2011年普通高等学校招生全国统一考试数学理试题(广东卷)(精校版 含答案)

合集下载

2011年广东高考理科数学试题及答案(纯word版)

2011年广东高考理科数学试题及答案(纯word版)

2011年广东高考理科数学试题及答案(纯word版)D1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.3 3. 若向量a,b,c满足a∥b且a⊥b,则(2)c a b •+=A.4 B.3 C.2 D.04. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数B.()()f x g x -是奇函数C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5. 在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM ON =的最大值为 A .42 B .32 C .4 D .3 6. 甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347. 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的16. 填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年高考数学广东卷(理科)-带答案

2011年高考数学广东卷(理科)-带答案

2011年高考数学广东卷(理科)注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 球的表面积公式24S R π=, 其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤ C .}{11x x -<< D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a 的值为A .2-B .1-C .1D .2 3. 已知向量p ()2,3=-,q (),6x =,且//p q,则+p q 的值为AB C .5 D .13 4. 函数ln xy x=在区间()1,+∞上 A .是减函数 B .是增函数 C .有极小值 D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3NMD 1C 1B 1A 1DCBA图3(度)150140110100 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. 将18个参加青少年科技创新大赛的名额分配给3所学校, 要求每校 至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为 A .96 B .114C .128D .136图1 8. 如图2所示,已知正方体1111ABCD A BC D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为了了解某地居民月均用电的基本情况, 抽 取出该地区若干户居民的用电数据, 得到频 率分布直方图如图3所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户.10. 以抛物线2:8C y x =上的一点A 为圆心作圆,若该圆经过抛物线C 的顶点和焦点, 那么该圆的方程为 .D 11. 已知数列{}n a是等差数列, 若468212a a a++=, 则该数列前11项的和为.12.△ABC的三个内角A、B、C所对边的长分别为a、b、c,已知3,,3c Cπ==2a b=, 则b的值为 .13. 某所学校计划招聘男教师x名,女教师y名, x和y须满足约束条件25,2,6.x yx yx-≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是名.(二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图4, CD是圆O的切线, 切点为点A、B在圆O上,1,30BC BCD︒=∠=,则圆O15. (坐标系与参数方程选讲选做题)在极坐标系中,若过点(极轴垂直的直线交曲线4cosρθ=于A、B两点,则AB图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin cos cos2f x x x x=+(x∈R).(1)当x取什么值时,函数()f x取得最大值,并求其最大值;(2)若θ为锐角,且83fπθ⎛⎫+=⎪⎝⎭,求tanθ的值.17.(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.DC 1A 1B 1CBA若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为4.9元.表1 表2 (1) 求,a b 的值;(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.(本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A AB ==.(1) 求证:1//AB 平面1BC D ;(2) 若四棱锥11-B AAC D 的体积为3, 求二面角1--C BC D 的正切值.图519.(本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足OP OQ ⊥(O 为坐标原点),记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程.20.(本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.21.(本小题满分14分)已知函数y =()f x 的定义域为R , 且对于任意12,x x ∈R ,存在正实数L ,使得 ()()1212f x f x L x x -≤-都成立. (1) 若()f x =求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n = .① 证明:112111nk k k a a a a L+=-≤--∑; ② 令()121,2,3,k k a a a A k k ++== ,证明:112111nk k k A A a a L +=-≤--∑.参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±= 11. 3312. 13. 1014.π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 1分2222x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,…… 5分 (2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分 ∴1cos 23θ=. …… 7分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分∴sin 2tan 2cos 2θθθ==…… 9分∴22tan 1tan θθ=-. …… 10分2tan 0θθ+=.∴)(1tan 0θθ-=.∴tan 2θ=或tan θ=不合题意,舍去) …… 11分∴tan 2θ=. …… 12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∴212cos 13θ-=. …… 8分∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分∴sin θ==. …… 10分∴sin tan cos θθθ==…… 12分解法3:∵8f πθ⎛⎫+= ⎪⎝⎭, 22πθ⎛⎫+= ⎪⎝⎭. ∴1cos 23θ=. …… 7分 ∵θ为锐角,即02πθ<<, ∴02θπ<<.EDA 1B 1BA∴sin 23θ==…… 8分 ∴sin tan cos θθθ=…… 9分 22sin cos 2cos θθθ= …… 10分sin 21cos 2θθ=+=…… 12分 17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分 ∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分 解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分 (2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都 是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点.∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//AB 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , ……6分 设BC a =,在Rt △ABC 中,AC =AB BC BE AC ==∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C , ∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F = , ∴1BC ⊥平面DFG .∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得1132BF CC GF BC ⨯=== 在Rt △DFG 中, tan DF DGF GF ∠==∴二面角1--C BC D. …… 14分 解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭. ∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,AB 〉= ⋅n AB n AB200323⨯+⨯+-⨯-==. …… 12分 ∴sin 〈n ,AB 〉==. …… 13分 ∴tan 〈n ,AB 〉= .∴二面角1--C BC D . …… 14分 19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =- .当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分 (2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=.∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l 的距离d=212+=…… 7分12⎫= …… 8分12≥⨯…… 9分=…… 10分=,即k =.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l的距离d =212=…… 7分12⎫= …… 8分12≥⨯ …… 9分=…… 10分=,即1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分点()0,2到直线2l的距离d ==…… 7分12⎫=+…… 8分12≥⨯…… 9分=…… 10分=11y =时,等号成立,此时1x =. ……12分∴直线2l10y --=10y ++=. …… 14分 20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分 又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分 综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为 1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分 ② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥,此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 (ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有 ()()12f x f x -=-==. …… 2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,x x >>且1212x x x x +≥+,12121x x x x +<≤+. …… 4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分 (2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- . …… 6分∴112233411nkk n n k aa a a a a a a a a ++=-=-+-+-++-∑()21121n L L La a -≤++++- …… 7分1211nL a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分 ②∵12kk a a a A k++=,∴1212111k k k k a a a a a a A A k k ++++++++-=-+ ()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+ . …… 11分 ∴1122311nkk n n k AA A A A A A A ++=-=-+-++-∑ ()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。

2011年普通高等学校招生全国统一考试(广东卷)——理科综合

2011年普通高等学校招生全国统一考试(广东卷)——理科综合
5 .以下关 于猪血红蛋 白提 的描述 , 不正确 的是 ( )
2 .最近 , 5 可以抵抗多数抗 生素的“ 超级细菌 ” 引人 关注 , 这类细菌含有超强耐药性 基因 N M一 , D 1该基 因编码金属 B 内 一
酰胺酶 , 此菌耐药性产生 的原 因是( )
A 定 向突变 .
第2 7卷第 9期
2 1 0 1经
中学 生物 学
Mide S h o oo y d l c o lBilg
V0 .7 No 9 1 . 2 2 1 0 1
文 件编 号 : 0 3—7 8 (0 10 10 5 6 2 1 )9—0 4 0 4—0 3
2 年普通高等学校招生全国统一考试( 0 1 1 广东卷)

2. 4 小杨 同学将部分生物学知识归纳如下 , 中正确 的是 其

② ③

R R

荚膜 多 糖 DA N
D A 经 D A酶 处理 ) N ( N
R型 R型、 型 S
R型
A ①不能证明 s . 型菌的蛋 白质不是转化 因子
B ②说 明 s . 型菌 的荚膜多糖有酶活性

8 9 1 0 ll
B .Ⅱ一 5是该病致病基因的携带 者
C .Ⅱ一 5和 I— 再生患病男孩 的概率为 1 16 / 2
D I 9与正常女性结婚 , .I一 I 建议生 女孩
二 、双项选择题
实验 组号 接种茵型 加入 S 菌物质 培 养皿 长茵情况 型 ① R 蛋白质 R型








』 …



2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc

2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc

2011 年普通高等学校招生全国统一考试数学理试题(全国卷,含答案)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。

第Ⅰ卷 1 至 2 页。

第Ⅱ卷 3 至 4 页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前, 考生在答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

..........3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

一、选择题(1) 复数 z 1i , z 为 z 的共轭复数,则 zz z 1( A ) 2i( B ) i( C ) i( D ) 2i【答案】 B(2) 函数 y 2 x( x 0) 的反函数为( A ) yx 2( x R)( B )4( C )y 4x 2( x R)( )Dyx 2( x 0)4y 4x 2 ( x 0) 【答案】 B(3) 下面四个条件中,使 a b 成立的充分而不必要的条件是( A ) a >b 1( B ) a >b 1(C ) a 2> b 2( D ) a 3> b 3【答案】 A(4) 设 S n 为等差数列a n 的前 n 项和,若 a 1 1,公差 d2 , S k 2 S k 24 ,则 k( A ) 8 (B ) 7( C ) 6( D ) 5【答案】 D(5) 设函数 f ( x) cos x(0) ,将 yf ( x) 的图像向右平移个单位长度后,所得的图3像与原图像重合,则的最小值等于( A )1(B ) 3(C ) 6( D ) 93【答案】 C(6) 已知直二面角l , 点 A , AC l , C 为垂足 , B , BD l , D 为垂足.若 AB2, AC BD 1,则 D 到平面 ABC 的距离等于2 (B) 36 (D) 1(A)3 (C)33【答案】 CA(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友每位朋友 1 本,则不同的赠送方法共有(A) 4 种(B)10 种(C)18 种(D)20 种lD【答案】 BCB E(8) 曲线 y e 2 x1在点 (0,2) 处的切线与直线 y 0 和 y x 围 成的三角形的面积为(A)1(B)1 (C)2 (D)1323【答案】 A(9) 设 f ( x) 是周期为 2 的奇函数,当 0x 1 时, f (x)2x(1 x) , 则 f (5 )11112(A) -(B)(C)(D)2442【答案】 A(10) 已知抛物线C : y 24x 的焦点为 F ,直线 y2x 4 与 C 交于 A , B 两点.则cos AFB(A)4(B)3 (C)3 (D)4 5555【答案】 D(11) 已知平面 α截一球面得圆 M ,过圆心 M 且与 α 成 600 二面角的平面 β 截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4 ,则圆 N 的面积为(A) 7 (B) 9(C)11(D)13【答案】 D(12) r r rr rr r 1 rr r rr设向量 a , b , c 满足 | a | | b |1, agb, ac,bc60 ,则 | c | 的最大值2等于(A) 2 (B)3(c)2(D) 1【答案】 AB绝密★启用前2011 年普通高等学校招生全国统一考试ACD理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 答题前,考生先在答题卡上用直径0. 5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2011年广东省高考数学试卷(理科)含详解-推荐下载

2011年广东省高考数学试卷(理科)含详解-推荐下载

x
y2
2y
给定.若
D.3
y
C
B
A
x
z (x, y) ( 2,1) 2x y,即z为直线则y 2x z
的纵截距,显然当直线y 2x z经过点B( 2,2)时, z取到最大值,
从而z max ( 2)2 2 4,故选C.
6 甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.
3.若向量 a,b, c满足a // b,且a c,则c (a 2b)
A.4
B.3
解析 : c (a 2b) c a c 2b c a 2c b 0 0 0,故选D.
4.设函数 f (x) 和 g(x )分别是 R 上的偶函数和奇函数,则下列结论恒成立的是
A. f (x) +|g(x)|是偶函数
C.2+2i
2.已知集合 A={ (x,y)|x,y 为实数,且 x 2 y 2 1 },B={(x,y) |x,y 为实数,且 y=x}, 则 A ∩
B 的元素个数为
A.0
B. 1
C.2
D.3
解析 : 集合A表示由圆x2 y 2 1上的所有点组成的集合;集合B表示直线y x上的所有点 组成的集体,由于直线经过圆内的点O(0,0), 故直线与圆有两个交点, 故选C.
(一)必做题(9—13 题) [来源:]
9.不等式 x 1 x 3 0 的解集是______.
解析原: x不等1 式x的 3解集0为 (x 1)2 (x 3)2, 1 0. x(x 2)7 的展开式中, x4 的系数是______ (用数 字作答).
x
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2011年广东高考理科数学试卷

2011年广东高考理科数学试卷

绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程 y bxa =+ 中系数计算公式 121()(),()niii nii x x y y b ay bx x x ==--==--∑∑ . 样本数据12,,,n x x x 的标准差222121[()()()]n s x x x x x x n=-+-++- 其中,x y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++….一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i - 2.已知集合(){,A x y = ∣,x y 为实数,且}221xy +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.3 3.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+= A.4 B.3 C.2 D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM ON =的最大值为 A .42 B .32 C .4 D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是 A. ,T V 中至少有一个关于乘法是封闭的 B. ,T V 中至多有一个关于乘法是封闭的 C.,T V 中有且只有一个关于乘法是封闭的 D. ,T V 中每一个关于乘法都是封闭的 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年广东省高考数学试卷(理科)及答案

2011年广东省高考数学试卷(理科)及答案

2011年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i2.(5分)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y 为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.33.(5分)若向量,,满足∥且⊥,则•(+2)=()A.4 B.3 C.2 D.04.(5分)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数5.(5分)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()A.4 B.3 C.4 D.36.(5分)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.7.(5分)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9 C.12D.188.(5分)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c ∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的二、填空题(共7小题,每小题5分,其中14、15只能选做一题。

满分30分)9.(5分)不等式|x+1|﹣|x﹣3|≥0的解集是.10.(5分)x(x﹣)7的展开式中,x4的系数是.11.(5分)等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.12.(5分)函数f(x)=x3﹣3x2+1在x=处取得极小值.13.(5分)某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为cm.14.(5分)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为.15.如图,过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,C是圆上一点使得BC=5,∠BAC=∠APB,则AB=.三、解答题(共1小题,满分12分)16.(12分)已知函数f(x)=2sin(x﹣),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.17.(13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号12345x169178166175180y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品总数.(2)当产品中的微量元素x,y满足x≥175,y≥75,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中的优等品数ξ的分布列及其均值(即数学期望).18.(13分)如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.19.(14分)设圆C与两圆(x+)2+y2=4,(x﹣)2+y2=4中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程;(2)已知点M(,),F(,0),且P为L上动点,求||MP|﹣|FP||的最大值及此时点P的坐标.20.(14分)设b>0,数列{a n}满足a1=b,a n=(n≥2).(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,a n≤+1.21.(14分)在平面直角坐标系xoy上,给定抛物线L:y=x2.实数p,q满足p2﹣4q≥0,x1,x2是方程x2﹣px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.(1)过点,A(p0,p02)(p0≠0),作L的切线交y轴于点B.证明:对线段AB上的任一点Q(p,q),有φ(p,q)=;(2)设M(a,b)是定点,其中a,b满足a2﹣4b>0,a≠0.过M(a,b)作L的两条切线l1,l2,切点分别为E(p1,),E′(p2,p22),l1,l2与y轴分别交于F,F′.线段EF上异于两端点的点集记为X.证明:M(a,b)∈X⇔|P1|<|P2|⇔φ(a,b)=.(3)设D={(x,y)|y≤x﹣1,y≥(x+1)2﹣}.当点(p,q)取遍D时,求φ(p,q)的最小值(记为φmin)和最大值(记为φmax)2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()A.4 B.3 C.2 D.0【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()A.4 B.3 C.4 D.3【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z最大.因为B(,2),故z的最大值为4.故选:C.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为故选D7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9 C.12D.18【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.故选A.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。

2011广东理数(word版)

2011广东理数(word版)

试卷类型:A2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V=Sh 其中S 为柱体的底面积,h 为柱体的高线性回归方程 y bx a =+ 中系数计算公式 ,其中,x y 表示样本均值。

N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.33.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+= A.4 B.3 C.2 D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高;线性回归方程$$y bxa =+$中系数计算公式为$1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,$$ay bx =-,其中,x y 表示样本均值; 若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B I 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则=⋅u u u u r u u u rz OM OA 的最大值为A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,T V Z =U 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

9.不等式130x x +--≥的解是 ;10.72x x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数是 (用数字作答);11.等差数列{}n a 前9项的和等于前4项的和。

若141,0k a a a =+=,则k =____________;12.函数2()31f x x x =-+在x =____________处取得极小值.13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm 。

因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm. 选做题(14、15,考生只能从中选一题)14.已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________.(坐标系与参数方程选做题)15.如图,过圆O 外一点P 分别作圆的切线和割线交圆于A ,B 且PB =7,C 是圆上一点使得BC =5,∠BAC =∠APB , 则AB = 。

(几何证明选讲选做题)(1) 解答题:本大题共6小题,满分80分。

解答需写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)已知函数f (x )=2sin(31x -6π),x ∈R..正视图侧视图(1) 求f (45π)的值; (2) 设,αβ∈[0,2π],(3f α+2π)=1310,(32)f βπ+=56,求cos()αβ+的值。

17.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y 的含量(单位:毫克)。

下表是乙厂的5件产品的测量数据:(2(3)当产品中的微量元素x,y 满足x ≥175,y ≥75,该产品为优等品。

用上述样本数据估计乙厂生产的优等品的数量。

(4)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中的优等品数ξ的分布列及其均值。

18.(本小题满分13分)在椎体P -ABCD 中,ABCD 是边长为1的棱形,且∠DAB =60︒,PA PD ==PB =2,E ,F 分别是BC ,PC 的中点. (1)证明:AD ⊥平面DEF ; (2) 求二面角P -AD -B 的余弦值。

19.(本小题满分14分)设圆C 与两圆2222(4,(4x y x y +=+=中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程 (2)已知点M (55F ,且P 为L 上动点,求MP FP -的最大值及此时P 的坐标.20.(本小题共14分)设b >0,数列{}n a 满足a 1=b ,11(2)22n n n nba a n a n --=≥+-.(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,1112n n n b a ++≤+21.(本小题共14分)在平面直角坐标系xOy 上,给定抛物线L :214y x =.实数p ,q 满足240p q -≥,x 1,x 2是方程20x px q -+=的两根,记{}12(,)max ,p q x x ϕ=。

PASBSCSDSF(1)过点20001(,)(0)4A p p p ≠(p 0≠ 0)作L 的切线交y 轴于点B 。

证明:对线段AB 上任一点Q (p ,q )有0(,)2pp q ϕ=;(2)设M (a ,b )是定点,其中a ,b 满足a 2-4b >0,a ≠0。

过M (a ,b )作L 的两条切线12,l l ,切点分别为22112211(,),(,)44E p p E p p ',12,l l 与y 轴分别交与,'F F ,线段EF 上异于两端点的点集记为X .证明:M (a ,b ) ∈X ⇔12P P >⇔(,)a b ϕ12p =; (3)设D ={ (x ,y )|y ≤x -1,y ≥14(x +1)2-54},当点(p ,q )取遍D 时,求(,)p q ϕ的最小值 (记为min ϕ)和最大值(记为max ϕ).2011年普通高等学校招生全国统一考试(广东卷)答案数学(理科)试卷类型:A cbw一、选择题题号 1 2 3 4 5 6 7 8 答案BCDACDBA二、填空题 9. [1,)+∞; 10. 84; 11. 10;12. 2;13. 185;14. (1,;15.三、解答题16.解:(1)55()2sin()2sin 41264f ππππ=-==; (2)10(3)2sin 213f παα+==,5sin 13α∴=,又[0,]2πα∈,12cos 13α∴=, 6(32)2sin()2cos 25f πβπββ+=+==,3cos 5β∴=, 又[0,]2πβ∈,4sin 5β∴=, 16cos()cos cos sin sin 65αβαβαβ+=-=. 17.解:(1)乙厂生产的产品总数为1453598÷=;(2)样品中优等品的频率为25,乙厂生产的优等品的数量为235145⨯=; (3)0,1,2ξ=, 22325()i iC C P i C ξ-==(0,1,2)i =,ξ的分布列为ξ0 1 2P310 35110均值314()125105E ξ=⨯+⨯=.18.解:(1) 取AD 的中点G ,又P A =PD ,PG AD ∴⊥,由题意知ΔABC 是等边三角形,BG AD ∴⊥, 又PG , BG 是平面PGB 的两条相交直线,AD PGB ∴⊥平面,//,//EF PB DE GB Q , DEF PGB ∴平面//平面, AD DEF ∴⊥平面(2) 由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 27PG BG PB PGB PG BG +-∠==-⋅.19.解:(1)两圆半径都为2,设圆C 的半径为R,两圆心为1(0)F、20)F ,由题意得12||||2R CF CF ==+或21||||2R CF CF ==+,1212||||||2||CF CF F F ∴-=<=,可知圆心C 的轨迹是以12,F F 为焦点的双曲线,设方程为22221x y a b -=,则22222,1,4,2a a c b c a b ====-==,所以轨迹L 的方程为2214y x -=.(2)22114-=Q ,M L ∴∈, ||||||||MP FP MF -≤,仅当点P 是直线MF 与双曲线L 的交点时,取"=",由2MF k =-知直线MF 与渐近线2by x x a=-=-平行, 所以直线MF 与双曲线L 只有一个交点M ,又||2MF =,所以当点P 与M 重合时,||||||MP FP -最大,等于2,此时P . GPASBSCSDSFE20.解(1)法一:112(1)n n n a ba n a n --=+-,得1112(1)121n n n n a n n n a ba b b a ---+--==+⋅, 设n n n b a =,则121n n b b b b-=⋅+(2)n ≥, 设12()n n b b b λλ-+=⋅+,则122(1)n n b b b bλ-=⋅+-, 令21(1)bb λ-=,得12b λ=-,1121()22n n b b b b b-∴+=⋅+--(2)n ≥, 知12n b b +-是等比数列,11112()()22n n b b b b b -∴+=+⋅--,又11b b=, 12112()222n n n n n b b b b b b b -∴=⋅-=⋅---,(2)2n n n nnb b a b -∴=-.法二:1a b =,2222222(2)22b b b a b b -==+-,33223333(2)242b b b a b b b -==++-, 猜想(2)2n n n nnb b a b -=-,下面用数学归纳法证明:①当1n =时,猜想显然成立;②假设当n k =时,(2)2k k k kkb b a b -=-,则 1111(1)(1)(2)(1)(2)2(1)(2)2(2)2k k k k k k k k k k k b a k b kb b k b b a a n kb b k b b +++++⋅+⋅-+-===+--+⋅--, 所以当1n k =+时,猜想成立,由①②知,*n N ∀∈,(2)2n n n nnb b a b -=-.(2)22122n n n n b b ++≥=,21211222n n n n b b b --+⋅+⋅≥=,11111,222n n n n n n b b b +--++⋅+⋅≥=L L ,以上n 个式子相加得2212n n b b -+⋅+111122n n n n b b +--++⋅+⋅+L L 2121222n n n n b n b -++⋅+≥⋅,1221212112(2)[(222)2](2)2(2)2(2)n n n n n n n n n n n n n n nn b b b b b b b a b b +--++⋅-+⋅++⋅+-⋅-=≤--L 2212121(222)(2)2(2)2(2)n n n n n n n n n b b b b b b b --++⋅++⋅+--⋅-=-L 2121111(2)222(2)n n n n n n n n n b b b b +++++--⋅+⋅=- 2111211(2)(22)2(2)n n n n n n n n nb b b b +++++-⋅+⋅-=-1112n n b ++=+.21.解:(1)00011'|()|22AB x p x p k y x p =====, 直线AB 的方程为200011()42y p p x p -=-,即2001124y p x p =-, 2001124q p p p ∴=-,方程20x px q -+=的判别式2204()p q p p ∆=-=-, 两根001,2||22p p p p x ±-==或02pp -, 00p p ⋅≥Q ,00||||||||22p pp p ∴-=-,又00||||p p ≤≤, 000||||||||222p p p p ∴-≤-≤,得000||||||||||222p p pp p ∴-=-≤, 0(,)||2p p q ϕ∴=. (2)由240a b ->知点(,)M a b 在抛物线L 的下方,①当0,0a b >≥时,作图可知,若(,)M a b X ∈,则120p p >≥,得12||||p p >; 若12||||p p >,显然有点(,)M a b X ∈; (,)M a b X ∴∈12||||p p ⇔>. ②当0,0a b ><时,点(,)M a b 在第二象限,作图可知,若(,)M a b X ∈,则120p p >>,且12||||p p >; 若12||||p p >,显然有点(,)M a b X ∈;(,)M a b X ∴∈12||||p p ⇔>.根据曲线的对称性可知,当0a <时,(,)M a b X ∈12||||p p ⇔>, 综上所述,(,)M a b X ∈12||||p p ⇔>(*);由(1)知点M 在直线EF 上,方程20x ax b -+=的两根11,22p x =或12pa -, 同理点M 在直线''E F 上,方程20x ax b -+=的两根21,22p x =或22p a -, 若1(,)||2p a b ϕ=,则1||2p 不比1||2p a -、2||2p 、2||2pa -小, 12||||p p ∴>,又12||||p p >(,)M ab X ⇒∈,1(,)||2p a b ϕ∴=⇒(,)M a b X ∈;又由(1)知,(,)M a b X ∈1(,)||2pa b ϕ⇒=; 1(,)||2p a b ϕ∴=⇔(,)M a b X ∈,综合(*)式,得证. (3)联立1y x =-,215(1)44y x =+-得交点(0,1),(2,1)-,可知02p ≤≤,过点(,)p q 作抛物线L 的切线,设切点为2001(,)4x x ,则20001142x qx x p -=-, 得200240x px q -+=,解得0x p =,又215(1)44q p ≥+-,即2442p q p -≤-,0x p ∴≤+t =,20122x t t ∴≤-++215(1)22t =--+,0max max ||2x ϕ=Q ,又052x ≤,max 54ϕ∴=; 1q p ≤-Q,0|2|2x p p p ∴≥=+-=, 0max min ||12x ϕ∴==.。

相关文档
最新文档