概率论与数理统计10—11学年第一学期B

合集下载

《概率论与数理统计》期末考试试题B卷答案

《概率论与数理统计》期末考试试题B卷答案

华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。

答案错选或未选者,该题不得分。

每小题2分,共10分。

)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。

答案错选或未选者,该题不得分。

每小题2分,共10分。

概率论与数理统计 B+参考答案

概率论与数理统计 B+参考答案

《概率论与数理统计》试题(B )+参考答案一、填空题:(每题4分,共20分)1、 设,A B 为两事件,()()12,(|)15P A P B P A B ===,求()P AB =2、 已知2(2,),(24)0.3XN P X σ<<=,则(0)P X <=3、 设K 在(2,4)-服从均匀分布,x 的方程22220x Kx K +++=有实根的概率= 4、 若随机变量X 的数学期望2EX =,方差4DX =,则(28)P X -≥≤ 5、若随机变量(1,3),(1,4)XU Y N -,且它们相互独立,则(32)E X Y ++=二、单选题:(在上表对应题号下填入正确选项。

每题3分,共21分)1、在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ) A 、C B C AB 、C AB C 、BC A C B A C ABD 、C B A2、设连续型随机变量X 的分布函数为2,0()00x B Ae x F x x -⎧+>=⎨≤⎩,则,A B 的值为( )A 、1,1AB ==- B 、1,1A B ==C 、1,1A B =-=-D 、1,1A B =-= 3、若(0,1)XN ,其密度函数为()f x ,则下列说法错误的是( )A 、()f x 关于y 轴对称B 、()f x 的最大值是C 、()()()P a X b b a <<=Φ-ΦD 、()0f x >4、已知随机变量X 的密度函数为()X f x ,令2Y X =,则Y 的密度函数()Y f y =( )A 、2()y X f x dx ∞⎰ B 、1()22X y f C 、()y X f x dx ∞⎰ D 、1()2X f y5、对任意随机变量X ,若DX 存在,则()E DX 等于( )A 、0B 、XC 、()E XD 、()D X 6、已知随机变量(,)XB n p ,且()E X =3.6,() 1.44D X =,则其参数,n p 的值为( )A 、6,0.6n p == ;B 、6,0.4n p == ;C 、8,0.3n p == ;D 、24,0.1n p == 7、(,)0Cov X Y =是随机变量,X Y 相互独立的( ) A 、充分非必要条件 B 、必要非充分条件C 、充要条件D 、既不充分也不必要三、计算题:(第1小题10分,第2-4每小题13分,第5小题10分,共59分)1、设某人按如下原则决定某日的活动:如该天下雨则以0.2的概率外出购物,以0.8的概率外出探访朋友;如该天不下雨则以0.9的概率外出购物,以0.1的概率外出探访朋友。

概统10-11下学期期末练习题

概统10-11下学期期末练习题

概率论与数理统计10-11练习卷课程名称: 概率论与数理统计 考试时间 2011专业 年级 班级 学号 姓名一、填空题(每小题3分)1、设A 、B 为互斥的二事件,P(A) = 31, P(B) = 21, 则P (B-A) = .2、一袋中装有5只球,编号为1,2,3,4,5.从袋中同时取3只球,以X 表示取出的3只球的最大号码,则随机变量X 的分布律为 ,数学期望()E X =____ _,()D X =_____ _.3、设随机变量X 的概率密度为 ,0()1/4,020,2xAe x f x x x ⎧<⎪=≤<⎨⎪≥⎩,设其分布函数为()F x ,则A = ,(1)F = .4、设12ˆˆ,θθ是总体未知参数θ的两个无偏估计量,且12ˆˆ()()D D θθ<,则 . 5、设总体X 的概率分布为X 0123P2θ2(1)θθ-2θ12θ-其中1(0)2θθ<<未知,利用总体的如下样本观察值:3,1,3,0,3,1,2,3,可得θ的矩估计值为 ,θ的极大似然估计值 .6、考察学生平时学习英语所花的平均时间()x h 对英语考试成绩的平均分y (分)的影响,观察10个同学:(,),1,2,,10i i x y i = ,计算得101100ii x==∑,10211376,i i x ==∑101011564,6945,ii i i i yx y ====∑∑由此可求得x y 对的一元线性回归方程 。

二、单项选择题(每小题3分,共15分)1、设总体2~(2,)X N σ,随机取一样本:16121611,,,,i i X X X X X n ==∑ ,则48~X σ-( )(A )(15)t (B )(16)t (C )2(15)χ (D )(0,1)N2、设随机变量X 、Y 的相关系数0XY ρ=,则下面结论正确的是( )(A )X 、Y 一定独立 (B )X 、Y 一定不独立 (C )X 、Y 不一定独立 (D )以上结论都不对3、设总体2~(,)X N μσ,2σ未知,通过样本12,,,n x x x 检验:0010:(:)H H μμμμ=≠时,采用的统计量是( ) (A )0/x z nμσ-=(B )0/1x z n μσ-=-(C )0/x t s nμ-= (D )0/1x t s n μ-=-4、已知随机变量X 的概率密度为()X f x ,令2Y X =-,则Y 的概率密度()Y f y 为( ).(A )2(2)X f y - (B )()2X y f - (C )1()22X y f -- (D )1()22X yf -5. 设二维随机变量(,)X Y 的概率分布为 XY0 1 0 0.4 a 1b0.1已知随机事件{0}X =与{1}X Y +=相互独立,则__________(A) 0.2, 0.3a b == (B) 0.4, 0.1a b == (C) 0.3, 0.2a b ==(D) 0.1, 0.4a b ==6、设随机变量,X Y 相互独立,且~(0,1)X N , ~(1,1)Y N 则( )(A ){}112P X Y +≤=(B ){}102P X Y +≤= (C ){}112P X Y -≤= (D ){}102P X Y -≤=三、计算题(每小题10分,共30分) 1、随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0;20,2)(其他x x x f求(1)E(X), D(X);(2)D(2-3X) (3)(11)P X -<< 2、二维随机变量(X ,Y )的联合密度函数为(34)12, 0,0;(,)0,.-x y e x y f x y +⎧>>=⎨⎩其它 求(1)关于X 和关于Y 的边缘密度函数;(2)(,)X Y 的联合分布函数;(3){01,02}P X Y <≤<≤。

概率论与数理统计第一版答案

概率论与数理统计第一版答案

概率论与数理统计第一版答案【篇一:《概率论与数理统计》课后习题答案第一章】xt>习题1.1解答1. 将一枚均匀的硬币抛两次,事件a,b,c分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件a,b,c中的样本点。

解:(正,正),(正,反),(反,正),(反,反)?a??(正,正),(正,反)?;b??(正,正),(反,反)?c??(正,正),(正,反),(反,正)?2. 在掷两颗骰子的试验中,事件a,b,c,d分别表示“点数之和为偶数偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件ab,a?b,c,bc,a?b?c?d中的样本点。

解:(1,1),(1,2),?,(1,6),(2,1),(2,2),?,(2,6),?,(6,1),(6,2),?,(6,6)?; ab??(1,1),(1,3),(2,2),(3,1)?;a?b??(1,1),(1,3),(1,5),?,(6,2),(6,4),(6,6),(1,2),(2,1)?; c??;bc??(1,1),(2,2)?;a?b?c?d??(1,5),(2,4),(2,6),(4,2),(4,6),(5,1),(6,2),(6,4)?3. 以a,b,c分别表示某城市居民订阅日报、晚报和体育报。

试用a,b,c表示以下事件:(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报;(4)正好订两种报;(5)至少订阅一种报;(6)不订阅任何报;(7)至多订阅一种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。

解:(1)a;(2)ab;(4)ab?ac?bc; (8)abc;(9)??(3)a?b?c;(5)a?b?c;(6);(7)?c?b?a或??4. 甲、乙、丙三人各射击一次,事件a1,a2,a3分别表示甲、乙、丙射中。

试说明下列事件所表示的结果:a2, a2a3, a1a2, a1a2, a1a2a3,a1a2?a2a3?a1a3.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。

天津科技大学10-11概率论与数理统计(概率论)B卷

天津科技大学10-11概率论与数理统计(概率论)B卷

① 任意实数; ② 1; ③ 2; ④ 12.3.若随机变量X 的概率密度为(),()xf x aex -=-∞<<+∞,则=a ( 2 ). ① 12-; ②12; ③1; ④ 32.4.若连续型随机变量X 的分布函数为)(x F ,则以下结论错误的是( 3 ).① ()P a X b <≤=)()(a F b F -; ② ()()()P a X b F b F a <<=-; ③ ()()()P a X b F a F b <<≠-; ④ ()0.P X a ==.5.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是( 4 )。

① 8; ② 16; ③ 28; ④ 44. 三、某校入学考试的数学成绩近似服从正态分布(65,100)N .若85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?(8分)解: 设X 表示考生的数学成绩,则 ~ (65,100)X N 近似,于是858565{85}1{85}1{}1010X P X P X P -->=-≤=-≤ (4分)1(2)10.9772 2.28%≈-Φ=-= (8分)即数学成绩“优秀”的考生大致占总人数的2.28%。

四、某灯泡厂有甲、乙两条流水线,它们所出产的灯泡中,寿命大于2500小时的分别占80%和90%,从它们生产的灯泡中各自随机地抽取一个,求下列事件的概率:(1)两个灯泡寿命均大于2500小时;(2)两灯泡中至少有一个寿命大于2500小时;(3)两个灯泡中至多有一个寿命大于2500小时.(12分)解:用B A ,分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于2500小时,则它们相互独立.(1) 72.09.08.0)()()(=⨯==B P A P AB P , (4分)22,()0,0x e x f x x -⎧>=⎨≤⎩,33,0()0,y e y f y y -⎧>=⎨≤⎩,写出二维随机变量(), X Y 的联合密度函数(), f x y ,并求概率(2,1)P X Y <>. (10分) 解:由随机变量X 与Y 相互独立,得(23)0,0,6,(,)()().0,x y X Y x y e f x y f x f y else -+>>⎧==⎨⎩(5分) 2(23)1(2,1)6x y P X Y dx edy +∞-+<>=⎰⎰(8分) 2234316()()(1)0.0489xyedx edy e e+∞----==-≈⎰⎰(10分)八、 某保险公司多年的资料表明,在索赔户中被盗索赔户占20%,用X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率函数;(2)利用棣莫佛-拉普拉斯中心极限定理,求索赔户中被盗索赔户不少于10户且不多于26户的概率的近似值。

概率论与数理统计作业B

概率论与数理统计作业B

目录第二章随机变量及其分布与数字特征 (1)习题A(作业题) (1)习题B(练习题) (4)一、填空题 (4)二、选择题 (5)三、计算题 (8)第六章统计量和抽样分布 (17)习题A(作业题) (17)习题B(练习题) (19)一、填空题 (19)二、选择题 (20)三、计算题 (23)第八章假设检验 (28)习题A(作业题) (28)习题B(练习题) (29)一、填空题 (29)二、选择题 (30)三、计算题 (33)第二章 随机变量及其分布与数字特征习题A(作业题)1求()⎪⎭⎫ ⎝⎛≤≤⎪⎭⎫ ⎝⎛≤2523;252;1X p X p x F )()()(.DX EX ,2.一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X 的分布列;(2))1(<X p3. 连续型随机变量X 的分布函数为)0(,1,arcsin ,0)(>⎪⎩⎪⎨⎧≥<<-+-≤=a a x a x a a x B A a x x F试求:(1)系数A 、B ;(2)求2(a X p <);(3)X 的分布密度函数。

4.服从拉普拉斯分布的随机变量X 的概率密度xAex f -=)( , 求(1)系数A ; (2))11(<<-X p ,(3)分布函数)(x F .5. 已知随机变量X ),(~2σμN ,975.0)9(=<X p ,062.0)2(=<X p ,利用标准正态分布表求)6(>X p 和)3(>X p 。

6.某保险公司对顾客进行人身保险,如果在一年内投保人死亡,保险公司赔偿10000元,若投保人受伤,保险公司赔偿5000元,已知一年内投保人死亡的概率为0.002,受伤的概率为0.005,为使保险公司的期望收益不低于保费的10%,该公司应该要求顾客至少交多少保险费?习题B(练习题)一、填空题1.用随机变量X 来描述掷一枚硬币的试验结果(正面为1,反面为0). 则X 的分布函数为 。

概率统计A解答(1)

概率统计A解答(1)

湖州师范学院 2010 — 2011 学年第 一 学期 《概率论与数理统计》期末考试试卷(A 卷)适用班级 090126 090127 考试时间 120 分钟学院 班级 学号 姓名 成绩题号 一 二 三 四 五 六 七 八 九 总分 得分一、填空题 (本题共20分,每空格2分)1.设A 、B 、C 表示三个随机事件,则事件“A 、B 、C 中恰有一个发生”可表示为C B A C B A C B A ++,事件“A 、B 、C 中至少发生二个”可表示为AC BC AB ++。

2.把5本书任意地放在书架上,其中指定的3本书放在一起的概率为103。

3.进行独立重复试验,每次试验成功的概率为p ,则在首次试验成功时共进行了m 次试验的概率为()11--m p p 。

4.若随机变量X 服从正态分布)21,1(N ,则X 的密度函数为=)(x ϕ2)1(1--x e π。

5.一批为产品共20个,其中3个次品,从中任取的3个中次品数不多于一个的概率为32013217317C C C C +。

6.设事件A 、B 、A ⋃B 的概率分别为p 、q 、r ,则=)(AB P r q p -+,=)(B A P q r -。

7.若随机变量X 服从泊松分布,)2()1(===X P X P ,则=≤)1(X P 23-e8.进行独立重复试验,每次试验事件A 发生的概率为p ,则在n 次试验中事得分件A 恰好发生()n k k ≤≤0次的概率为()kn kk np p C --1。

9.已知随机变量X 服从标准正态分布)1,0(N ,=≤)96.1(X P 0.975, 则=<)96.1(X P 0.95 。

10.加工在全产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是相互独立的,则经过三道工序生产出的产品是废品的概率是 0.316 。

11.设随机变量X 服从参数为p n ,的二项分布,则=EX np ,DX =()p np -1。

201001B概率统计答b

201001B概率统计答b

华东理工大学2009–2010学年第一学期《概率论与数理统计》期末考试试卷B 答案 2010.01开课学院: 理学院, 专业:大面积, 考试形式:闭卷, 所需时间120分钟 考生姓名: 学号: 班级 任课教师题号 一 二 三 四 五 六 七 八 总分 得分 评卷人附表:975.0)96.1(=Φ;0860.2)20(975.0=t ;59.3)11,9(,91.3)9,11(975.0975.0==F F 。

一、(共8分)已知有3个箱子,第一个箱子中有4个黑球,2个白球,第二个箱子中有3个黑球,3个白球,第三个箱子中有5个黑球,1个白球,现随机取一个球。

(1)求取出的为黑球的概率;(2)已知取出的为黑球,求此球来源于第一个箱子的概率。

二.(共8分)某单位设置一台电话总机,共有200个分机。

设每个分机在任一时刻使用外线通话的概率为5%,各个分机使用外线与否是相互独立的,该单位需要多少外线,才能以97.5%的概率保证各个分机通话时有足够的外线可供使用?三.(共9分)设),(ηξ的联合概率分布表为η ξ -1 0 10 181 121x 41 y 41如果已知0),cov(=ηξ,求:(1)y x ,;(2))),(max(ηξE ;(3) ηξ,独立吗?四.填空题:(3分一题,共24分)1)向单位圆122<+y x 内随机地投下3点,则这3点恰有2点落在同一象限内的概率为___。

2)设总体 ξ 的概率分布为ξ-1 0 1 }{k P =ξt0.20.3则D ξ=_________。

3)设~ξ)6,0(U ,η=⎩⎨⎧>≤404,1ξξ ,则η的数学期望E η=______。

4) 设ηξ,为两个随机变量,满足,73}0{}0{,72}0,0{=≥=≥=≥≥ηξηξP P P 则{max(,)0}P ξη<=________。

5)已知随机变量ξ,η满足2,2,1,4,0.5,E E D D ξηξηξηρ=-====-用切比雪夫不等式估计{6}P ξη+≥≤______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特别提示:请诚信应考,考试违纪或作弊将带来严重后果!
成都理工大学工程技术学院 2010-2011学年第一学期 《概率论与数理统计》期末试卷B
注意事项:1. 考前请将密封线内的各项内容填写清楚; 2. 所有答案请直接答在答题纸上; 3.考试形式:闭卷;
4. 本试卷共 三道 大题,满分100分, 考试时间120分钟。

一、单项选择题(本大题共12小题,每小题3分,共36分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(请将答案填入下表中)
1、掷一枚骰子三次,每次掷出的点数都大于3概率为( ) (A) 0.5; (B)0.125; (C) 0.875; (D) 0.375。

2、如果A ,B 独立,则如下说法错误的是( ) (A )A 与B 独立 (B )A 与B 不相容 (C )()0P A >时,()()P B A P B = (D )()()()P AB P A P B =
3、设随机变量~(,)X B n p ,()0.5,()0.45E X D X ==,则( ) (A) 5,0.3;n p == (B)10,0.05;n p == (C) 1,0.5;n p == (D) 5,0.1n p ==。

4、若X 的分布律为
则2()E X =( )
(A) 0.81; (B) 0.9; (C) 0.3;- (D) 0.99。

5、人的体重X 是一随机变量,若(),()E X a D X b ==,当任抽取10个人的平均体重为X 时,则( )正确。

(A )()E X a =; (B )()0.1E X a = (C )()D X b = (D )()10D X b =
6、任意随机变量X 的概率密度函数()f x 一定满足( )
(A )0()1f x ≤≤; (B )
()1f x dx +∞
-∞
=⎰
(C )0()f x < (D )()f x 是非降且右连续的
7、若12,,,n X X X 是取自正态总体2~(,)X N μσ的样本,则样本均值
1
1n
i i X x n ==∑服从的分布为( )
(A )2
(,
)N n
σμ (B )2(,)N n n μσ
(C )2()n χ (D )()t n
8、若211~(,)X N μσ,2
22~(,)Y N μσ,,X Y 独立,则()D X Y ±=( ) (A )12μμ± (B )2212σσ± (C )2212σσ+ (D )12μμ+
9、设随机变量~(1,3)X U ,则1
(
)E X
=( ) (A )12; (B) 2; (C) 1
ln 3;2
(D) ln 3。

10、某种电子元件的使用寿命2~(,)X N μσ,随机地抽取16个检测得寿命平均值1950X =,标准差*300S =,则以95%的置信度,μ的置信区间为
( )(0
.975.
9751.96,(15)2.13u t ==)
(A )1950159.75± (B )1950147±
(C )1950300± (D )1950285±
11、设12ˆˆ,θθ是参数θ的两个估计量,下面正确的是( ) (A )若12ˆˆ()(),D D θθ>则称1ˆθ为比2ˆθ有效的估计量; (B )若12ˆˆ()(),D D θθ<则称1ˆθ为比2
ˆθ有效的估计量; (C )若12ˆˆ,θθ是参数θ的两个无偏估计量,12ˆˆ()(),D D θθ>则称1ˆθ为比2
ˆθ有效的估计量;
(D )若12ˆˆ,θθ是参数θ的两个无偏估计量,12ˆˆ()(),D D θθ<则称1ˆθ为比2
ˆθ有效的估计量。

12、设12,,,n X X X 是取自总体~(0,1)X N 的样本,X 是样本均值,S 是样本标准差,则如下的分布中,正确的是( )
(A )~(0,1)X N ; (B ~(0,1)N ;
(C )~(0,1)nX N ; (D /~(1)S t n -。

二、填空题(本大题共8小题,每空3分,共24分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

13、已知()0.5,()0.8P A P B ==,3
()5
P B A =,则()P A B = 。

14、有一批由12个正品,8个次品组成的产品,则从中任取2件,恰有一件是次品的概率为 。

15、设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从一批由A 和B 的产品分别占60%和40%的产品中随机抽取一件,若用A ,B 分别表示甲,乙两厂的产品,C 表示产品为次品,则()P C B = 。

16、设随机变量X 的概率密度为2,01
()0,kx x f x ⎧<<=⎨⎩其它
,则
1
()2
P X >= 。

17、~(0,4)X N ,则 (2)P X <= (试用X 的分布函数()Φ∙表示)。

18、设随机变量~(,)X B n p ,且()0.5,()0.45,E X D X ==则p = 。

19、若随机变量~()X E λ,随机变量2~(,)Y N μσ,且X 和Y 相互独立,则
()D X Y += 。

20、设12,,,n X X X 是取自总体X 的样本,则在矩估计中,总体X 的方差的无偏估计量为 。

三、计算题(专科班做21—24题,每题10分,共40分;本科班做21—25题,每题8分,共40分)
21、有三个箱子,第一个箱子中有4个黑球和1个白球;第二个箱子中有3个黑球和3个白球;第三个箱子中有3个黑球和5个白球。

现随机地取出一个箱子,再从这个箱子中取出一个球。

(1)求取出的球是白球的概率;
(2)已知取出的是白球,求此球属于第二个箱子的概率。

22、设二维随机变量,X Y的分布律为
求:(1),
X Y的期望;
(2),
X Y的协方差;
(3)X与Y是否相互独立。

23、某保险公司多年的统计资料表明,在索赔户中,被盗索赔户占索赔户的20%,用X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数,利用中心极限定理,求索赔户不少于14户,且不多于30户的概率。

(答案用标准正态分布的分布函数()
Φ∙表示即可)。

24、某纤维的强力服从正态分布2
Nμ,原设计的平均强力为6g,现改进
(,1.19)
工艺后,某天测得100个强力数据,其样本均值为6.35g,总体标准差假定不变,
α=。

((1.6450Φ=,试问改进工艺后,强力是否有显著提高?显著性水平0.05
Φ=)
(1.960)0.975。

相关文档
最新文档