利用变量轮换对称性计算积分
对称性在高等数学积分计算中的应用

对称性在高等数学积分计算中的应用作者:刘记川来源:《课程教育研究·学法教法研究》2017年第09期【摘要】积分计算是高等数学教学中的重点和难点之一,如何进行积分计算,教学过程中对每一类积分都给出了相应的计算方法。
然而有些积分的被积函数和积分区域比较复杂,计算起来比较困难,甚至有些积分采用常规的方法无法计算。
对称性是积分计算中经常采用的积分技巧,可以把问题简单化,减少计算量。
对具有一定特性的被积函数和积分区域,对称性可以展现出高效快捷的计算优势。
【关键词】对称性积分【中图分类号】O172.2 【文献标识码】A 【文章编号】2095-3089(2017)09-0031-02积分学是高等数学教学中的重点和难点,内容包括二重积分、三重积分、曲线积分和曲面积分[1,2]。
在高等数学教学的过程中,对每一类积分都罗列出很多种计算方法。
每一类积分计算都有很多的难点,想要真正的掌握并非易事,并且各种积分之间的相互转化就更为复杂。
然而在积分计算的过程中,有些积分的积分区域比较特殊(例如:积分区域具有对称性)或者被积函数具有奇偶性,这类积分的计算运用一定的技巧,可以省掉繁琐的计算过程,从而达到简单、快捷、高效和准确的目的。
一、定义对称性主要是指积分区域的对称性。
二维平面上的区域关于坐标轴的对称以及关于直线y=x对称。
三维中是空间区域关于三个坐标面的对称以及关于面y=x,z=x和y=z的对称。
轮换对称性是对称性的一种特殊情况,二维上是关于直线y=x对称,三维上是关于面y=x,z=x 和y=z的对称。
定义1.1:坐标轴对称:区域,对任意的(x,y)∈D,如果(x,-y)∈D,则区域D关于x轴对称;如果(-x,y)∈D,则区域D关于y轴对称。
定义1.2:坐标面对称:区域,对任意的(x,y,z)∈Ω,如果(x,y,-z)∈Ω,则区域Ω关于xoy面对称;如果(x,-y,z)∈Ω,则区域Ω关于xoz面对称;如果(-x,y,z)∈Ω,则区域Ω关于yoz 面对称。
对称性在积分计算中的应用

㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。
积分区域关于y=x对称就可以用轮换对称性吗

积分区域关于y=x对称就可以用轮换对称性吗坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可。
比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)d zdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。
第二类和(2)总结相同。
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变。
对称性在积分计算中应用修订版

对称性在积分计算中应用Document number:PBGCG-0857-BTDO-0089-PTT1998毕业设计(论文)题目:对称性在积分计算中应用学院:数理学院专业名称:信息与计算科学学号: 02学生姓名:鲍品指导教师:张晓燕2011年 5 月 20 日对称性在积分计算中的应用摘要对称性的应用很广泛,尤其在数学,物理学,化学等方面都有体现[1]。
本论文主要是探讨一下对称性在积分计算中的应用。
积分在微积分学中既是重点又是难点,特别是在解决积分计算问题上,方法比较灵活。
常见的积分方法有换元法和分部积分法,这些方法在解决一般的问题上还是奏效的,但是对于复杂的微积分计算和证明问题就显得有些心有余而力不足。
假如我们稍仔细地观察题目,很多时候我们会发现积分区域或被积函数具有某种对称性。
如果我们将对称性巧妙地应用到解决这类问题中去,不仅简化了计算过程而且还节省计算时间。
利用对称性解题方法比较灵活也十分重要。
接下来本论文将从定积分,重积分,曲线积分以及曲面积分四大方面入手,深入探讨对称性在积分计算中的应用。
最后分析利用对称性解题的条件与优势,总结出应用相关性质解题时要注意哪些方面。
关键词定积分,重积分,曲线积分,曲面积分,对称性,奇偶性AbstractThe application of symmetry is very widespread, particularly in mathematics, physics, chemistry and other aspects of embodied. This paper is to explore the symmetry in the integral calculation.Integral calculus is difficult in both the focus, especially in solving the problem of integral calculation, the method more flexible. The common integral method are the substitution of variables and the integration by parts. These methods are effective in the solution general question, but appear regarding the complex calculus computation and the proof question somewhat has more desire than energy. If we carefully observe the subject a little, usually we will find regional integration or product function has a symmetry. If we applied the symmetry skillfully to solve such problems, this not only simplifies the calculation process but also save computing time.More flexible use of problem-solving approach symmetry is also important, Then the paper will be integral, double integral, curve and surface integrals four points in a bid to further investigate the symmetry in the integral calculation. Finally, we solve problems by analyzing the symmetry of the conditions of use and advantages, summed up the nature of problem solving application related to the attention of what.Key wordsdefinite integral, heavy integral, curvilinear integral, surface integral, symmetry, parity目录1、绪论 (1)研究背景 (1)研究意义 (1)研究的思路及结构的安排 (2)2、对称性在定积分计算中的应用 (2)3、对称性在重积分计算中的应用 (3)二重积分计算 (3)三重积分计算 (6)4、对称性在曲线积分计算中的应用 (9)第一型曲线积分计算 (9)第二型曲线积分计算 (10)5、对称性在曲面积分计算中的应用 (11)第一型曲面积分计算 (11)第二型曲面积分计算 (13)6、对称性解题方法总结 (15)7、致谢 (16)8、参考文献 (17)1、绪论研究背景众所周知,对称性能给人以美的享受,客观世界中的许多事物都具有对称性。
积分轮换对称性

积分轮换对称性坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
特点及规律(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可,比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。
(3) 将(1)中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。
第二类和(2)总结相同。
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分区间没有发生变化,则被积函数作相应变换后,积分值不变。
对称性求解积分

(x y z)2dV
x2dV y2dV z2dV xydV yzdV xzdV
3
z2dV 3
2
d
sin d
R r4 cos2 dr 6
sin cos2 d
R r4dr
0
0
0
0
0
4 R5.
5
D
解:如图所示,积分区域D关于x轴对称,且f(x,-y)=-(xy+y3 )=-f(xy)
即f (x, y)是关于y的奇函数,由定理知, (xy y3)dxdy=0. D
计算 (x+y+z)2dV ,其中是x2 y2 z2 R2的球体.
解由对称性知
xydV yzdV xzdV, x2dV y2dV z2dV,
D
答案:1. ln 2 2.- 2 3. a b
2Hale Waihona Puke 52利用对称性简化二重积分计算
1、I=
z ln(x2 1 x2
y2 y2
zz22)dxdydz,
其中为x2
y2
z2
1.
解:由被积函数可以看出,此函数是关于z的奇函数,因为关于坐标轴 、坐标原点都对称,则:I=0
2、计算I = (xy y3)dxdy,其中D为由y2 2x与x 2围成的区域
f (x, y)dxdy f (y, x)dxdy
D1
D2
f (x, y)dxdy f (y, x)dxdy
D
D
对称性的应用
例1:设区域D={(x,y)|x2 y2 1, x 0},计算二重积分I = 1 xy dxdy
D 1 x2 y2
例2:计算 x[1 yf (x2 y2 )]dxdy,其中D是由y=x3, y 1, x 1围成的区域,f
计算二重积分的几种简便方法

计算二重积分的几种简便方法一、极坐标法在二维平面上,如果点P在直角坐标系中的坐标为(x,y),那么以O点为极点,OP 线段所在直线为极轴的极坐标(r,θ)满足以下关系式:x=r*cosθy=r*sinθ将函数f(x,y)转化为g(r,θ)表示,则有:根据二重积分的定义式,可以得到用极坐标表示的二重积分:∬Df(x,y)dxdy=∬g(r*cosθ,r*sinθ)rdrdθ其中,D为定义域,r为极径。
二、对称性法对称性法即利用函数在定义域内的对称性简化计算。
具体方法如下:1. 翻折对称:如果定义域D为一个轴对称图形,那么可以将积分区域缩小一半,只计算一侧再乘以2。
3. 奇偶性:如果函数f(x,y)满足奇偶性,即满足f(-x,y)=-f(x,-y)或f(-x,-y)=f(x,y),则可以将定义域限定在一个象限内(通常是第一象限),依次计算再乘以4或2。
轮换对称法即利用极坐标系下的轮换对称性简化计算。
对于一个n边形,将其边每隔2π/n取一条,则这些边的边长相等,角度之和为2π,因此在极坐标系下具有轮换对称性。
具体方法如下:1. 将定义域D分成n份,每份的极角为(k-1)2π/n和k2π/n(k=1,2,...,n)。
2. 对于每份,取中心点和每条边上的一个点,计算这些点构成的区域上的积分。
3. 最后将n份的积分相加即得到原积分。
四、正交性法正交性法即根据正交性定理,将一些特殊的函数乘在被积函数上,使之变成正交函数的线性组合,从而简化计算。
常用的正交函数有勒让德多项式、柯西-斯瓦茨函数等。
1. 将f(x,y)表示为一些正交函数的线性组合。
2. 考虑在正交函数构成的正交系下计算积分。
3. 利用正交性定理,将积分转化为正交基上的系数计算,从而得到简化后的积分表达式。
五、变换法变换法即通过适当的变换将一些定义域较为复杂的积分转化为更加简单的形式。
常见的变换有参数化、奇异变换、极坐标变换等。
1. 找到适当的变换使定义域变得简单。
对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()fXyd= ̄L(,) (,)o 2I(,)o -f y+f xd I sX y
例 1 求 二重 积分 ‘ Z 十 z d d D X )xy
,
+ Y d ) v
一
:x + y
, n X , 2 … … , 卜1 , i 1 2, … , ) X,lX, X ) (= , … n ,
II( , z d If X Y,) v一3II d Ix v 一3 o d I卜 yo 一Y z I x xo d l d 一 3o x x o一 1 x y d I d I ( 一 — ) y
T
) xy d d
: : =
维普资讯
18 2
甘
肃
科
技
第2 3卷
以上两 例 中的积 分 域 并 不关 于坐标 面对 称 , 一
般 解法是 直接用 直 角 坐标 , 坐 标将 三 重 积 分化 为 柱 三 次积分 , 计算 比较 麻烦 , 利用 积分域 关于 变量 轮 而 换 对称性 , 可将被 积 函数 的结构改 变 , 大大简 化 积分 的计算 。 3 3 曲线 积分的轮 换对称 性 . 定理 3 设 L是 x y面上 的 一条 光 滑 的 曲 线 o
Z≤ a , ≥ O y O z O 。x , ≥ ,≥
定理 1设 函数 fX y 在有 界 闭区域 D上 连续 , ( ,)
D关 于变量轮 换对 称 , 则
( ) ,( , ) a ' ( x d 1 ,f x y d =jfy, ) o j '
解
积分域 Q关 于变 量轮 换对 称 , 由定 理 2
批注本地保存成功开通会员云端永久保存去开通
维普资讯
第2 3卷 第 1 2期 2 0 年 l 月 07 2
甘 肃科 技
Ga u Sce c n c ol g ns i n e a d Te hn o y
、D . N o 2 , Z 23 .1 De. c 2 7 00
( ) I ( , z d 1 ff x Y,) f ( z x d I ffY, , ) I ( , f If z Y, I
2 定 义
(1x , x ).∈D C R ( n nn 定 义 1 若VP x ,2 …… ,
∈N) 有 ,
P ( iX , … , n X , 2 … … , H ) D“ i i X, … X ,1 X, X ∈ (
性 。
例 2 计 算 三重 积 分II( , , ) v 其 中 Q 由 If X Y z d ,
平 面 x +z 1 +y 一 及平 面 x , —O z 一0 y ,一0围成
定义 2若 函数 F X , 2 … … , - F(iX l (1X , X) X, _ , +
… …
解
因为 Q关 于变 量轮换 对称 , 由定理 2
关 键 词 ; 量 轮 换 对 称 ; 分 ; 算 变 积 计
中 图分 类 号 : 1 2 2 0 7 .
一
1引 言
对称性 是数学 美学 的一个重 要 特征 。利用 积 分 域关 于坐标 面 、 坐标 轴 、 标 原点 的对 称 性 , 分 域 坐 积 关 于某点 、 直线 、 某 某平面 的广义 对称 性 和被 积 函数
÷, x+Y +z)v (2 d
0 n
≤ R
一
2
dI O
。
解
积分域 D关于变 量轮换对 称 , 由定理 1
y2
x2
号 i ̄ qoPd s d l" p n c
‘x y2) x y一 . x y2 2 d d 1.. 2
T T
T
一 x 1 x x ( - ) d 一
则 称函数 F X , 2 …… , 关 于 X ,2 …… , 具 (lX, X) lX , X 有轮换 对称性 。
3 几 类 积 分 的计 算公 式
3 1 二 重 积 分 的 轮 换 对 称 性 .
例 3 求 I y( d , 中 Q : 2 =II y +X ) v 其 X +y +
一
寺 xyzdd+fyzxdd+fzx (,, yz (,,)yz (,, )
u 厶
ydd )y z
例6 计算量 zxy yyz zz , x d+xdd+y d 其中∑ d dx
是平 面 x ,=O z , +y =1所 围成 的空 间 =O y ,=O x +z
利用 变 量 轮换 对 称性 计算 积 分
李 曼 生 , 锦 霞 霍
( 州 城 市学 院数 学 系 , 肃 兰州 7 0 3 ) 兰 甘 30 0
摘
要 : 出 了变 量 轮 换 对称 的定 义 , 论 了二 重 积 分 、 重 积 分 、 给 讨 三 曲线 积 分 、 面积 分 的 计算 公 式 及 应 用 实 例 。 曲
的奇偶性计算 积分 是简化 积分计 算 的有 效方 法 。在
此基础 上 , 文进 一 步 给 出 了积 分 区域 同时 具 有几 本
种对称 性时 , 相关 的几种积 分的计算 公式 。
定 理 2 设 fx Y z 在空 间有界 闭区 域 Q上 连 ( , ,) 续, Q关 于变量轮换 对称 , 则
一12 …… ,) ,, n
xd )V
() I fxY zd =÷ I fx Yz +fYz 2 I ( ,,)v 0 I ( ,,) ( ,, I I n n
x + f z Y, ) v ) (, xd
成立, 称 D 则 “关 于 X , : …… , 具 有 轮 换 对 称 X, X
号a x y…y 22b (+ ) 、 。) (+2 x d d
2 、 b 。 2 a 。 2
一 ( + ) d f p d 0o 。 o R
一 b yR ( Z。 Z 、 ) a+
3 2 三 重 积 分 的 轮 换 对 称 性 .