17],x¼1,[This work]Ca6.2Mg3.8Sn7/<918.9oP34/Ca6.2Mg3.8Sn77.794(1)25.718(4) 4.655(1)[18]a Probably stabilized by hydrogen as Ca5Sn3H x.302 A.Kozlov et al./Intermetallics16(2008)299e315formation enthalpies at 298K.The inclusion of vibrational contributions lead to slightly more negative enthalpy of forma-tion at 298K as expected.The calculated formation enthalpy and the absolute entropy of Mg 2Ca phase are in fairly good agreement with the experimental data and the assessed value of Ref.[14],which strongly supports the reliability of the thermodynamic description of Ref.[14]on one hand and the validity of the present first-principle calculations on the other hand.This point is further addressed by reassessing the Mg e Ca binary system as described below.3.2.Thermodynamic modeling of the binary systems Within the Calphad method,the degree of accuracy of thedescription of the binary subsystems plays a crucial role in ob-taining a reliable thermodynamic description of the resulting ternary system.As mentioned in Section 2,the thermody-namic assessments of the binary Ca e Sn,Mg e Sn and Mg e Ca systems have been performed in Refs.[7,13,14],showing excellent agreements with the experimental data.In the pres-ent study,we employ the thermodynamic description of Ref.[13]for the Mg e Sn system and the model I in Ref.[7]for the Ca e Sn system (first-principle based description).The thermodynamic parameters of Mg e Sn system are presented in Table 3,since these have not appeared in any report yet.As for the Mg e Ca system,we performed our own thermody-namic assessment based on the finite-temperature property.As mentioned in Section 1,the thermodynamic state of compounds containing Ca requires the first-principle investi-gation in the light of the experimental difficulty to realize the true equilibria.As shown in Table 2,the formation en-thalpy and absolute entropy calculated with the thermody-namic parameters given in Ref.[14]are consistent with our first-principle results,which indicates the reliability of the thermodynamic description of Ref.[14]and also the present first-principle calculations.In this study,as a further check of this reliability,we reassess the Mg e Ca binary system based on this first-principle output of Mg 2Ca.Since the Mg 2Ca compound possesses no substantial solubility (see Fig.3),this phase is regarded as a stoichiometric compound.Then,the Gibbs energy (per mole of atoms)of the Mg 2Ca compound is described using the following absolute reference state formula:G Mg 2Ca ðT Þ¼23G 0;hcp Mg ð298:15K Þþ13G 0;fccCað298:15K ÞþA þB ,T þC ,T ln T þD ,T 2þE ,T 3þF ,T À1ð1a Þwhere A ,B ,.,F are the optimized parameters and G 0;hcpirep-resents the Gibbs energy for pure element i (i ¼Mg and Ca)with hcp structure and this explicit formula is given later in Eq.(2).It should be noted that this model allows a quantitative description of the heat capacity.C Mg 2Ca pðT Þ¼ÀC À2D ,T À6E ,T 2À2F ,T À1ð1b ÞFirstly,the parameters C ,D ,E and F are obtained by fitting to the temperature dependence of the heat capacity calculated from the first-principle method.Shown in Fig.4is the calcu-lated result which compares perfectly with the first-principle output for T >250K.It is noted that a slight discrepancy is observed in comparison to the published Calphad description [14].The remaining parameters to be optimized in Eq.(1)are A and B which are related to the formation enthalpy and entropy of the compound.In the present modeling we obtained these parameters using the experimental data for the congruent melt-ing temperature of Mg 2Ca and the eutectic reaction tempera-ture L 4(Mg)þMg 2Ca (e 7on Fig.3),without changing the thermodynamic parameters of the other phases,such as liq-uid and hcp-solid solution given in Ref.[14].The optimized parameters are presented in Table 3and the calculated phase diagram is demonstrated by the solid lines in Fig.3.The solid lines virtually coincide with the dashed lines of Ref.[14]mak-ing them invisible on the graph.It is not surprising to see vir-tually the same phase diagram calculated from different sets of thermodynamic parameters (Ref.[14]and present).This is why it is so important to include as much thermodynamic in-formation as possible,in the present case the first-principle results.The formation enthalpy and the absolute entropy at 298K calculated by the present modeling are shown in Table 2where one can see the satisfying consistency between the Calphad modeling,the first-principle outputs and the experimental data.These agreements again prove the reliability of thermo-dynamic assessment of Ref.[14]on one hand,and the validity of the present first-principle output on the other hand.Table 2Standard enthalpy of formation,D f H 298,and absolute entropy,S 298,of compounds Compounds D f H 298(kJ/mol atom)S 298(J/mol atom/K)FP Calphad Exp FP Calphad Mg 2CaÀ12.37[tw]À12.85[14]À13.50[31]36.21[10]32.48[14]À12.78[tw]À12.70[32]32.56[tw]À13.00[33]CaMgSnÀ56.89[tw]À56.94[tw]37.83[10]37.84[tw]Ca 6.24Mg 3.76Sn 7À56.9(0K)[10]À57.16[tw]40.59(0K)[10]40.59[tw]Stable Element Reference,SER is used.Note that the tabulated data in Ref.[10]for the formation enthalpy correspond to the values at 0K,while the first-principle data for Mg 2Ca and CaMgSn phases shown below are the formation enthalpies at 298K.[tw]¼This work.303A.Kozlov et al./Intermetallics 16(2008)299e 315As shown above,the thermodynamic descriptions obtained in Ref.[14]and in this work provide almost identical results and one can proceed to the modeling of the ternary system based on either description.Although we employ the thermo-dynamic parameters obtained in this study in the following,the replacement of the description of Mg 2Ca system with the one of Ref.[14]yields no substantial change in the resul-tant phase equilibria of the ternary system.The main reason for using the present data is their consistency with the first-principle C p and D H data.3.3.Thermodynamic modeling of ternary systemThe Gibbs energy function,G 0;f i ðT Þ¼G f i ðT ÞÀH SERi ,for the element i (i ¼Ca,Mg,Sn),in f phase is given byG 0;f i ðT Þ¼a þb ,T þc ,T ln T þd ,T 2þe ,T 3þf ,TÀ1þg ,T 7þh ,T À9ð2Þwhere H SER i is the molar enthalpy of the stable element refer-ence (SER)at 298.15K and 1bar;T is the absolute tempera-ture.The Gibbs energy functions for Ca,Mg and Sn are taken from the SGTE compilation by Dinsdale [34].In the binary Mg e Sn [13]and Ca e Sn [7]systems,the liq-uid phases are modeled using the associate solution model [35,36]with Mg 2Sn and Ca 2Sn associates,respectively.Ac-cordingly,the liquid phase in the present ternary system is described using the associate solution model as expressed by G LðT ;f y i gÞ¼X 5i ¼1y i ,G 0;L i ðT ÞþRTX 5i ¼1y i ln y iþX 4i ¼1X 5j >iy i y jX n n ¼0L n ;L i ;jÀy i Ày j Ánð3Þwhere R is the gas constant,y i is the mole fraction of specie iin the liquid,i (j )represents any of the species,Ca,Mg,Sn,Ca 2Sn and Mg 2Sn.G i L refers to one mole of formula of the liq-uid and the number of moles in the liquid phase results from an internal Gibbs energy minimization.In the first term ofEq.(3),the parameters,G 0;L Ca ðT Þ;G 0;L Mg ðT Þand G 0;LSn ðT Þ,Table 3Thermodynamic parameters Liquid phase,binary Mg e Sn (J/mol)G 0;Liquid Mg 2Sn ¼À69092:9þ97:6086,T À11:0957,T ,ln ðT Þþ2,G 0;L Mg þG 0;L Sn L 0;Liquid Mg ;Mg 2Sn ¼6902:76À9:22726,T L 0;Liquid Mg 2Sn ;Sn ¼À8289:15À10:0268,T L 0;Liquid Mg ;Sn ¼À31251þ0:74703,TLiquid phase,ternary Mg e Sn e Ca (J/mol)L 0;Liquid Mg 2Sn ;Ca ¼À70461:37L 0;Liquid Mg 2Sn ;Ca 2Sn ¼À71375:70Intermetallic compounds,absolute reference state,Eq.(2)J/mol-atom/(K)Temperature range (K)A *aBC DEFG 0;Ca 2Àx Mg x SnCa:Ca:Sn298<T <1660À74159.5128.5390À25.372 4.426E À4À7.414E À735284.021660<T À86420.8214.4356À36.135000G 0;Ca 2Àx Mg x Sn Mg:Ca:Sn 298<T À65595.0146.5À27.543 2.367E À3À10.07E À789823.7L 0;Ca 2Àx Mg x Sn Ca:Sn:Ca ;Mg 298<T 1262.3400000G Ca 6:24Mg 3:76Sn 7298<T 65707.06143.13À27.478 2.556E À313.376E À775502.91G Mg 2Ca 298<T À20456.3130.6760À24.04541À0.0028942À2.31E À0735456.50G Mg 2Sn 298<TÀ31024.2110.918À21.8911À0.003028À210000aA üA þp p þq G 0;fcc Ca ð298:15K Þþqp þq G 0;bct Sn ð298:15K Þ.represent the Gibbs energies of pure Ca,Mg and Sn liquids, respectively,which are taken from the SGTE compilation[34].L n;L i;j is the n th interaction parameter between the speciesi and j in the liquid phase.Actual ternary interactions L n;L i;j are only those involving all three elements in the species i and j. They are found to be necessary in this work only for the Mg2Sn e Ca and Mg2Sn e Ca2Sn interactions.All other param-eters are already given from the binary systems.The hcp-(Mg)solution phase is described by the disordered substitutional solution model as given byG hcp¼X3i¼1x i G0;hcpiþRTX3i¼1x i ln x iþX2i¼1X3j>ix i x jX nv¼0L v;hcpi;jÀx iÀx jÁvð4Þwhere x i are the molar fractions of i¼Ca,Mg and Sn.It should be noted that no ternary interaction parameters are in-troduced,which correspond to a Redlich e Kister/Muggianu type extrapolation from the binary sets.As explained in Section2,the Ca2Sn phase possesses the ternary solubility which terminates at the CaMgSn composi-tion and this solution phase is denoted as Ca2Àx Mg x Sn.In the present study,this phase is modeled with the sublattices Ca1Sn1(Ca,Mg)1and the Gibbs energy(per1mol of atoms) of this phase can be described by the following Compound-Energy FormalismG Ca2Àx Mg x Sn¼y Ca G0;Ca2Àx Mg x SnCa:Sn:Ca þy Mg G0;Ca2Àx Mg x SnCa:Sn:Mgþ13R,Tðy Ca,ln y Caþy Mg,ln y MgÞþy Ca,y Mg,L0;Ca2Àx Mg x SnCa:Mg:Ca;Mgð5Þwhere G0;Ca2Àx Mg x SnCa:Sn:Ca corresponds to the Gibbs energy of1molof atoms Ca2Sn binary phase and G0;Ca2Àx Mg x SnCa:Sn:Mg is the Gibbsenergy of formation of the terminal composition point of solidsolution,denoted as CaMgSn.L0;Ca2Àx Mg x SnCa:Sn:Ca;Mg is the interactionparameter between Ca and Mg in the third sublattice.All the binary phases are described by the absolute refer-ence state formula given in Eq.(1).For the end member CaMgSn and ternary compound Ca6.24Mg3.76Sn7,we also employ the absolute reference formula which,for the ternary phase,is rewritten asG Ca p Mg q Sn rðTÞ¼ppþqþrG0;fccCað298:15KÞþqpþqþrG0;hcpMgð298:15KÞþrpþqþrG0;bctSnð298:15KÞþAþB,TþC,T ln TþD,T2þE,T3þF,TÀ1ð6ÞAs described,we obtained thefinite-temperature property of the end member CaMgSn phase from thefirst-principle calcu-lations.Hence,the parameters C,D,E and F for this phase can be obtained byfitting to the heat capacity offirst-principle output.Shown in Fig.5is thefitting curve of C p with the first-principle data.The parameters A and B are then optimized based on the experimental data obtained in this study which are described in detail below.As for the ternary compound Ca6.24Mg3.76Sn7,the neces-sary large unit cell results in a large computational burden in obtaining thefinite-temperature properties based on super-cell approach.It is noted that the composition of ternary com-pound Ca6.24Mg3.76Sn7is located in-between the three phases CaMgSn,CaSn and CaSn3.In the present work,we obtained the C p value of this compound from the compositional average of the C p values of these three phases.In the thermodynamic modeling of the Ca e Sn system[7],it has been demonstrated that this compositional averaging procedure works very well for the binary compounds.The resultingfitting curve for the Ca6.24Mg3.76Sn7compound is shown in Fig.6with those of the CaMgSn,CaSn and CaSn3phases.In the present model-ing,we employ this heat capacity;the A and B parameters are based on the phase equilibria of Ca6.24Mg3.76Sn7.Fig.6.C p for Ca6.2Mg3.8Sn7obtained from the compositional averaging pro-cedure from the values of CaSn3,CaMgSn and CaSn phases.305A.Kozlov et al./Intermetallics16(2008)299e315。

相关文档
最新文档