2018版高考数学大一轮复习第六章数列第4讲数列求和试题理
2018版高考数学大一轮复习 第六章 数列 6.4 数列求和试题 理 北师大版

第六章 数列 6.4 数列求和试题 理 北师大版1.等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2.(3)2+4+6+8+…+2n =n (n +1).(4)12+22+…+n 2=n (n +1)(2n +1)6.【知识拓展】数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × ) (5)推导等差数列求和公式的方法叫作倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(2016·潍坊模拟)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( )A.n 2+7n4B.n 2+5n 3C.2n 2+3n 4D .n 2+n答案 A 解析 设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6.即(2+2d )2=2(2+5d ),整理得2d 2-d =0.。
2018届高考数学(理)大一轮复习教师用书第六章第四节数列的综合问题Word版含解析

第四节数列的综合问题突破点(一) 数列求和1.公式法与分组转化法 (1)公式法直接利用等差数列、等比数列的前n 项和公式求和. ①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . ②等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.(2)分组转化法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减.2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式就是用此法推导的.(2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧 ①1n (n +1)=1n -1n +1.本节主要包括2个知识点: 1.数列求和;数列的综合应用问题.②1n(n+2)=12⎝⎛⎭⎫1n-1n+2.③1(2n-1)(2n+1)=12⎝⎛⎭⎫12n-1-12n+1.④1n+n+1=n+1-n.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求,如等比数列的前n项和公式就是用此法推导的.考点贯通抓高考命题的“形”与“神”分组转化法求和[例1]已知数列n n1n n-1n-1n∈N*),b n=a n-3n(n ∈N*).(1)求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.[解](1)∵a n=2a n-1+3n-1(n∈N*,n≥2),∴a n-3n=2(a n-1-3n-1),∴b n=2b n-1(n∈N*,n≥2).∵b1=a1-3=2≠0,∴b n≠0(n≥2),∴b nb n-1=2,∴{b n}是以2为首项,2为公比的等比数列.∴b n=2·2n-1=2n.(2)由(1)知a n=b n+3n=2n+3n,∴S n=(2+22+…+2n)+(3+32+…+3n)=2(1-2n)1-2+3(1-3n)1-3=2n+1+3n+12-72.[方法技巧]分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.错位相减法求和[例2] (2016·n n {b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .[解] (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式, 所以a n =6n +5. 设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2,所以T n =3n ·2n +2.[方法技巧]错位相减法求和的策略(1)如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法,一般是和式两边同乘以等比数列{b n}的公比,然后作差求解.(2)在写“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.裂项相消法求和[例3]数列{a n}n n1n1,公差为d(d≠0)的等差数列,且b1,b3,b9成等比数列.(1)求数列{a n}与{b n}的通项公式;(2)若c n=2(n+1)b n(n∈N*),求数列{c n}的前n项和T n.[解](1)当n≥2时,a n=S n-S n-1=2n+1-2n=2n,又a1=S1=21+1-2=2=21,也满足上式,所以数列{a n}的通项公式为a n=2n.则b1=a1=2.由b1,b3,b9成等比数列,得(2+2d)2=2×(2+8d),解得d=0(舍去)或d=2,所以数列{b n}的通项公式为b n=2n.(2)由(1)得c n=2(n+1)b n=1n(n+1)=1n-1n+1,所以数列{c n}的前n项和T n=11×2+12×3+13×4+…+1n×(n+1)=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1.[易错提醒]利用裂项相消法求和时,应注意抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.能力练通 抓应用体验的“得”与“失”1.[考点一]若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2解析:选C S n =a 1+a 2+a 3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n +2n -1) =(2+22+…+2n )+2(1+2+3+…+n )-n =2(1-2n )1-2+2×n (n +1)2-n=2(2n -1)+n 2+n -n =2n +1+n 2-2.2.[考点三](2016·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( )A. 2 016-1B. 2 017-1C. 2 018-1D. 2 018+1解析:选C 由f (4)=2可得4a =2,解得a =12,则f (x )=x 12.所以a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.3.[考点二]已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________. 解析:∵a n =n ·2n ,∴S n =1×21+2×22+3×23+…+n ×2n .① ∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2. ∴S n =(n -1)2n +1+2. 答案:(n -1)2n +1+24.[考点一]已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解:S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.5.[考点三]正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,故b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 则T n =1161-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2=1161+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564.即对任意的n ∈N *,都有T n <564.突破点(二) 数列的综合应用问题1.等差、等比数列相结合的问题是高考考查的重点,主要有:(1)综合考查等差数列与等比数列的定义、通项公式、前n 项和公式、等差(比)中项、等差(比)数列的性质;(2)重点考查基本量(即“知三求二”,解方程(组))的计算以及灵活运用等差、等比数列的性质解决问题.2.数列与函数的特殊关系,决定了数列与函数交汇命题的自然性,是高考命题的易考点,主要考查方式有:(1)以数列为载体,考查函数解析式的求法,或者利用函数解析式给出数列的递推关系来求数列的通项公式或前n 项和;(2)根据数列是一种特殊的函数这一特点命题,考查利用函数的性质来研究数列的单调性、最值等问题.3.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:(1)判断数列问题中的一些不等关系,如比较数列中的项的大小关系等.(2)以数列为载体,考查不等式的恒成立问题,求不等式中的参数的取值范围等.(3)考查与数列问题有关的不等式的证明问题.考点贯通 抓高考命题的“形”与“神”等差数列与等比数列的综合问题[例1] n 1020(1)求数列{a n }的通项公式;(2)令b n =2a n -10,证明:数列{b n }为等比数列; (3)求数列{nb n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,则a n =a 1+(n -1)d ,由a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =12+(n -1)×2=2n +10.(2)证明:由(1),得b n =2a n -10=22n +10-10=22n =4n , 所以b n +1b n=4n +14n =4.所以{b n }是首项为4,公比为4的等比数列.(3)由nb n =n ×4n ,得T n =1×4+2×42+…+n ×4n ,① 4T n =1×42+…+(n -1)×4n +n ×4n +1,② ①-②,得-3T n =4+42+ (4)-n ×4n +1=4(1-4n )-3-n ×4n +1. 所以T n =(3n -1)×4n +1+49.[方法技巧]等差数列、等比数列综合问题的两大解题策略(1)设置中间问题:分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意解题细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.[提醒] 在不能使用同一公式进行计算的情况下要注意分类讨论,分类解决问题后还要注意结论的整合.数列与函数的综合问题[例2] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .[解] (1)证明:由已知,b n =2a n >0. 当n ≥1时,b n +1b n=2a n +1-a n =2d .所以数列{b n }是首项为2a 1,公比为2d 的等比数列. (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为 y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以d =a 2-a 1=1,所以a n =n ,b n =2n ,则a n b 2n =n ·4n . 于是S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n , 4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1.因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43.所以S n =(3n -1)4n +1+49.[方法技巧]数列与函数问题的解题技巧(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决.数列与不等式的综合问题[例3] n n n a n -2. (1)求数列{a n }的通项公式;(2)设b n =log 2a 1+log 2a 2+…+log 2a n ,求使(n -8)b n ≥nk 对任意n ∈N *恒成立的实数k 的取值范围.[解] (1)由S n =2a n -2可得a 1=2. 因为S n =2a n -2,所以,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n a n -1=2.所以数列{a n }是以a 1=2为首项,2为公比的等比数列, 所以a n =2n (n ∈N *).(2)由(1)知a n =2n,则b n =log 2a 1+log 2a 2+…+log 2a n =1+2+…+n =n (n +1)2.要使(n -8)b n ≥nk 对任意n ∈N *恒成立, 即(n -8)(n +1)2≥k 对任意n ∈N *恒成立.设c n =12(n -8)(n +1),则当n =3或4时,c n 取得最小值,为-10,所以k ≤-10.即实数k 的取值范围为(-∞,-10]. [方法技巧]数列与不等式相结合问题的处理方法(1)如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.(2)如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.能力练通 抓应用体验的“得”与“失”1.[考点一]设{a n } 是首项为a 1 ,公差为-1 的等差数列,S n 为其前n 项和.若 S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12D .-12解析:选D 由S 1=a 1,S 2=2a 1-1,S 4=4a 1-6成等比数列可得(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.2.[考点一]已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.解析:∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7, ∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.① 又∵2a 1+a 2=1,∴3a 1+d =1.② 由①②解得a 1=23,d =-1.答案:23-13.[考点二](2016·南昌调研)等差数列{a n }的前n 项和为S n ,已知f (x )=2x -12x +1,且f (a 2-2)=sin 2 014π3,f (a 2 014-2)=cos 2 015π6,则S 2 015=________.解析:因为f (x )=2x -12x +1,f (-x )=2-x -12-x +1=1-2x2x +1,所以f (x )+f (-x )=0,即f (-x )=-f (x ).而f (x )=2x -12x +1=1-22x +1,所以f (x )是R 上的增函数.又f (a 2-2)=sin2 014π3=sin ⎝⎛⎭⎫671π+π3=-sin π3=-32,f (a 2 014-2)=cos 2 015π6=cos ⎝⎛⎭⎫336π-π6=cos π6=32,所以f (a 2-2)=-f (a 2 014-2)=f (2-a 2 014),所以a 2-2=2-a 2 014,所以a 2+a 2 014=4.所以S 2 015=2 015(a 1+a 2 015)2=2 015(a 2+a 2 014)2=2 015×42=4 030.答案:4 0304.[考点一]已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n ∈N *). (2)设等比数列{b n }的公比为q . 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4. 所以b 6=4×26-1=128. 由128=2n +2得n =63,所以b 6与数列{a n }的第63项相等.5.[考点三]设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解:(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1. 又因为a 1,a 2+1,a 3成等差数列, 所以a 1+a 3=2(a 2+1),即a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列.故a n =2n . (2)由(1)得1a n=12n ,所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000.因为29=512<1 000<1 024=210,所以n ≥10. 于是使|T n -1|<11 000成立的n 的最小值为10.6.[考点二、三](2016·安徽质检)已知函数f (x )=ln x +cos x -⎝⎛⎭⎫6π-92x 的导数为f ′(x ),且数列{a n }满足a n +1+a n =nf ′⎝⎛⎭⎫π6+3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值;(2)若对任意n ∈N *,都有a n +2n 2≥0成立,求a 1的取值范围. 解:f ′(x )=1x -sin x -6π+92,则f ′⎝⎛⎭⎫π6=4, 故a n +1+a n =4n +3.(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d ,a n +1=a 1+nd ,由a n +1+a n =4n +3得(a 1+nd )+[a 1+(n -1)d ]=4n +3,解得d =2,a 1=52.(2)由a n +1+a n =4n +3得a n +2+a n +1=4n +7,两式相减得a n +2-a n =4,故数列{a 2n -1}是首项为a 1,公差为4的等差数列;数列{a 2n }是首项为a 2,公差为4的等差数列,又a 1+a 2=7,a 2=7-a 1,所以a n =⎩⎪⎨⎪⎧2n -2+a 1(n 为奇数),2n +3-a 1(n 为偶数).①当n 为奇数时,a n =2n -2+a 1,则有a 1≥-2n 2-2n +2对任意的奇数n 恒成立, 令f (n )=-2n 2-2n +2=-2⎝⎛⎭⎫n +122+52,n 为奇数, 则f (n )max =f (1)=-2,所以a 1≥-2.②当n 为偶数时,a n =2n +3-a 1,则有-a 1≥-2n 2-2n -3对任意的偶数n 恒成立, 令g (n )=-2n 2-2n -3=-2⎝⎛⎭⎫n +122-52,n 为偶数, 则g (n )max =g (2)=-15,故-a 1≥-15,解得a 1≤15. 综上,a 1的取值范围是[-2,15].[全国卷5年真题集中演练——明规律] 1.(2012·新课标全国卷)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以前60项和为S 60=30+2×30+30×(30-1)2×4=1 830. 2.(2015·新课标全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n3(2n +3).3.(2014·新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即23n -1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.4.(2013·新课标全国卷Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=1212n -3-12n -1,从而数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n项和为121-1-11+11-13+…+12n -3-12n -1=n 1-2n.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n 1-2=n +2n -1.2.(2017·长沙模拟)已知数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15解析:选A ∵a n =(-1)n (3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.3.(2016·南昌三模)若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和为( )A.n +12(n +2)B.34-2n +32(n +1)(n +2) C.n -1n +2D.34-2n +3(n +1)(n +2)解析:选B 易得a 1+a 2+…+a n =n (3+2n +1)2=n (n +2),所以b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =121+12-1n +1-1n +2=34-2n +32(n +1)(n +2). 4.12+12+38+…+n 2n 的值为________. 解析:设S n =12+222+323+…+n 2n ,①得12S n =122+223+…+n -12n +n 2n +1,②①-②得,12S n =12+122+123+…+12n -n 2n +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-n 2n +1,∴S n =2n +1-n -22n =2-n +22n .答案:2-n +22n5.(2017·江西八校联考)在数列{a n }中,已知a 1=1,a n +1+(-1)n a n =cos(n +1)π,记S n为数列{a n }的前n 项和,则S 2 017=________.解析:∵a n +1+(-1)n a n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1+(-1)×1 008=-1 007.答案:-1 007[练常考题点——检验高考能力]一、选择题1.(2017·皖西七校联考)在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =32164,则n =( )A .3B .4C .5D .6解析:选D 由a n =2n -12n =1-12n 得S n =n -12+122+…+12n =n -⎝⎛⎭⎫1-12n ,则S n =32164=n -⎝⎛⎭⎫1-12n ,将各选项中的值代入验证得n =6. 2.已知等差数列{a n }的各项均为正数,a 1=1,且a 3,a 4+52,a 11成等比数列.若p -q=10,则a p -a q =( )A .14B .15C .16D .17解析:选B 设等差数列{a n }的公差为d ,由题意分析知d >0,因为a 3,a 4+52,a 11成等比数列,所以⎝⎛⎭⎫a 4+522=a 3a 11,即⎝⎛⎭⎫72+3d 2=(1+2d )·(1+10d ),即44d 2-36d -45=0,所以d =32⎝⎛⎭⎫d =-1522舍去,所以a n =3n -12.所以a p -a q =32(p -q )=15.3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值为( ) A .2 500B .2 600C .2 700D .2 800解析:选B 当n 为奇数时,a n +2-a n =0,所以a n =1,当n 为偶数时,a n +2-a n =2,所以a n =n ,故a n =⎩⎪⎨⎪⎧1(n 为奇数),n (n 为偶数),于是S 100=50+(2+100)×502=2 600.4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为( )A .2 017B .2 016C .1 009D .1 007解析:选C 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009,故选C.5.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:选C 由已知可得,数列{a n }为等差数列,f (x )=sin 2x +cos x +1,∴f ⎝⎛⎭⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin 2x -cos x +1,∴f (π-x )+f (x )=2.∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.6.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列⎩⎨⎧⎭⎬⎫1(2n +1)a n 的前n 项和T n =( ) A .-n2n +1 B.n 2n +1 C .-2n2n +1D.2n 2n +1解析:选C 设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a 3-a 12=32a 1-54,S 4=3a 3+a 1=a 1-152,S 1,S 2,S 4成等比数列,所以⎝⎛⎭⎫32a 1-542=⎝⎛⎭⎫a 1-152a 1,整理得4a 21+12a 1+5=0,所以a 1=-52或a 1=-12.当a 1=-52时,公差d =0不符合题意,舍去;当a 1=-12时,公差d =a 3-a 12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以1(2n +1)a n =-2(2n -1)(2n +1)=-12n -1-12n +1,所以其前n 项和T n =-1-13+13-15+…+12n -1-12n +1=-⎝ ⎛⎭⎪⎫1-12n +1=-2n 2n +1,故选C. 二、填空题7.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1218.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 016项的和等于________.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 016项的和等于S 2 016=1 008×⎝⎛⎭⎫1+12=1 512. 答案:1 5129.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.答案:2n +1-210.(2017·福建泉州五中模拟)已知lg x +lg y =1,且S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n ,则S n =________.解析:因为lg x +lg y =1, 所以lg(xy )=1.因为S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n , 所以S n =lg y n +lg(xy n -1)+…+lg(x n -2y 2)+lg(x n -1y )+lg x n ,两式相加得2S n =(lg x n +lg y n )+[lg(x n -1y )+lg(xy n -1)]+…+(lg y n +lg x n )=lg(x n ·y n )+lg(x n -1y ·xy n -1)+…+lg(y n ·x n )=n [lg(xy )+lg(xy )+…+lg(xy )]=n 2lg(xy )=n 2,所以S n =n 22.答案:n 22三、解答题11.数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式; (2)设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.解:(1)由题意知,{a n }是首项为1,公比为2的等比数列, ∴a n =a 1·2n -1=2n -1.∴S n =2n -1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7, ∴d =2,则b n =1+(n -1)×2=2n -1. (2)证明:∵log 2a 2n +2=log 222n +1=2n +1, ∴c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1= 12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. ∵n ∈N *,∴T n =12⎝ ⎛⎭⎪⎫1-12n +1<12,当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0, ∴数列{T n }是一个递增数列,∴T n ≥T 1=13. 综上所述,13≤T n <12. 12.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 解:(1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.当n =1时,a 1=S 1=3×12-2×1=1=6×1-5,所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =121-17+⎝⎛⎭⎫17-113+…+16n -5-16n +1=12⎝⎛⎭⎪⎫1-16n +1=3n 6n +1.。
2018高考数学文人教新课标大一轮复习配套文档:第六章 数列 6-4 数列求和及应用 含答案 精品

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和: ①1+2+3+…+n = ; ②2+4+6+…+2n = ; ③1+3+5+…+(2n -1)= ; ④12+22+32+…+n 2= ; ⑤13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22. (2)分组求和:把一个数列分成几个可以直接求和的数列.(3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和.常见的裂项公式: ①1n (n +1)= -1n +1;②1(2n -1)(2n +1)= ⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n (n +1)(n +2)= ⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2); ④1a +b= (a -b );⑤a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = .(4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类. (5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2②n 2+n③n 2④n (n +1)(2n +1)6(5)①1n ②12 ③12 ④1a -b2.(1)a (1+xr ) (2)a (1+r )x(3)N (1+p )x设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( )A .2nB .2n-n C .2n +1-nD .2n +1-n -2解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合.解法二:研究通项a n =1+2+22+…+2n -1=2n-1, 所以S n =(21-1)+(22-1)+…+(2n-1) =(21+22+…+2n )-n =2n +1-n -2.故选D .解:设第n个图案中白色地面砖有a n块,a1=6,a2=10,a3=14,易知a n-a n-1=4(n≥2),+…+3-1)+…+金进行生态环境建设,并以此发展旅游产业,根据规B.a 29⎝ ⎛个三角形的内切圆半径为,a 2=12a 1,…,a ,公比为12的等比数列.所以n x2是等差数列B.{S2n}是等差数列是等差数列D.{d2n}是等差数列解:由题意,过点A1,A2,A3,…,Aa n。
高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
2018版高考数学理人教大一轮复习讲义教师版文档第六章

1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12.2.(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 3.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64 答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 (1)C (2)2n -1解析 (1)由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.故选C.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×[1-(12)n ]1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 (1)B (2)3n -1解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1q n -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1. 由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q=12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.13.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .[3分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n+1),n 为奇数,2+12n(2n-1),n 为偶数.[6分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[8分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[10分]故对于n ∈N *,有S n +1S n ≤136.[12分]1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( ) A .4 B .6 C .8 D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.(2016·珠海模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23D.23或-23答案 C解析 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.*4.(2015·福建)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .9 答案 D解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2,解得⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里 答案 B解析 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1(1-126)1-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.6.(2016·铜仁质检)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32C .1D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以a 4=π33. log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 3π33=7π3, 所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4, 则q =a 4a 3=4.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150. 9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案12n解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×(12)n -1=12n . 10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2, ∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3, ∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2·4n -1=22n -1. 从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1). 12.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。
2018届高三数学一轮复习:第六章 数列第四节 数列求和 含解析

第四节数列求和A组基础题组1.数列{a n},{b n}(n∈N*)都是等差数列,a1=2,b1=8,且a20+b20=50.则{a n+b n}的前20项的和为()A.600B.610C.620D.6302.已知数列{a n}的通项公式是a n=2n-3,则其前20项和为()A.380-B.400-C.420-D.440-3.(2016德州模拟)数列{a n}的通项公式为a n=ncos,其前n项和为S n,则S2016等于()A.1008B.2016C.504D.04.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为S n,则S2016的值为()A. B. C. D.5.已知数列{a n}中,a n=-4n+5.等比数列{b n}中,公比q满足q=a n-a n-1(n≥2)且b1=a2,则|b1|+|b2|+|b3|+…+|b n|=()A.1-4nB.4n-1C.D.6.(2016重庆第一次适应性测试)在数列{a n}中,若a1=2,且对任意正整数m,k,总有a m+k=a m+a k,则{a n}的前n项和S n=.7.在数列{a n}中,a2=4,a3=15,若S n为{a n}的前n项和,且数列{a n+n}是等比数列,则S n=.8.(2015课标Ⅱ,16,5分)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=.9.(2016天津,18,13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且-=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n}的前2n项和.10.(2016郑州模拟)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n.(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.B组提升题组11.(2016江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于()A.5B.6C.7D.1612.(2016南昌模拟)已知数列{a n},{b n}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时,都有a i+b j=a k+b l,则(a1+b1)+(a2+b2)+(a3+b3)+…+(a2017+b2017)]的值为()A.2016B.2017C.2018D.201913.(2016广西高三适应性测试)已知数列{}的前n项和S n=n2,则数列的前n项和T n=.14.已知数列{a n}满足a n+1=+,且a1=,则该数列的前2016项的和等于.15.已知数列{a n}的前n项和S n=-n2+kn(其中k为常数,且k∈N*),且S n的最大值为8.(1)确定常数k,并求a n;(2)求数列的前n项和T n.16.(2016济南模拟)已知公比q不为1的等比数列{a n}的首项a1=,前n项和为S n,且a4+S4,a5+S5,a6+S6成等差数列.(1)求数列{a n}的通项公式;(2)对n∈N*,在a n与a n+1之间插入n个数,使这n+2个数成等差数列,记插入的这n个数的和为b n,求数列{b n}的前n项和T n.答案全解全析A组基础题组1.A由题意知{a n+b n}也为等差数列,所以{a n+b n}的前20项和为S20===600.2.C由a n=2n-3,得其前20项和S20=2(1+2+…+20)-3=2×-3×=420-.3.A易知a1=cos=0,a2=2cosπ=-2,a3=0,a4=4,…….所以数列{a n}的所有奇数项为0,前2016项中所有偶数项(共1008项)依次为-2,4,-6,8,…,-2014,2016.故S2016=0+(-2+4)+(-6+8)+…+(-2014+2016)=1008.4.D因为f'(x)=2x+b,所以f'(1)=2+b=3,所以b=1,所以f(x)=x2+x,所以==-,所以S2016=1-+-+…+-=1-=.5.B由已知得b1=a2=-3,q=-4,∴b n=(-3)×(-4)n-1,∴|b n|=3×4n-1,即{|b n|}是以3为首项,4为公比的等比数列.∴|b1|+|b2|+…+|b n|==4n-1.6.答案n(n+1)解析依题意得a n+1=a n+a1,即有a n+1-a n=a1=2,所以数列{a n}是以2为首项,2为公差的等差数列,a n=2+2(n-1)=2n,S n==n(n+1).7.答案3n--1解析∵{a n+n}是等比数列,∴数列{a n+n}的公比q====3,则{a n+n}的通项为a n+n=(a2+2)·3n-2=6·3n-2=2·3n-1,则a n=2·3n-1-n,∴S n=-=3n--1.8.答案-解析由已知得a n+1=S n+1-S n=S n+1S n,又由a1=-1知S n≠0,则有-=-1,故数列是以-1为首项,-1为公差的等差数列,则=-1+(n-1)×(-1)=-n,所以S n=-.9.解析(1)设数列{a n}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=(log2a n+log2a n+1)=(log22n-1+log22n)=n-,即{b n}是首项为,公差为1的等差数列.设数列{(-1)n}的前n项和为T n,则T2n=(-+)+(-+)+…+(-+)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.10.解析(1)由题意得,5a3·a1=(2a2+2)2,将a3=a1+2d,a2=a1+d及a1=10代入,并化简得d2-3d-4=0,解得d=-1或d=4,所以a n=-n+11,n∈N*或a n=4n+6,n∈N*.(2)设数列{a n}的前n项和为S n,因为d<0,所以由(1)得d=-1,a n=-n+11,则当n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-n2+n;当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|=B组提升题组11.C根据题意,这个数列的前8项分别为5,6,1,-5,-6,-1,5,6,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.12.D由题意易知a1+b2=a2+b1,∴b2=2+2-1=3,又b1+a3=a2+b2,∴a3=2+3-2=3,又a3+b2=a2+b3,∴b3=3+3-2=4.同理可得a4=4,b4=5,……,a2017=2017,b2017=2018,所以(a1+b1)+(a2+b2)+(a3+b3)+…+(a2017+b2017)]=(1+2018)×2017]=2019.13.答案解析由题意得==∴=2n-1.∴==,∴T n===.14.答案1512解析因为a1=,a n+1=+,所以a2=1,从而a3=,a4=1,……,即得a n=故数列的前2016项的和S2016=1008×=1512.15.解析(1)当n=k时,S n=-n2+kn取最大值,即8=S k=-k2+k2=k2,故k2=16,因此k=4,从而a n=S n-S n-1=-n(n≥2).又a1=S1=,所以a n=-n(n∈N*).(2)令b n==,则T n=b1+b2+…+b n=1+++…++,所以T n=2T n-T n=2+2++…++-1+++…++=2+1++…+-=4--=4-.16.解析(1)因为a4+S4,a5+S5,a6+S6成等差数列,所以2(a5+S5)=a4+S4+a6+S6,化简得2a6-3a5+a4=0,∴2q2-3q+1=0,解得q=(q=1舍去),故a n=.(2)记插入的n个数为x i(i=1,2,…,n),由(1)及等差数列的性质及前n项和公式可知x1+x n=a n+a n+1,b n==n×,所以T n=1×+2×+3×+…+(n-1)×+n×,①T n=1×+2×+3×+…+(n-1)×+n×,②①-②得T n=+++…+-n=⇒T n==.。
2018版高考数学理人教大一轮复习讲义教师版文档第六章

1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 【知识拓展】1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ )1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29 D .30答案 B解析 由图可知,第7个三角形数是1+2+3+4+5+6+7=28.2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( )A.135B.142C.148D.154 答案 B3.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.4.数列{a n }中,a n =-n 2+11n ,则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-(n -112)2+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 5.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)(2016·太原模拟)数列1,3,6,10,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)C (2)2n +1n 2+1解析 (1)观察数列1,3,6,10,…可以发现1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,…第n 项为1+2+3+4+…+n =n (n +1)2.∴a n =n (n +1)2.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的绝对值的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n-32n. 题型二 由a n 与S n 的关系求通项公式例2 (1)(2017·南昌月考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.(2)已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式.①S n =2n 2-3n ;②S n =3n +b . 解 ①a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.思维升华 已知S n ,求a n 的步骤(1)当n =1时,a 1=S 1;(2)当n ≥2时,a n =S n -S n -1;(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.(1)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.(2)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n 等于( ) A .2n -1B .(32)n -1C .(32)nD.12n -1 答案 (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)B解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由a n +1=S n +1-S n ,得12S n =S n +1-S n ,即S n +1=32S n (n ≥1),又S 1=a 1=1,所以数列{S n }是首项为1,公比为32的等比数列,所以S n =(32)n -1,故选B.题型三 由数列的递推关系求通项公式例3 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +ln(1+1n );(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln(1+1n),∴a n -a n -1=ln(1+1n -1)=ln nn -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnn n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln(n n -1.n -1n -2 (3)2·2)=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1.思维升华 已知数列的递推关系求通项公式的典型方法(1)当出现a n =a n -1+m 时,构造等差数列;(2)当出现a n =xa n -1+y 时,构造等比数列;(3)当出现a n =a n -1+f (n )时,用累加法求解;(4)当出现a n a n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2且n ∈N *),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5等于( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1,∴a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16. 题型四 数列的性质 命题点1 数列的单调性例4 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=____________________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)(2016·哈尔滨模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 503×4+3=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.12.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·(1011)n ,则此数列的最大项是第________项.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析. 解析 (1)∵a n +1-a n =(n +2)(1011)n +1-(n +1)(1011)n=(1011)n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9、10项. (2)由a n +1>a n 知该数列是一个递增数列, 又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. 答案 (1)9或10 (2)(-3,+∞)1.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.2.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项和第6项 答案 D解析 令a n =3,即n 2-8n +15=3,整理得n 2-8n +12=0,解得n =2或n =6. 3.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B .(n +1n )n -1C .n 2D .n 答案 D解析 ∵a n =n (a n +1-a n ),∴a n +1a n =n +1n, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1·n -1n -2·n -2n -3·…·32·21·1=n .4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12, a 5=a 4a 3=13,a 6=a 5a 4=23, a 7=a 6a 5=2,a 8=a 7a 6=3, ∴数列{a n }具有周期性,T =6,∴a 2 018=a 336×6+2=a 2=3.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,若S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132 答案 B解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧ -32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 6.(2016·开封一模)已知函数y =f (x )的定义域为R .当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f (-2-a n )(n ∈N *),则a 2 015的值为( )A .4 029B .3 029C .2 249D .2 209 答案 A解析 根据题意,不妨设f (x )=(12)x ,则a 1=f (0)=1,∵f (a n +1)=1f (-2-a n ),∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 015=4 029.7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________.答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.已知数列{a n }的通项公式a n =(n +2)·(67)n ,则数列{a n }的项取最大项时,n=________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1, 即⎩⎨⎧ (n +2)·(67)n ≥(n +1)·(67)n -1,(n +2)·(67)n ≥(n +3)·(67)n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 10.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则该数列的前2 019项的乘积a 1·a 2·a 3·…·a 2 019=________.答案 3解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1, ∴数列{a n }是以4为周期的数列,而2 019=4×504+3,a 1a 2a 3a 4=1, ∴前2 019项的乘积为1504·a 1a 2a 3=3.11.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解 (1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2×3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2. 12.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .*13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。
2018届高三高考数学复习练习:6-4数列求和 含答案 精

6-41.(2018·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100【解析】 根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100,故选D.【答案】 D2.(2018·西安模拟)设等比数列{a n }的前n 项和为S n ,已知a 1=2 018,且a n +2a n +1+a n+2=0(n ∈N *),则S 2 018等于( ) A .0B .2 018C .2 017D .2 016【解析】 ∵a n +2a n +1+a n +2=0(n ∈N *), ∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比, 即q 2+2q +1=0,∴q =-1, ∴a n =(-1)n -1·2 018,∴S 2 018=(a 1+a 2)+(a 3+a 4)+…+(a 2 017+a 2 018)=0. 【答案】 A3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100【解析】 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.【答案】 C4.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82【解析】 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n=(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.【答案】 B5.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .-100 B .0 C .100D .10 200【解析】 若n 为偶数,则a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1),所以a n 是首项为a 2=-5,公差为-4的等差数列;若n 为奇数,则a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1,所以a n 是首项为a 1=3,公差为4的等差数列.所以a 1+a 2+a 3+…+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=50×3+50×492×4+50×(-5)+50×492×(-4)=-100.【答案】 A6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( ) A .153 B .210 C .135D .120【解析】 令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0,∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9+12×(1+23)2=153.【答案】 A7.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.【解析】 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n ) =n +1-1.令n +1-1=10,得n =120. 【答案】 1208.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.【解析】 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60. 【答案】 609.(2018·大连模拟)若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n项和为________.【解析】 由前四项知数列{a n }的通项公式为a n =1n 2+2n ,由1n 2+2n =12⎝⎛⎭⎫1n -1n +2知,S n =a 1+a 2+a 3+…+a n -1+a n=12⎣⎡1-13+12-14+13-15+…+⎝⎛⎭⎫1n -2-1n +⎦⎤⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2 =12⎣⎡⎦⎤1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2). 【答案】 34-2n +32(n +1)(n +2)10.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=________. 【解析】 令n =1,得a 1=4,∴a 1=16. 当n ≥2时,a 1+a 2+…+a n -1 =(n -1)2+3(n -1). 与已知式相减,得a n =(n 2+3n )-(n -1)2-3(n -1)=2n +2. ∴a n =4(n +1)2. 当n =1时,a 1适合a n .∴a n =4(n +1)2,∴a nn +1=4n +4,∴a 12+a 23+…+a nn +1=n (8+4n +4)2=2n 2+6n . 【答案】 2n 2+6n11.(2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .【解析】 (1)设{a n }的公比为q ,由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n .(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1. 令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .12.已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)因为对任意正整数n 满足a n +1-a n =2, 所以{a n }是公差为2的等差数列. 又因为a 1=3, 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1, 对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时,1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3,所以T n =120+12⎣⎡⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+⎦⎤…+⎝⎛⎭⎫12n +1-12n +3=120+12⎝⎛⎭⎫15-12n +3 =120+n -110n +15. 当n =1时仍成立, 所以T n =120+n -110n +15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018版高考数学大一轮复习 第六章 数列 第4讲 数列求和试题 理新人教版基础巩固题组 (建议用时:40分钟)一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A.120B.70C.75D.100解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.答案 C2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A.9B.8C.17D.16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5B.6C.7D.16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A.22 016-1B.3·21 008-3 C.3·21 008-1D.3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016 =(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016) =1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B.答案 B 二、填空题6.(2017·保定模拟)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n1-2=2n-1,故由分组求和法及等比数列的求和公式可得和为2(1-2n)1-2-n =2n +1-2-n .答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n-1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n)1-4=4n -1.答案 4n-1 三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3.∴b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n1-3=n 2+3n-12. 10.(2017·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n .所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(2n +2). 能力提升题组 (建议用时:20分钟)11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( )A.42B.43C.44D.45解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1] =n n -n +1n +1. 所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫nn-n +1n +1=1-n +1n +1, 因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2),所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43. 答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A.76 B.78 C.80D.82解析 因为a n +1+(-1)na n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78.答案 B13.设f (x )=4x 4x +2,若S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,则S =________.解析 ∵f (x )=4x4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x4x +2+22+4x =1.S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,①S =f ⎝⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+f ⎝ ⎛⎭⎪⎫12 015,②①+②得, 2S =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫2 0142 015+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫12 015=2 014,∴S =2 0142=1 007.答案 1 00714.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13, 所以a 1a 2=3.① 令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15.②解①②得a 1=1,d =2,所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n,所以T n =1×41+2×42+…+n ×4n, 所以4T n =1×42+2×43+…+n ×4n +1,两式相减,得-3T n =41+42+ (4)-n ·4n +1=4(1-4n)1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.。