集合与简易逻辑讲义

合集下载

高中数学复习讲义 第一章 集合与简易逻辑

高中数学复习讲义 第一章 集合与简易逻辑

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合用列举法表2.设集合,,则3.已知集合,,则集合_4.设全集,集合,,则实数a 的值为_____.【范例解析】例.已知为实数集,集合.若,或,求集合B .【反馈演练】1.设集合,,,则=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =,则P +Q 中元素的个数是______个.3.设集合,.(1)若,求实数a 的取值范围;{(,)02,02,,}x y x y x y Z ≤≤≤<∈{21,}A x x k k Z ==-∈{2,}B x x k k Z ==∈A B ⋂={0,1,2}M ={2,}N x x a a M ==∈M N ⋂={1,3,5,7,9}I ={1,5,9}A a =-{5,7}I C A =R 2{320}A x x x =-+≤R B C A R ⋃={01R B C A x x ⋂=<<23}x <<{}2,1=A {}3,2,1=B {}4,3,2=C ()C B A U ⋂},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q 2{60}P x x x =--<{23}Q x a x a =≤≤+P Q P ⋃=(2)若,求实数a 的取值范围;(3)若,求实数a 的值.第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合,则是的充分条件;若集合,则是的必要条件;若集合,则是的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若,则是的充分条件.若,则是的必要条件.若,则是的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知,,那么是的_____充分不必要___条件.(2)已知两直线平行,内错角相等,那么是的____充要_____条件.(3)已知四边形的四条边相等,四边形是正方形,那么是的___必要不充分__条件.3.若,则的一个必要不充分条件是.【范例解析】P Q ⋂=∅{03}P Q x x ⋂=≤<P Q ⊆P Q P Q ⊇P Q P Q =P Q p q ⇒p q q p ⇒p q p q ⇔p q :2p x >:2q x ≥p q :p :q p q :p :q p q x R ∈1x >0x >例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)是的___________________条件;(2)是的___________________条件; (3)是的___________________条件;(4)是或的___________________条件.分析:从集合观点“小范围大范围”进行理解判断,注意特殊值的使用. 点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若q 则p ”的真假.【反馈演练】1.设集合,,则“”是“”的_条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件,条件.若是的充分不必要条件,求实数a 的取值范围.2,2.x y >⎧⎨>⎩4,4.x y xy +>⎧⎨>⎩(4)(1)0x x -+≥401x x -≥+αβ=tan tan αβ=3x y +≠1x ≠2y ≠⇒⌝⌝}30|{≤<=x x M }20|{≤<=x x N M a ∈N a ∈2:{10}p A x R x ax =∈++≤2:{320}q B x R x x =∈-+≤q ⌝p ⌝。

集合与简易逻辑

集合与简易逻辑
都是不同的对象,相同的对象归入一个集合时,仅算一 个元素.
如:应把集合{1,2,2}改写成 {1,2}
(3) 无序性: 集合中的元素是平等的,没有先后顺序, 因此判定两个集合是否一样,仅需比较它们的元素是否 一样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
二、元素与集合之间的关系: 若a是集合A的元素, 就说 a 属于集合 A , 记作 a∈A ; 若a不是集合A的元素, 则 a 不属于集合 A , 记作 aA。 例如:A={1,2,3,4,5}
Q 有理数集记作______;
R 实数集记作_______;
四、集合的常用表示方法:
“地球上的四大洋”组成的集合可以表示 为: {太平洋,大西洋,印度洋,北冰洋}.
方法一:列举法——把集合中的元素一一 列举出来写在大(花)括号{ }内表示集合的 方法。
例1:用列举法表示下列集合:
{ 2, 3, 5, 7 } (1)小于10的所有质数组成的集合__________; (2)由大于3小于10的整数组成的集合 { 4, 5, 6, 7 ,8 ,9 } ___________________; { -4, 4} (3)方程x2-16=0的实数解组成的集合_________;
3 则3∈A , A 2
集合常用大写字母A,B,C,D,……标记, 元素常用小写字母a,b,c,d,……标记。
三、常用数集及其记法:
数的集合简称数集。 一些常用数集及其记法:
N 非负整数集(即自然数集) 记作_______;

N*或 N+ 正整数集记作_____________;
Z 整数集记作_______;
例2:用描述法表示下列集合:

高一数学集合与简易逻辑综合知识精讲

高一数学集合与简易逻辑综合知识精讲

高一数学集合与简易逻辑综合【本讲主要内容】集合与简易逻辑综合集合、子集、交集、并集、补集等概念,绝对值不等式、一元二次不等式的解法,简易逻辑。

【知识掌握】 【知识点精析】1. 集合:一般地,某些指定的对象集在一起就成为一个集合;2. 子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合;3. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集;4. 并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A ,B 的并集;5. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集);6. )0a (a x ><的解集是。

{}a x x |x <<-;)0a (a |x |>>的解集是{}a x a x |x -<>或;7. 一元二次不等式的解法;8. 简易逻辑:命题:可以判断真假的语句叫做命题。

逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。

简单命题和复合命题不含逻辑联结词的命题叫做简单命题。

简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

由简单命题和逻辑联结词构成的命题叫做复合命题。

四种命题及它们的关系【解题方法指导】例1. 已知全集{}的质数不大于20U ,A ,B 是U 的两个子集,且满足{}5,3B C A U =I ,{}19,7A C B U =I ,(U C A )I (U C B)= {}17,2。

求集合A 和B 。

解法一:(直接解法)依题意,{}5,3B C A U =I ,则{}A 5,3⊆,且{}B C 5,3U ⊆。

从而知3,5A ∈,且∉B 。

同理,由B A C U I {}19,7,知7,19,且7,19∉A由(A C U )I (U C B ){}17,2,知2,17∉A ,且2,17 ∉B因为{}19,17,13,11,7,5,3,2U ,观察11和13这两个元素,不外乎下面几种情况:①若11 ,11 ,则A C U ,且 U CB ,这与(AC U )I (U C B )={}17,2矛盾;②若11∈A ,11B ∉,则 U C B ,这与A I U C B ={}5,3矛盾; ③若11 ∉A ,11∈B ,则A C U ,这与B I AC U = {}19,7矛盾;④若11 ∈A ,11 ∈B ,则11∈(A B I )。

01第一章 集合与简易逻辑【讲义】

01第一章 集合与简易逻辑【讲义】

01第一章 集合与简易逻辑【讲义】一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

01第一章集合与简易逻辑【讲义】

01第一章集合与简易逻辑【讲义】
【证明】这里仅证( 1)、( 3),其余由读者自己完成。
(1)若 x A ( B C ) ,则 x A ,且 x B 或 x C ,所以 x ( A B ) 或 x ( A C ) ,
即 x ( A B ) ( A C ) ;反之, x ( A B ) ( A C ) ,则 x ( A B ) 或 x ( A C ) ,
An I ,且 Ai A j
(1 i , j n,i
这些子集的全集叫 I 的一个 n -划分。
定理 5 最小数原理:自然数集的任何非空子集必有最小数。
定理 6 抽屉原理:将 mn 1 个元素放入 n(n 1) 个抽屉,必有一个抽屉放有不少于
j ) ,则 m1
个元素,也必有一个抽屉放有不多于 m 个元素;将无穷多个元素放入 n 个抽屉必有一个抽
y和 x y 4k 2 ,
2.利用子集的定义证明集合相等,先证 A B ,再证 B A ,则 A=B。
例 2 设 A, B 是两个集合,又设集合 M 满足
A M B M A B, A B M A B ,求集合 M (用 A,B 表示)。 【解】先证 ( A B ) M ,若 x ( A B ) ,因为 A M A B ,所以 x A M , x
乘法原理,子集共有 210 1024 个,非空真子集有 1022 个。
5.配对方法。
例 5 给定集合 I {1,2,3, , n} 的 k 个子集: A1 , A2 , , Ak ,满足任何两个子集的交集非
空,并且再添加 I 的任何一个其他子集后将不再具有该性质,求
k 的值。
【解】将 I 的子集作如下配对:每个子集和它的补集为一对,共得
考虑 a n 3 ,有 an 3 a n 2 或 an 3 a n a3 ,即 a 3 3 ,设 an 3 a n 2 ,则

高中数学竞赛讲义第一章 集合与简易逻辑

高中数学竞赛讲义第一章 集合与简易逻辑

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

集合全章讲义

集合全章讲义

第一章:集合与简易逻辑讲义第一节:集合的概念Part One :基础知识(记住有以下6点) 1、集合的概念①集合:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集. ②元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , } ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 3、元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5.集合的表示方法:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……①列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1} ②描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x 注:(1)在不致混淆的情况下,可以省去竖线及左边部分 如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数}③文氏图:用一条封闭的曲线的内部来表示一个集合的方法 6.集合的分类:a:以元素的个数分类:①有限集:含有有限个元素的集合 ②无限集:含有无限个元素的集合③空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x b:以元素的种类分:点集,数集,等Part Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:集合的三大性的考查1.下列各组对象能确定一个集合吗?(1)所有很大的实数 (2)好心的人 (3)1,2,2,3,4,5.2.设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( ) (A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4. 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?题型二:集合的表示方法的考查 1、用描述法表示下列集合①{1,4,7,10,13} ②{-2,-4,-6,-8,-10}③{ 1, 5, 25, 125, 625 }= ;④ { 0,±21, ±52, ±103, ±174, ……}=2、用列举法表示下列集合 ①{x ∈N|x 是15的约数}②{(x ,y )|x ∈{1,2},y ∈{1,2}}③⎩⎨⎧=-=+}422|),{(y x y x y x ④},)1(|{N n x x n∈-= ⑤},,1623|),{(N y N x y x y x ∈∈=+⑥}4,|),{(的正整数约数分别是y x y x 题型三:集合的分类的考查1、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集第二节:子集 全集 补集(集合与集合的关系) Part One :基础知识(记住有以下8点)1.子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A :A B B A ⊇⊆或 ,A ⊂B 或B ⊃A 读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合2.集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B3.真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A4..人为规定:空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A (在考虑集合问题时千万不能忘记空集这个特殊集合) 任何一个集合是它本身的子集A A ⊆5.含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n 2,所有真子集的个数是n 2-1,非空真子集数为2-n6.易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合 如 Φ⊆{0}Φ={0},Φ∈{0} 7、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示8. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作AC S ,即CSA=},|{A x S x x ∉∈且 2、性质:CS (CSA )=A ,CSS=φ,CS φ=S Part Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:对子集等基本概念的考查1. 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示2.判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A 3.(1)填空:N___Z, N___Q, R___Z, R___Q , Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗? (3)是否对任意一个集合A ,都有A ⊆A ,为什么? (4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 . 题型二:利用集合的关系来求解具体问题(重点!)1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围.)1(-≥m2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆ 题型三:全集与补集有关问题1.已知全集U =R ,集合A ={x |1≤2x +1<9},求C U A2. 已知S ={x |-1≤x +2<8},A ={x |-2<1-x ≤1},B ={x |5<2x -1<11},讨论A 与C S B 的关系Part Three :练习1、已知全集U ={x |-1<x <9},A ={x |1<x <a },若A ≠φ,则a 的取值范围是 (A )a <9 (B )a ≤9 (C )a ≥9 (D )1<a ≤92、已知全集U ={2,4,1-a },A ={2,a2-a +2}如果CUA ={-1},那么a 的值为3、已知全集U ,A 是U 的子集,φ是空集,B =CUA ,求CUB ,CU φ,CUU4、设U={梯形},A={等腰梯形},求CUA.5、已知U=R ,A={x|x2+3x+2<0}, 求CUA.6、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} , A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求CUA.7、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=CUN ,N=CUP ,则M 与P 的关系是( ) M=CUP ,(B )M=P ,(C )M ⊇P ,(D )M ⊆P.8、设全集U={2,3,322-+a a },A={b,2},A C U ={b,2},求实数a 和b 的值.9.已知S ={a ,b },A ⊆S ,则A 与CSA 的所有组对共有的个数为 (A )1 (B )2 (C )3 (D )4 (D )10..设全集U (U ≠φ),已知集合M 、N 、P ,且M =CUN ,N =CUP ,则M 与P 的关系是 11..已知U=﹛(x ,y )︱x ∈﹛1,2﹜,y ∈﹛1,2﹜﹜,A=﹛(x ,y )︱x-y=0﹜,求UA12..设全集U=﹛1,2,3,4,5﹜,A=﹛2,5﹜,求U A 的真子集的个数13. 若S={三角形},B={锐角三角形},则CSB= .14.. 已知A={0,2,4},CUA={-1,1},CUB={-1,0,2},求B= 15.. 已知全集U={1,2,3,4},A={x|x2-5x+m=0,x ∈U},求CUA 、m 第二节:交集和并集Part One :基础知识(记住有以下6点)1.交集的定义 一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’), 即A B={x|x ∈A ,且x ∈B }.如:{1,2,3,6} {1,2,5,10}={1,2}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A B={c,d,e}. 2.并集的定义 一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’), 即A B ={x|x ∈A ,或x ∈B}).如:{1,2,3,6} {1,2,5,10}={1,2,3,5,6,10}. 3..交集、并集的性质 用文图表示 (1)若A ⊇B,则A B=B, A B=B(2)若A ⊆B 则A B=A A B=A(3)若A=B, 则A A=A A A=A(4)若A,B 相交,有公共元素,但不包含 则A B A,A B B A BA, A BB(5) )若A,B 无公共元素,则A B=Φ①交集的性质 (1)A A=A A Φ=ΦA B=B A (2)A B ⊆A, A B ⊆B .BA②并集的性质 (1)A A=A (2)A Φ=A (3)A B=B A (4)A B ⊇A,A B ⊇B 联系交集的性质有结论:Φ⊆A B ⊆A ⊆A B .4. 德摩根律:(CuA) (CuB)= Cu (A B), (CuA) (CuB)= Cu(A B)(可以用韦恩图来理解). 结合补集,还有①A (CuA)=U, ②A (CuA)= ΦPart Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:基础的交集与并集的计算:注意数集的交集和并集运算的图像法 例1 设A={x|x>-2},B={x|x<3},求A B.例2 设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B.例3 A={4,5,6,8},B={3,5,7,8},求A B.例4设A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A B.例5设A={x|-1<x<2},B={x|1<x<3},求A ∪B. 例6设A={(x,y)|y=-4x+6},{(x,y)|y=5x-3},求A B.例7已知A 是奇数集,B 是偶数集,Z 为整数集,求A B,A Z,B Z,A B,A Z,B Z.8 已知U={},8,7,6,5,4,3,2,1()B C A U ⋂{},8,1=()BA C U ⋂{}6,2= ()(){},7,4=⋂BC A C U U 则集合A=例9.设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m 的值.例10.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A ∩B={3},求实数a,b,c 的值.. 例11. 已知集合A={y|y=x2-4x+5},B={x|y=x -5}求A ∩B,A ∪B .Part Three :练习1.P={a2,a+2,-3},Q={a-2,2a+1,a2+1},P Q={-3},求a .2..已知全集U=A B={1,3,5,7,9},A (CUB)={3,7}, (CUA) B={5,9}.则A B=____.3 已知A ={x| x2-ax +a2-19=0}, B={x| x2-5x +8=2}, C={x| x2+2x -8=0},若ο/⊂A ∩B ,且A ∩C =ο/,求a 的值4.. 已知元素(1, 2)∈A ∩B ,并且A ={(x, y)| mx -y2+n=0},B={(x, y)| x2-my -n=0},求m, n 的值5. 已知集合A={x|x2+4x-12=0}、B={x|x2+kx-k=0}.若B B A = ,求k 的取值范围6. 若集合M 、N 、P 是全集S 的子集,则图中阴影部分表示的集合是( ) A.P N M )( B .P N M )( C .P C N M S )( D .P C N M S )(集合中段测试 一、选择题1、下列六个关系式:①{}{}a b b a ,,⊆ ②{}{}a b b a ,,= ③Φ=}0{ ④}0{0∈ ⑤}0{∈Φ ⑥}0{⊆Φ 其中正确的个数为( ) (A) 6个 (B) 5个 (C) 4个 (D) 少于4个 2.下列各对象可以组成集合的是( )MN P第9题(A )与1非常接近的全体实数 (B )某校2002-2003学年度笫一学期全体高一学生 (C )高一年级视力比较好的同学 (D )与无理数π相差很小的全体实数3、已知集合P M ,满足M P M = ,则一定有( )(A) P M = (B)P M ⊇ (C) M P M = (D) P M ⊆4、集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 的元素个数为( ) (A)10个 (B)8个 (C)18个 (D) 15个5.设全集U=R ,M={x|x.≥1}, N ={x|0≤x<5},则(C U M )∪(C U N )为( )(A ){x|x.≥0} (B ){x|x<1 或x≥5} (C ){x|x≤1或x≥5} (D ){x| x 〈0或x≥5 }6.设集合{}x A ,4,1=,{}2,1x B =,且{}x B A ,4,1=⋃,则满足条件的实数x 的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个.7.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) (A )3个 (B )4个 (C )5个 (D )6个8.已知全集U ={非零整数},集合A ={x||x+2|>4, x ∈U}, 则C U A =( ) (A ){-6 , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 } (B ){-6 , -5 , -4 , -3 , -2 , -1 , 1 , 2 } (C ){ -5 , -4 , -3 , -2 , 0 , -1 , 1 } (D ){ -5 , -4 , -3 , -2 , -1 , 1 }9、已知集合{}}8,7,3{},9,6,3,1{,5,4,3,2,1,0===C B A ,则C B A )(等于 (A){0,1,2,6} (B){3,7,8,} (C){1,3,7,8} (D){1,3,6,7,8}10、满足条件{}{}1,01,0=A 的所有集合A 的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个11、如右图,那么阴影部分所表示的集合是( )(A))]([C A C B U (B))()(C B B A (C))()(B C C A U (D)B C A C U )]([ 12.定义A -B={x|x ∈A 且x ∉B}, 若A={1,2,3,4,5},B={2,3,6},则A -(A -B )等于( )(A)B (B){}3,2 (C) {}5,4,1 (D) {}6 二.填空题13.集合P=(){}0,=+y x y x ,Q=(){}2,=-y x y x ,则A ∩B= 14.不等式|x-1|>-3的解集是 15.已知集合A= 用列举法表示集合A=16 已知U={},8,7,6,5,4,3,2,1(){},8,1=⋂B C A U {},6,2=B ()(){},7,4=⋂B C A C U U 则集合A= 三.解答题17.已知集合A={}.,0232R a x ax R x ∈=+-∈1)若A 是空集,求a 的取值范围; 2)若A 中只有一个元素,求a 的值,并把这个元素写出来; 3)若A 中至多只有一个元素,求a 的取值范围18.已知全集U=R ,集合A={},022=++px xx {},052=+-=q x x x B {}2=⋂B A C U 若,试用列举法表示集合A集合单元小结基础训练 参考答案C ;2.B ;3.B ;4.D ;5.B ;6.C ;7.D ;8.B ;9.C ;10.D ;11.C ;12.B;13. (){}1,1-; 14.R; 15. {}5,4,3,2,0; 16{}8,5,3,1 ,⎭⎬⎫⎩⎨⎧∈∈N x17.1)a>89 ; 2)a=0或a=89;3)a=0或a≥89 18.⎭⎬⎫⎩⎨⎧32,319*.CUA={}321≤≤=x x x 或 CUB={}2=x x A ∩B=A A ∩(CUB )=φ (CUA )∩B={}3212≤<=x x x 或1 20*. a=-1或2≤a≤3.。

高中数学竞赛讲义01:集合与简易逻辑

高中数学竞赛讲义01:集合与简易逻辑

集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。

例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},分别表示有理数集和正实数集。

定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。

规定空集是任何集合的子集,如果A是B的子集,B也是A 的子集,则称A与B相等。

如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。

定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。

定义6 差集,。

定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。

(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。

定理 3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。

二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。

例1 设,求证:(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙文教育个性化辅导授课案
教师:学生时间:年_ 月__日__段第__ 次课
3、集合的基本运算:
(1)交集的定义: ,记法为: (2)并集的定义: ,记法为: (3)补集的定义: ,记法为: 4、子集个数公式:
二、集合训练
错误!未指定书签。

1.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为 (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞
(D) [2,)+∞
2. 设集合A={x ln(1)y x =-},集合B={y
2y x =},则A B ⋂=( ).
A .[0,1]
B .[0,1)
C .(,1]-∞
D .(,1)-∞
3. 已知集合{}(,)|A x y y x ==,(,)|1y B x y x ⎧
⎫==⎨⎬⎩
⎭,则A 、B 的关系为 ( )
A .A
B = B .A ÜB =A
C .B ÜA =B
D .A B ⋂=φ
4. M={(s,t)|t=s 2},N={(x,y)|y=2x+b,b ∈R},Q={(x,y)|x+y ≤2,3x-y ≥6,x-y ≤4},
且N Q ⋂≠∅,则|2s-t+b|的最小值是 ( C
A.5
B.4
C.3
D.1 5.设全集{}2|≥∈=x N x U ,集合{}
5|2≥∈=x N x A ,则=A C U
A.∅
B. }2{
C. }5{
D. }5,2{
【答案】B
【解析】∵全集U={x ∈N|x ≥2},集合A={x ∈N|x2≥5}={x ∈N|x ≥3}, 则∁UA={x ∈N|x <3}={2},
17.广东8.设整数4n ≥,集合{123,}X =,,……,令集合{(,,)|,,,S x y z x y z X =∈且三条件
,,x y z y z x z x y <<<<<<恰有一个成立},若(,,)x y z 和(,,)z u x 都在S 中,则下列选项正确的是
2,其中
∈则x∈
m A
是否属于A,由m
是虚数单位,R b a ∈,,则“1==b a ”是“必要不充分条件 ,则下列命题中真命题是(p q ∧ C 是公比为q 的等比数列,则
12
C在线段AB
的中位点;+=符
PA
,③不正确
PA+PB+PC+PD=
22.【2012高考陕西理18】(本小题满分12分)
(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π的投影,若a b ⊥,则a c ⊥”为真。

(2)写出上述命题的逆命题,并判断其真假(不需要证明)
【解析】(Ⅰ)证法一 如图,过直线b 上一点作平面π的垂线n ,设直线a ,b ,c ,

∈,,
,,
,,
,那么集合
,则a=代入进行求解,依次进行赋值代入,则
,代入==a=代入=,
,代入==a
,,
龙文教育教务处制。

相关文档
最新文档