题目12月11
浙江省县域教研联盟2023-2024学年高三上学期12月月考地理试题含解析

2023学年第一学期浙江省县域教研联盟高三年级模拟考试地理(答案在最后)考生须知:1.本卷满分100分,考试时间90分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.参加联批学校的学生可关注“启望教育”公众号查询个人成绩分析。
选择题部分一、选择题Ⅰ(本大题共20小题,每小题2分,共40分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)特种机器人是指应用于军事、极限作业、应急救援等专业领域的机器人。
近年来,特种机器人在我国得到快速发展和广泛应用。
完成下面小题。
1.特种机器人在我国应用广泛的主要原因是我国()A.政策支持B.技术先进C.地理环境复杂D.产业结构调整2.特种机器人产业在我国主要分布在东部地区的主导因素是()A.市场B.科技C.交通D.政策【答案】1.C 2.B【解析】【1题详解】据材料可知,特种机器人是应用于专业领域,主要包括军事应用机器人、极限作业机器人和应急救援机器人。
特种机器人在我国应用广泛的主要原因是我国地理环境复杂,自然条件恶劣,很多情况下无法人工完成,只能由特种机器人替代作业,C正确;政策支持、技术先进、产业结构调整都不是广泛的主要原因,ABD 错误。
故选C。
【2题详解】结合所学知识,机器人产业是技术导向型产业,对技术要求较高,我国东部地区科技较发达,B正确;市场、交通、政策对于特种机器人的分布影响较小,ACD错误。
故选B。
【点睛】根据机器人的应用环境,国际机器人联盟(IFR)将机器人分为工业机器人和服务机器人现阶段,考虑到我国在应对自然灾害和公共安全事件中,对特种机器人有着相对突出的需求,中国电子学会将机器人划分为工业机器人、服务机器人、特种机器人三类。
上里古镇是四川盆地西缘的历史文化名镇,“店居”是当地常见的建筑,一楼用作经营,对着街巷开门,二楼居住。
2022年浙江省宁波市高中数学竞赛试题+Word版含解析

2022年宁波市高中数学竞赛试题2022年12月11日 9:00-11:00注意:报考A 组的考生作答A 卷(所有试题),报考B 组的考生作答B 卷(前17题). 请考生按规定用笔,将所有试题的答案涂、写在答题纸上,一、选择题Ⅰ(本题共4小题,每小题6分,共24分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分.)1.己知正方形ABCD 的边长为1,则|2|AB BC AC ++=( )A .1BCD 2.已知实数a ,b ,则“a b >”是“||a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.勒洛四面体是一个非常神奇的“四面体”,它是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分.如图,在勒洛四面体ABCD 中,设弧,AC BD 的中点分别为M ,N ,若线段AB 的长度为a ,则( )A .弧AC 的长度为3aπ B .线段MN 的长度为aC .勒洛四面体ABCD 能置于一个直径为a 的球内 D .勒洛四面体ABCD4.己知A ,B 分别在两圆222212:1,:4C x y C x y +=+=上运动,且在1C 上存在点P ,使得AP BP ⊥,则线段AB 中点M 轨迹的面积为( ) A .π B .54π C .2π D .94π 二、选择题Ⅱ(本题共4小题,每小题8分,共32分.每小题列出的四个选项中至少有一个是符合题目要求的,全部选对的得8分,选对但不全的得3分,不选、有选错的均不得分.)5.一个装有8个球的口袋中,有标号分别为1,2的2个红球和标号分别为1,2,3,4,5,6的6个蓝球,除颜色和标号外没有其他差异.从中任意摸1个球,设事件A =“摸出的球是红球”,事件B =“摸出的球标号为偶数”,事件C =“摸出的球标号为3的倍数”,则( ) A .事件A 与事件C 互斥 B .事件B 与事件C 互斥 C .事件A 与事件B 相互独立 D .事件B 与事件C 相互独立6.已知0a >且1a ≠,关于x 的不等式31xa a >-,下列结论正确的是( )A .存在a ,使得该不等式的解集是RB .存在a ,使得该不等式的解集是∅C .存在a ,使得该不等式的解集是(,2022)-∞D .存在a ,使得该不等式的解集是(2022,)+∞ 7.已知函数(),()f x g x 的定义域均为R ,(1)(1)2,()(2)2,(4)()2f x g x g x f x g x f x -++=--=--=,且当(0,1]x ∈时,2()1f x x =+,则( )A .(2022)2g =B .()(2)0g x g x ++=C .函数()f x 在(1,3)上单调递减D .方程(2022)f x x +=有且只有1个实根8.设函数()f x 的定义域为I ,区间(,)a b I ⊆,如果对于任意的常数0M >,都存在实数12,,,n x x x ,满足1n a x x b <<<<,且()()111n i i i f x f x M -+=->∑,那么称()f x 是区间(,)a b 上的“绝对差发散函数”.则下列函数是区间(0,1)上的“绝对差发散函数”的是( ) A .1()21x f x x =++ B .()tan 2x f x π= C .2,,(),.x x f x x x ⎧=⎨⎩为无理数为有理数 D .()cos 2f x x x π= 三、填空题(本题共6小题,每小题8分,共48分.请把答案写在答题纸相应位置上.)9.设O 为坐标原点,F 是抛物线24y x =的焦点,若P 是该抛物线上一点,且23PFO π∠=,则点P 到y 轴的距离为_______________.10.已知实数12,x x 满足()11222ln 3,ln 121x x x x +=--=,则12x x +=_______________.11.在44⨯的16个方格中填上实数,使得各行各列都成等差数列.若其中4个方格中所填的数如图所示,则图中打*号的方格填的数是_______________.12.己知正三棱柱111ABC A B C -的各棱长均为2,M ,N 分别为棱11,BB CC 上的点.若平面AMN 将三棱柱分为上、下体积相等的两部分,则AMN △的面积的最小值为_______________. 13.已知n *∈N ,集合{}(,)|1||22|1,,n nn A x y x y x y =-+-<∈R ,记1n n A A ∞==,则集合A 中的点组成图形的面积为_______________.14.己知m ∈R ,关于z 的方程()()2220z z mzz m ++++=有四个复数根1234,,,z z z z .若这四个复数根在复平面内对应的点是一个正方形的四个顶点,则实数m 的值为_______________.四、解答题Ⅰ(本题共3小题,第15、16题每题15分,第17题16分,共46分.)15.如图,在ABC △中,2ACB ABC ∠=∠.设点D 是BC 边上一点,满足2BAD ABC ∠=∠.(Ⅰ)记ABC θ∠=,用θ表示ABBD; (Ⅱ)若111AB AC+=,求BD . 16.已知0a ≥,设函数()|||1|f x x a ax =-+-. (Ⅰ)判断函数()f x 的奇偶性;(Ⅱ)若对任意的x ∈R ,不等式()(2)f x x a x ≥-恒成立,求a 的取值范围.17.设点(0,2),(0,2),(0,4)A B F --,过点F 作斜率为k 的直线l 交椭圆221:1164x y Γ+=于C ,D 两点. (Ⅰ)记直线,,,AC AD BC BD 的斜率分别为1234,,,k k k k .从下列①②③三个式子中任选其一,当k 变化时,判断该式子是否为定值,若是,求出定值;若不是,请说明理由. ①12k k ⋅;②14k k ;③23kk . (Ⅱ)当直线,BC BD 分别交双曲线222:1412y x Γ-=的下支于P ,Q 两点(异于点B )时,求||||PF QF +的取值范围.五、解答题Ⅱ(A 卷试题,B 卷考生不答.本题共2小题,每小题25分,共50分.)18.已知正整数数列{}n a 满足()21220222n n n a a n a *+++=∈+N . (Ⅰ)若21a =,求2022a ; (Ⅱ)求12022a a +的取值的集合.19.甲、乙两人分别进行投硬币和掷图钉试验,每人各进行100次试验.设k a 为前k 次试验中硬币正面向上的次数,k b 为前k 次试验中图钉针尖朝下的次数,记,(1,2,3,,100)k k k k a bp q k k k===.(Ⅰ)若11000,0.5p p ==,问是否存在常数P ,不论试验过程中k p 如何变化,均存在某个()001100k k <<,使得0k p P =?若存在,求出所有P 的可能值;若不存在,请说明理由;(Ⅱ)若11000,0.7q q ==,问是否存在常数Q ,不论试验过程中k q 如何变化,均存在某个()001100k k <<,使得0k q Q =?若存在,求出所有Q 的可能值;若不存在,请说明理由.2022年宁波市高中数学竞赛参考答案2022年12月11日 9:00-11:00注意:报考A 组的考生作答A 卷(所有试题),报考B 组的考生作答B 卷(前17题). 请考生按规定用笔,将试题的答案涂、写在答题纸上.一、选择题Ⅰ(本题共4小题,每小题6分,共24分.每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分.)1.答案:D解析:|2||23|13AB BC AC AB BC ++=+=,故选D . 2.答案:A解析:若a b >,则||a a b ≥>,故“a b >”是“||a b >”的充分条件; 当3,2a b =-=时,||a b >但a b <,故“a b >”不是“||a b >”的必要条件; 所以选A . 3.答案:D .解析:选项A ,弧AC 为两个半径为a 、球心距为a 的球面相交所得的小圆中的弧;,弦AC 长为a ,可得弧AC 长不为3a π.故A 错误;选项B ,22222MN a a a a ⎛⎫=-+=-> ⎪⎝⎭⎭,故B 错误;选项C ,由MNa >,故C 错误;选项D ,由四面体ABCD 的体积为312,故D 正确. 4.答案:C解析:法一:不妨设PA x ∥轴,如图:设(cos ,sin ),(cos ,sin )A P θθθθ-,不妨设,22ππθ⎡⎤∈-⎢⎥⎣⎦,(cos B θ-,所以0,2sin M M x y θ==+sin [1,1]t θ=∈-,则2()[1][3,3]M y f t t ==-,当01t ≤≤时,()f t 递增,此时()f t ∈;当10t -≤≤时,()f t =递增,此时()f t ∈.所以13()[1,3],22M f t y ∈≤≤,此时M 的轨迹为线段13022x y ⎛⎫=≤≤ ⎪⎝⎭. 则当弦AP 在圆上转动时,上述线段会扫出一个内径为12,外径为32的圆环,易得面积为2π.法二:作矩形PACB ,则由2222||||||||||2OA OB OP OC OC +=+⇒=,记OP 中点为E ,则1||||12EM OC ==,则点M 在OP 中点E 为圆心,1为半径的圆上 若记cos sin (cos ,sin ),,22P E θθθθ⎛⎫⎪⎝⎭, 则点M 的轨迹方程为22cos sin 122x y θθ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即223cos sin 4x y x y θθ+-=+, 当θ变化时,x ,y1≤,可得1322≤≤. 所以当P 变化时,点M 的轨迹为,内径为12,外径为32的一个圆环,此圆环的面积为2π.二、选择题Ⅱ(本题共4小题,每小题8分,共32分.每小题列出的四个选项中至少有一个是符合题目要求的,全部选对的得8分,选对但不全的得3分,不选、有选错的得0分.)5.答案:ACD解析:对AB ,显然事件A 与事件C 互斥,事件B 与事件C 不互斥,故A 正确,B 错误; 对C ,易得111(),(),()()()428P A P B P AB P A P B ====⋅,所以C 正确; 对D ,易得111(),(),()()()248P B P C P BC P B P C ====⋅,所以D 正确; 故选ACD . 6.答案:ACD . 解析:①1,031,3xa a a x R ≤>≥-∈,故A 正确; ②log (31)11,31log (31)3a a x a a a a a x a -><<-=⇒<-,又log (31)a a R -∈, 故存在a 使得log (31)2022a a -=,故C 正确; ③log (31)1,31log (31)a a xa a a a ax a ->>-=⇒>-,又log (31)(1,)a a -∈+∞,故存在a 使得log (31)2022a a -=,故D 正确; 故选ACD . 7.答案:ACD解析:对AB ,由(1)(1)2(4)()2f x g x g x f x -++=⎧⎨--=⎩可得(2)(4)4g x g x -+-=,可得()(2)4g x g x ++=,故B 错误,且()(4)g x g x =+.由(1)(1)2()(2)2f xg x g x f x -++=⎧⎨--=⎩可得(4)()4g x g x -+=,令2x =可得(2)2g =,所以(2022)(2)2g g ==,故A 正确;对C ,由(1)(1)2(4)()2f x g x g x f x -++=⎧⎨--=⎩可得(1)(3)0f x f x -+-=,即(2)(),(4)()f x f x f x f x +=-+=,由(1)(1)2()(2)2f xg x g x f x -++=⎧⎨--=⎩可得(1)(1)0f x f x -+-=,即()()f x f x =--,根据上述性质可得()f x 的图象如下,故()f x 在(1,3)上单调递减,所以C 正确;对D ,(2022)(2)()2f x x f x x f x x +=⇔+=⇔=-,由上述对称性可得()f x 的图象如下,故方程只有1个解,所以D 正确.故选ACD . 8.答案:BCD解析:对A ,因为()f x在1)递减,在1,1)-递增,所以()()()()11111)1)3n i in i f x f x f x f f x f -+=-≤--+-<-∑,A 错误;对B ,因为()tan 2xf x π=在0,2π⎛⎫⎪⎝⎭是递增的,所以()()1111tan tan 22n n i i i x x f x f x ππ-+=-=-∑, 当11,0n x x →→时1tantan22nx x ππ-→+∞,B 正确;对C ,设递增数列{}k x 满足:11,,1,2,3,,32k x k n ⎛⎫∈= ⎪⎝⎭,且21k x -为有理数,2k x 为无理数则()()1112k k f x f x +->,所以()()1111(1)12n i i i f x f x n -+=->-∑,当n →+∞时,()()211kii i f x f x -=-→+∞∑,C 正确;对D ,设1,1,2,,2x k n k ==,则()()1111111112446222n i i i f x f x n n -+=⎛⎫⎛⎫-=+++++ ⎪ ⎪-⎝⎭⎝⎭∑21111ln 1ln(1)ln 223n k n n k =⎛⎫>+++>+=+- ⎪⎝⎭∑, 所以()()111,n i ii n f x f x -+=→+∞-→+∞∑,D 正确.故选BCD .三、填空题(本题共6小题,每小题8分,共48分.请把答案写在答卷相应位置上.)9.答案:3解析:P 到y 轴的距离2||1131cos3d PF π=-=-=-.10.答案:1解析:设()2ln f x x x =+,显然函数单调递增,由题可得()()121f x f x =-,所以121x x =-,即121x x +=. 11.答案:5.解:设*号的空格上填的实数为x ,则13,262x A B x +==-. 进而有第三列的公差为396536A xd --==, 从而16926x C A d +=+=. 又13,B ,C 成等差数列,得1692(26)136x x +-=+, 解得5x =.12.答案:2. 解析:由111111111111223BCNM BCNM A BCNMABC AB C A BCC B ABC A B C BCCB BCC B S S V V V V S S ----==⋅=⋅四边形四边形四边形四边形, 得1134BCNM BCC B S S =四边形四边形,从而3BM CN +=. 建立空间直角坐标系如图,可设(2,0,),)M t N t -,则(2,0,),(1,3,3)AM t AN t ==- 设平面AMN 的法向量为(,,)n x y z =则0,0.n AB n AC⎧⋅=⎪⎨⋅=⎪⎩即20,(3)0.x tz x t z +=⎧⎪⎨++-=⎪⎩,可取(,32)n t t =-+-. 又平面ABC 的法向量为0(0,0,1)n =.设平面ABC 与平面AMN 所成角为α,则02cos ||nn n n tα⋅==⋅.由射影面积公式可得cos ABC AMNAMNS S S α==△△△,所以2AMN S =≥△,等号当且仅当32t =时取到,所以()min AMN S =△ 13.答案:1.解析:若1(,)x y A ∈,则|1||22|1x y -+-<,从而|1|[0,1),|22|[0,1)x y -∈-∈. 所以()|1||22||1||22|1n nx y x y n N*-+-≤-+-<∈,即得(,)nx y A ∈.故有11n n A A A ∞===.又易知集合1A 中的点组成图形的面积为1,所以集合A 中的点组成图形的面积为1.14.答案:16.解析:设20z z m ++=根为2121,,14,20z z m z z m ∆=-++=的根为342,,18z z m ∆=-,由题意12140,180m m ∆=-≠∆=-≠,即18m ≠且14m ≠.①当18m <时,1234,,,z z z z 均为实数,则四个实数根均在实轴上,矛盾; ②当1184m <<时,12,z z 为实数且34,z z 为虚数,且1234z z z z -=-,所以114816m m m -=-⇒=; ③当14m >时,1234,,,z z z z 均为虚数,且四个虚数根的实部均为12-,即四个对应点均在直线12x =-上矛盾. 综上:16m =. 四、解答题Ⅰ(本题共3小题,第15、16题每题15分,第17题16分,共46分.)15.答案:(Ⅰ)23sin234sin 2cos 12sin 2AB BD θθθθ==-=+;(Ⅱ)1.解析:(Ⅰ)由题,22BAD ACB θθ∠=∠=.在ABD △中,根据正弦定理可得23sin234sin 2cos 12sin 2AB BD θθθθ==-=+.(Ⅱ)在ABC △中,根据正弦定理可得sin 2sin AB AC θθ=,所以12cos AC ABθ=,所以1112cos 1AB AC ABθ++==,可得2cos 1AB θ=+. 又由(Ⅰ)知2cos 1ABBDθ=+,所以1BD =.16.答案:(Ⅰ)当0a =时,()f x 为偶函数;当0a >时,()f x 为非奇非偶函数.(Ⅱ)0a ≤≤. 解析:(Ⅰ)易知(1)2|1|,(1)2|1|f a f a =--=+,若(1)(1)f f =-,则2|1|2|1|a a -=+,解得0a =,此时()||1f x x =+为偶函数; 若(1)(1)f f =--,则2|1|2|1|a a -=-+,解得a 不存在.综上,当0a =时,()f x 为偶函数;当0a >时,()f x 为非奇非偶函数. (Ⅱ)0a =时,2()||1f x x x =+≥-显然成立,所以0a =符合.0a >时,若(,0][2,)x a ∈-∞+∞,则(2)0()x a x f x -≤≤恒成立,故只需考虑|||1|(2)x a ax x a x -+-≥-对任意(0,2)x a ∈恒成立.(*),取x a =,有221a a -≥,解得212a ≤,即得0a <≤.而当02a x a <≤<<时,21210ax a -≤-≤, 故(*)式可化为2||310x a x ax -+-+≥对任意[0,2]x a ∈恒成立, 令2()||31g x x a x ax =-+-+,①当(0,]x a ∈时,22()(31)(1)()120g x x a x a g a a =-+++≥=-≥恒成立; ②当[,2)x a a ∈时,2()(31)(1)g x x a x a =--+-, 对称轴312a x a -=≤,且2()120g a a =-≥.因此,02a <≤.综上:0a ≤≤. 17.答案:(Ⅰ)均为定值,1212433,3,34k k k k k k ⋅==-=-;(Ⅱ)28,3⎛⎫+∞ ⎪⎝⎭. 解析:(Ⅰ)由题可得:4l y kx =-,设()()1122,,,C x y D x y .l 与1Γ联立()2222441324801164y kx k x kx x y =-⎧⎪⇒+-+=⎨+=⎪⎩, 则12212232414841k x x k x x k ⎧+=⎪⎪+⎨⎪⋅=⎪+⎩. 选择①:()()()21212121212121212666362234kx kx k x x k x x y y k k x x x x x x ---++--⋅=⋅===,故12k k ⋅为定值,且1234k k ⋅=; 选择②:易得1314k k ⋅=-,则143414k k k k =-⋅.()()()21212121234121212222422112kx kx k x x k x x y y k k x x x x x x ---++++⋅=⋅===,所以1434134k k k k =-=-⋅, 故14k k 为定值,且143k k =-;选择③:易得2414k k ⋅=-,则233414k k k k =-⋅.()()()21212121234121212222422112kx kx k x x k x x y y k k x x x x x x ---++++⋅=⋅===⋅,所以2334134k k k k =-=-⋅, 故23k k 为定值,且233k k =-.(Ⅱ)若选择①,结合132414k k k k ⋅=⋅=-, 可得3412121111441612k k k k k k ⎛⎫⎛⎫⋅=-⋅-== ⎪ ⎪⋅⎝⎭⎝⎭; 若选得②减③,则已得34112k k ⋅=. 此时34:2,:2PB y k x QB y k x =-=-.PB 与2Γ联立()322322332321231120311412p y k x k k x k x x y x k =-⎧⎪⇒--=⇒=⎨--=⎪⎩, 所以()2332233128||212163131P P l k PF e d k x k k -⎛⎫=⋅=-=-=-- ⎪--⎝⎭准,同理可得248||631QF k =---. 所以()()()22342222223434341532112||||128128417173131331616k k PF QF k k k k k k ⎛⎫+- ⎪⎛⎫+=--+=--=-+ ⎪ ⎪--⎝⎭ ⎪-++-++⎝⎭. 因为,BC BD 分别交2Γ下支于P ,Q两点,所以340|,|3k k <<∣,所以2222341748k k +<+=.又223434126k k k k +>=,所以2234117,648k k ⎛⎫+∈ ⎪⎝⎭,所以28||||,3PF QF ⎛⎫+∈+∞⎪⎝⎭.五、解答题Ⅱ(A 卷试题,B 卷考生不答.本题共2小题,每小题25分,共50分.)18.答案:(Ⅰ)1;(Ⅱ){343,677,1013,2023}.解析:(Ⅰ)由条件知:2123231222022,222022n n n n n n n n a a a a a a a a ++++++++=++=+ 两式相减得()()()312222n n n n n a a a a a ++++-+=-, 若310a a k -=>,则312n n n n a a a a +++-<-.则3121n n n n a a a a +++-≤--,则423110k k a a a a k ++-≤---<,矛盾. 所以310a a -=,所以2n n a a +=,所以2022202021a a a ====.(Ⅱ)由(Ⅰ)知2n n a a +=,所以设212,k k a b a c -==,则220222b bc +=+,所以2022bc =.而202223337=⨯⨯,所以{,}{1,2022},{2,1011},{3,674},{6,337}b c =, 所以2023,1013,677,343b c +=,所以12022a a +的取值的集合为{343,677,1013,2023}. 19.答案:①不存在;(Ⅱ)存在,12Q =或23. 解析:(Ⅰ)不存在,先考虑最后50次试验硬币正面向上,则对应的(1100)k p k <<均小于0.5.再考虑第2次至第51次试验硬币正面向上,则对应的(1100)k p k <<均大于等于0.5.这与最后50次试验硬币正面向上的情形没有公共的取值,故这样的P 不存在, (Ⅱ)存在,12Q =或23,先考虑最后70次试验针尖向下,则对应的(1100)k q k <<均小子0.7.再考虑第2次至第71次试验针尖向下,则对应的k q 分别为123707070700,,,,,,,,,234717299100, 所以符合要求的Q 只可能取12,23. 下证1,2,3n Q n n -==时,必存在1100k <<时,使得1k k b n q k n-==. 设(1)k k S nb n k =--,若第k 次试验针尖朝上,则1k k b b -=,则11(1)(1)(1)(1)(1)k k k k S nb n k nb n k n S n --=--=-----=--;若第k 次试验针尖朝下,则11k k b b -=+,则11(1)(1)(1)11k k k k S nb n k nb n k S --=--=---+=+当2,3n =时,11100(1)(1)0,70100(1)100300S nb n n S n n n =--=--≤=--=->. 所以由介值性定理知,必存在1100k <<,使得0k S =,即1k k b n q k n-==,得证.。
五史知识竞赛题目

五史知识竞赛题目一、中国共产党史部分1. 中国共产党的诞生地是哪里?(5分)答案:上海和嘉兴。
解析:1921年7月23日,中共一大在上海开幕,7月30日晚,因遭到法租界巡捕袭扰,会议被迫中止。
7月31日,代表们转至嘉兴南湖一艘画舫上继续进行会议并通过了中国共产党的第一个纲领等重要文件,标志着中国共产党正式诞生。
2. 红军长征开始于哪一年?(5分)答案:1934年。
解析:1934年10月,第五次反“围剿”失败后,中央主力红军为摆脱国民党军队的包围追击,被迫实行战略性转移,退出中央根据地,进行长征。
3. 遵义会议的意义是什么?(10分)答案:遵义会议是中国共产党第一次独立自主地运用马克思列宁主义基本原理解决自己的路线、方针和政策方面问题的会议,它在极端危险的时刻,挽救了党和红军,是中国共产党历史上一个生死攸关的转折点,标志着中国共产党从幼年走向成熟。
解析:在遵义会议之前,中国共产党在军事指挥等方面主要依赖共产国际的指导。
而遵义会议上,纠正了博古、王明、李德等人“左”倾领导在军事指挥上的错误,肯定了毛泽东的正确军事主张,这是中国共产党开始独立自主地解决自身问题的重要标志,使得红军在后续的长征及革命斗争中有了正确的领导方向。
二、新中国史部分1. 新中国成立的时间是?(5分)答案:1949年10月1日。
解析:1949年10月1日,毛泽东主席在天安门城楼上向全世界庄严宣告中华人民共和国中央人民政府成立,这标志着新中国的诞生。
2. 第一个五年计划的重点是什么?(5分)答案:优先发展重工业。
解析:新中国成立初期,我国工业基础薄弱,优先发展重工业可以为国家的工业化奠定基础,如建立钢铁、机械制造等基础工业部门,为国防建设和国民经济的进一步发展提供支撑。
3. 改革开放开始于哪一年?(10分)答案:1978年。
解析:1978年12月十一届三中全会中国开始实行对内改革、对外开放的政策。
这次会议作出了把党的工作重点转移到社会主义现代化建设上来等一系列重大决策,开启了中国改革开放的新时期。
2022年江苏省考申论真题及参考答案(B类)

2022江苏省考申论真题及参考答案(B类)注:2022年江苏省考笔试于2021年12月11日结束,本试题来源于考生回忆目录一、注意事项 (1)二、给定材料 (1)三、作答要求 (9)四、参考答案 (10)一、注意事项1.本题本由给定资料与作答要求两部分组成。
考试时间为150分钟。
其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。
2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并用2B铅笔在准考证号对应的数字上填涂。
3.请用黑色字迹的钢笔或签字笔在答题卡上指定的区域内作答,超出答题区域的作答无效!4.待监考人员宣布考试开始后,你才可以开始答题。
5.所有题目一律使用现代汉语作答,未按要求作答的,不得分。
6.监考人员宣布考试结束时,考生应立即停止作答,将题本、答题卡和草稿纸都翻过来留在桌上,待监考人员确认数量无误、允许离开后,方可离开。
严禁折叠答题卡!二、给定材料材料1法者,治之端也。
执政兴国,离不开法治支撑;社会发展,离不开法治护航;百姓福祉,离不开法治保障。
当前,我国进入了全面建设社会主义现代化法治国家,向第二个百年奋斗目标进军的新征程,一个更高水平的法治社会正焕发出崭新的风貌。
今年5月10日,M市港城区综合行政执法局各辖区中队举办了首届“综合执法开放日”活动,吸引了两百多位市民参加。
对于这场别开生面的活动,市民们兴致颇高。
他们有的在处置突发事件模拟演练的现场驻足观看,有的在普法宣传的展板前详细记录,有的在有奖知识竞赛环节踊跃抢答……活动主办方还向市民发放了200多个环保宣传袋,并通过座谈会的形式收集市民代表的意见和建议。
市民周女士说,“开放日”活动给大家上了一堂生动的现场“普法课”。
“开放日”活动中,市民最感兴趣的就是与执法队员一同上街执法。
“贴在自家门店上都不行吗?”黄先生看见执法队员责令一家食品店清除门店上的广告纸,感到不解。
执法队员解释,根据市容和环境卫生管理相关条例,在自家门店上乱贴广告同样属于违法行为。
会计分录练习题及答案

会计分录练习题及答案篇一:会计分录习题及答案(从业必备练习)会计分录题题目1、12月2日,用现金350元支付厂部办公费。
2、12月3日,用银行存款800元支付销售产品发生的运输费。
3、12月4日,向银行贷款2000元存入银行,还款期为9月。
4、12月5日,收到投资者投入的货币资金500000元存入银行。
5、12月6日,盘亏设备一台,原始价值6000元,已提折旧3500元。
6、12月8日,盘亏的设备2500元,经批准转作营业外支出。
7、12月9日,收到国家投入机器,价值450000元。
8、12月10日,用银行存款归还短期借款50000元。
9、12月11日,采购员王洪预借差旅费现金1000元。
10、12月11日,厂部管理人员报销差旅费600元。
11、12月12日,提取现金50000元备发工资。
12、12月13 日,以现金50000元支付应付职工工资。
13、12月14日,该厂从南方厂购进甲材料50000千克,增值税专用发票所列单价4.90元,计买价245000元,进项税额为41650元,对方代垫运费50000元,款项以银行存款支付,材料尚未运到。
14、12月15日,按规定计提本月固定资产折旧费120元,其中,生产车间使用的固定资产应计提折旧费8000元,企业行政管理部门使用的固定资产应计提折旧费4000元。
15、12月16日,分配本月份职工工资45000元,其中生产工人工资31000元(用于A产品生产工人工资18000元,B产品生产工人工资13000元)车间管理人员工资4000元,企业行政管理部门人员工资10000元。
16、12月17日,按规定以职工工资总额为基础计提月福利费6300元,其中,按企业行政管理部门人员工资提计的福利费1400元,按生产车间管理人员工资计提的福利费560元,按生产工人工资提计的福利费4340元(A产品2520元B产品1820元)。
17、12月18日,结转本月制造费13295元,其中A产品7000元,B产品6295元。
小学二年级数学每日一题及解析

小学二年级数学每日一题及解析Prepared on 21 November 2021小学二年级数学每日一题9月21日(星期四)数学思考题:一个薄饼,切三刀最多能切成几块(让学生通过画图很清楚地知道最多能切成7块.)9月22日(星期五)“每日一题”一队同学做早操,从前面数小明是第六个,从后面数小明是第4个,那么这队有多少人(分析:用画图的方法很容易知道这队一共有9人。
这里小明算了两次,4+6-1=9(人))9月25日(星期一)“每日一题”七边形、八边形至少可以分成多少个三角形(分析:书本P27第5题学生已有了分三角形的基础,课堂教学中学生已知道三角形的个数=图形的边数-2。
)9月26日(星期二)“每日一题”将1、2、3、4、5这五个数填入“十字格”中(因为不好上传图,所以没有画图),使横行、竖行三个数的和都相等。
(分析:观察图形可知,只要上下两数的和等于左右两数的和,那么横行、竖行三个数的和就相等了。
我们可以找到1+5=2+4,剩余的3填在中间格子里。
当然,本题答案不唯一,学生填出一种即可,对部分学有余力的同学应鼓励多种填法。
)9月27日(星期三)“每日一题”把一根10米长的木头,每2米锯一段,可以锯成()段;如果每锯一次要1分钟,一共要锯()分钟.(分析:第一问,比较简单;第二问,关键是了解锯5段只要锯4次。
)9月28日(星期四):“每日一题”把1、2、3、4、5、6、7、8、9中剩下的数分别填入□里(不能重复),组成下面3个算式。
□+□=9□-□=1□×□=6(分析:首先考虑乘法,只有2×3=6,剩下的数再进行搭配就容易了。
)9月29日(星期五):“每日一题”二年级一班有32个学生,二班有35个学生,开学后又转来7个新同学,怎样分才能使两班的学生人数相等(分析:先观察一班比二班少35-32=3个学生,把7个同学中分出3个给一班,使两班同样多。
再把剩下的7-3=4个同学平均分给两个班。
浙江省浙南名校联盟2023-2024学年高一上学期12月联考数学试题(含答案)

2023学年第一学期浙南名校联盟12月联考高一年级数学学科试题考生须知:1.本卷共5页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字;3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.选择题部分(共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若命题2:,220P x R x x m ∃∈++-<是假命题,则实数m 的取值范围是( ) A.1m > B.1m ≤ C.1m < D.1m ≥2.已知函数()f x 的定义域{}2248xa a x a -<<-∣是关于x 的不等式()()220x a x ++->的解集的子集,则实数a 的取值范围是( )A.)26,∞⎡++⎣B.][(),226,∞∞-⋃++C.(2,26⎤+⎦ D.(]2,33.如图是杭州2023年第19届亚运会会徽,名为“潮涌”,形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形.设弧AD 的长度是1l ,弧BC 的长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,扇形AOD 周长为定值L ,圆心角为α,若123l l =,则当1S 取得最大值时,圆心角为α的值为( )A.1B.2C.3D.44.今有一组实验数据及对应散点图如下所示,则体现这些数据关系的最佳函数模型是( )x10 20 29 41 50 58 70 y123.87.4111521.8A.log a y A x p =+B.x y A a p =⋅+C.2y ax bx c =++D.y kx b =+5.若12,x x R ∈,则“()3321210x x x -<”是“12x x <”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数()cos 1cos 1x x xe f x xe ⎛⎫-=⋅ ⎪+⎝⎭在0,,22x πππ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭内的大致图像为( ) A. B.C. D.7.已知函数()()2ln f x x x =+,设()()0.5514.1log ,cos14a f b f c f -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A.b a c <<B.c a b <<C.c b a <<D.a c b <<8.定义在R 上的函数()f x 和()g x ,其中()f x 满足()()f x f x -=且在[)0,∞+上单调递减,()g x 满足()()11g x g x -=+且在()1,∞+上单调递减,令()()()()()12F x f x g x f x g x ⎡⎤=++-⎣⎦,则对x R ∀∈,均有( )A.()()11F x F x -≥+B.()()11F x F x -≤+C.()()2211F xF x -≥+ D.()()2211F x F x -≤+二、多选题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.十六世纪中叶,英国数学家雷科德在《研智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.已知非零实数,a b 满足1133a b>,则()A.11a b> B.a a b b > C.()()222233a a bb ab +>+ D.11b ba a+>+ 10.已知,a b 为正数,1181a b ab++=,则下列说法正确的是( ) A.()ln ln a b ab +≥B.22(1)(1)a b +++的最小值为18C.9a b +的最小值为8D.33a b +的最小值为1811.已知函数()()112,20222,04x x f x f x x +⎧⋅-≤≤⎪=⎨⎪-<≤⎩,则下列命题正确的是( )A.存在k R ∈,使得()f x k =有3个不同的实数根B.存在k R ∈,使得()f x kx =有4个不同的实数根C.若函数()()g x f x k =-有2个零点12,x x ,则12x x +的值为2,2-或6D.能使得关于x 的方程()()2[]310f x mf x m +++=有4个不同的实数根的m的取值范围是12⎛- ⎝⎭12.函数()f x 定义在区间D 上,若满足:12,x x D ∀∈且12x x <,都有()()12f x f x ≥,则称函数()f x 为区间D 上的“不增函数”,若()f x 为区间[]0,4上的“不增函数”,且()()()04,134f f x f x =++-=,又当[]3,4x ∈时,()82f x x ≥-恒成立,下列命题中正确的有( )A.313444f f ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭B.[]()1,4,2x f x ∃∈>C.413436f f ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭D.[]()()()0,2,24x f f x f x ∀∈-≥- 非选择题部分(共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.计算:2523log 9332742log 2log 5649-⎛⎫+--= ⎪⎝⎭__________. 14.已知O 为坐标原点,若角α的终边上一点P 的坐标为()1,m -,且sin 10α=-,线段OP 绕点O 逆时针转动90后,则此时点P 的坐标为__________. 15.不等式()722ln01x x x x e e e e --+-<+-的解集是__________.16.已知0b >,若对任意的()0,x ∞∈+,不等式324820ax x abx b +--≤恒成立,则224a a b ab +++的最小值为__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知集合{}22211,2102x A xB x x ax a x -⎧⎫=≤=-+-≤⎨⎬-⎩⎭∣∣.(1)当2a =时,求A B ⋃; (2)当RB A B ⋂=时,求实数a 的取值范围.18.(本题满分12分)已知()()()()()sin 4cos tan 33sin tan 2f παπαπααπαα--+=⎛⎫-- ⎪⎝⎭ (1)若()()0,22f ααπ=-∈,求α的值; (2)若()725f f παα⎛⎫++=- ⎪⎝⎭,求tan α. 19.(本题满分12分)随着环保意识的增强,电动汽车正成为人们购车的热门选择.某型号的电动汽车经高速路段(汽车行驶速度不低于60km /h )测试发现:①汽车每小时耗电量P (单位:KWh )与速度v (单位:km /h )的关系满足()()20.0020.04560120P v v v v =-+≤≤;②相同路程内变速行驶比匀速行驶耗电量更大.现有一辆同型号电动汽车从A 地经高速公路(最低限速60km /h ,最高限速120km /h )驶到距离为500km 的B 地,出发前汽车电池存量为75KWh ,汽车到达B 地后至少要保留5KWh 的保障电量.(假设该电动汽车从静止加速到速度为v 的过程中消耗的电量与路程都忽略不计). (1)判断该车是否可以在不充电的情况下到达B 地并说明理由;(2)若途径服务区充电桩功率为15kw (充电量=充电功率⨯时间),求到达B 地的最少用时(行驶时间与充电时间总和).20.(本题满分12分)已知函数()()2log 21kxf x x =++为偶函数.(1)求实数k 的值; (2)若关于x 的方程()()21xf b f=-(b 为常数)在x R ∈上有且只有一个实数根,求实数b 的取值范围.21.(本题满分12分)已知函数()f x 对,x y R ∀∈,都有()()()()()()21211f x y f x y f x f y ++-=--+且()314f =. (1)求证:()()01f x f +≥; (2)求()2024f 的值.22.(本题满分12分)已知函数()()f x x a x b =+-,其中,a b 为常数. (1)当1b =时,求函数()y f x =的单调区间; (2)当0a =时,存在2023个不同的实数()1220231,2,2023,03i x i x x x =≤<<<≤,使得()()()()()()12232022202312f x f x f x f x f x f x -+-++-=求实数b 的取值范围.2023学年第一学期浙南名校联盟12月联考高一年级数学学科参考答案一、选择题:本大题共8小题,每小题5分,共40分.二、选择题:本大题共4小题,每小题5分,共20分.三、填空题:本大题共4小题,每小题5分,共20分.13.7914.()3,1- 15.{ln2ln2}xx -<<∣16.16-四、解答题:本大题共6小题,共70分.17.【答案】(1)[)[][]1,2,1,1,2,1,3A B a a a A B =-=-+=∴⋃=- (2)[)()3,,2∞∞+⋃--【解析】(1)()()21110{12022x x A xx x x x x x -+⎧⎫⎧⎫=≤=≤=+-≤⎨⎬⎨⎬--⎩⎭⎩⎭∣∣∣且[)20}1,2x -≠=- {}()(){}[]222101101,1B x x ax a x x a x a a a ⎡⎤⎡⎤=-+-≤=---+≤=-+⎣⎦⎣⎦∣∣[]2,1,3a B ==, []1,3A B ∴⋃=-(2),RB A B A B ⋂=⇔⋂=∅,12A B a ≠∅≠∅∴-≥或11a +<-3a ∴≥或 2.a <-18.【答案】(1)()0,23παπα∈∴=或23πα=(2)4tan 3α=或34【解析】(1)()()()()()()()()sin 4cos tan 3sin cos tan sin 3cos tan sin tan 2f παπαπααααααπαααα--+--===-=-⎛⎫-- ⎪⎝⎭()sin 0,23πααπα∴=∈∴=或23πα=(2)()777,sin sin sin cos 25255f f ππαααααα⎛⎫⎛⎫++=-∴--+=-∴+= ⎪ ⎪⎝⎭⎝⎭7sin cos 5αα∴=- 227cos cos 15αα⎛⎫∴-+= ⎪⎝⎭即:()()5cos 310cos 80αα--= 3cos 5α∴=或4cos 5α=当3cos 5α=时,4sin 4sin ,tan 5cos 3αααα∴=∴==, 当4cos 5α=时,3sin 3sin tan 5cos 4αααα∴=∴== 则4tan 3α=或34(其他解法酌情给分)19.【答案】(1)该车不能在不充电的情况下到达B 地. (2)该汽车到达B 地的最少用时为223【解析】(1)设匀速行驶速度为v ,耗电量为()f v , 则()()()50025002060120f v P v v v v v=⋅=+-≤≤ 函数()f v 在区间[]60,120单调递增()min 245()607553f v f ∴==≥- 该车不能在不充电的情况下到达B 地(2)设匀速行驶速度为v ,总时间为t ,行驶时间与充电时间分别为12,t t . 若能到达B 地,则初始电量+充电电量-消耗电量保障电量即()275155t f v +-≥ 解得25006153v t v≥+-.125005002000226661531533v v t t t v v v ∴=+≥++-=+-≥=. 当且仅当2000153v v=,即100v =时取到等号 所以该汽车到达B 地的最少用时为22320.【答案】(1)2k =- (2)0,1b b =≥或1b ≤-【解析】(1)()()2log 21kx f x x =++为偶函数()()2log 21kx f x x -∴-=+-()()()()222221log 21log 212log 2021kx kxkxxkx f x f x x -⎛⎫+∴--=+-++== ⎪+⎝⎭22212122121kx x kx x kx -⎛⎫+∴=∴⋅= ⎪+⎝⎭2k ∴=-..(1)法2:由()()()()2211log 211log 2112kkf f k =-⇒++=+-⇒=-.当2k =-时,()()()()222224141log 21log 2log log 2242x x xx x x x x f x x f x --⎛⎫⎛⎫++=++===+= ⎪ ⎪⎝⎭⎝⎭2k ∴=-(2)()()()222224141log 21log 2log log 2242x x xx x x x x f x x --⎛⎫⎛⎫++=++===+ ⎪ ⎪⎝⎭⎝⎭22x x -+在(),0∞-单调递减,在()0,∞+单调递增令222log x xt y t -=+=在()2,∞+上递增()()2log 22x x f x -∴=+在(),0∞-单调递减,在()0,∞+单调递增.又()()2log 22x x f x -=+是偶函数则由()()21xf b f =-有且只有一个实数根,21x b ∴=-有且只有一个实数根0,1b b ∴=≥或1b ≤-(其他解法酌情给分)21.【答案】(1)见详解.(2)()120244f = 【解析】(1)取x y 、都为2x 时,()()2021112x f x f f⎛⎫⎛⎫+=-+≥ ⎪ ⎪⎝⎭⎝⎭思路2:0x y ==,则()()220(201)1f f =-+,可得()102f =或当()102f =时,令0y =,则()1f x =,即()12f x =与()314f =矛盾 所以()01f =, 即证()0f x ≥取x y 、都为2x 时,()()2021112x f x f f ⎛⎫⎛⎫+=-+≥ ⎪ ⎪⎝⎭⎝⎭(2)()314f =,可得()()()()()1132304561444f f f f f =⇒=⇒=⇒=⇒= 令1y =,则()()()()()()()1112121112f x f x f x f f x ++-=--+=+即()()()111,2f x f x f x ++-=+即()()()1212f x f x f x ++=++()()211f x f x ∴++-=用3x +代x 可得()()521f x f x +++=()()51f x f x ∴+=-,即()()6f x f x += ()()202422f f ==22.【答案】(1)当1a =-时,()f x 在R 上单调递增. 当1a >-时,()f x 在()1,,1,2a ∞∞-⎛⎫-+ ⎪⎝⎭上单调递增,在1,12a -⎛⎫⎪⎝⎭上单调递减. 当1a <-时,()f x 在()1,1,,2a ∞∞-⎛⎫-+⎪⎝⎭上单调递增,在11,2a -⎛⎫⎪⎝⎭上单调递减. (2)b 的取值范围是][(),17,∞∞--⋃+ 【解析】(1)()()()()221,111,1x a x a x f x x a x x a x a x ⎧+--⎪=+-=⎨---+<⎪⎩1当1a =-时,()()22(1),1,(1),1x x f x f x x x ⎧-=⎨--<⎩在R 上单调递增. 2当1a >-时,()f x 在()1,,1,2a ∞∞-⎛⎫-+ ⎪⎝⎭上单调递增,在1,12a -⎛⎫ ⎪⎝⎭上单调递减. 3当1a <-时,()f x 在()1,1,,2a ∞∞-⎛⎫-+⎪⎝⎭上单调递增,在11,2a -⎛⎫⎪⎝⎭上单调递减. (2)()22,,x bx x bf x x x b x bx x b ⎧-=-=⎨-+<⎩1当02b≤即0b ≤时,()2f x x bx =-在[]0,3上单调递增,因为12202303x x x ≤<<<≤,所以()()()()1202303f f x f x f ≤<⋯<≤,则()()()()()()12232022202312f x f x f x f x f x f x =-+-++- ()()()()()()()()213220232022f x f x f x f x f x f x =-+-++-()()()()203313093f x f x f f b =--=-解得1b ≤-;2当32b即6b 时,()2f x x bx =-+在[]0,3上单调递增,因为12202303x x x ≤<<<≤,所以 ()()()()20331123093f x f x f f b =--=-+,解得7;b3当3322b<<即36b <<时,()()()()22612203293992422b b b b b f f f b -⎛⎫⎛⎫--=⨯-+--+=+< ⎪ ⎪⎝⎭⎝⎭,矛盾;4当3022b <≤即03b <≤时, ()()()()()261223029399222b b b b f f f f b b -⎛⎫+--=+-=+< ⎪⎝⎭,矛盾.综上所述,b 的取值范围是][(),17,.∞∞--⋃+。
12月普法考试题目(标准答案)

20XX年12月普法考试题目(标准答案)1、(单选题)中华人民共和国全国人民代表大会是()。
A.唯一法律监督机关B.最高普法机关C.最高国家权力机关D.最高执法机关正确答案:C用户选择:C2、(单选题)法律和其他议案由全国人民代表大会以全体代表的()通过。
A.三分之二以上B.三分之一以上C.四分之三以上D.过半数正确答案:D用户选择:D3、(单选题)乡、民族乡、镇的人民代表大会每届任期()。
A.三年B.四年C.五年D.两年正确答案:C用户选择:C4、(单选题)全国人民代表大会根据()的提名,决定国务院副总理的人选。
A.国家主席B.国务院办公厅C.中央军委主席D.国务院总理正确答案:D用户选择:D5、(单选题)全国人民代表大会根据()的提名,决定国务院总理的人选。
A.中华人民共和国中央军委主席B.全国人民代表大会常务委员会委员长C.中华人民共和国国务院D.中华人民共和国主席正确答案:D用户选择:D6、(单选题)如果全国人民代表大会常务委员会认为必要,或者有()以上的全国人民代表大会代表提议,可以临时召集全国人民代表大会会议。
A.二分之一B.五分之一C.三分之一D.四分之一正确答案:B用户选择:B7、(单选题)最高人民法院()地方各级人民法院的审判工作,最高人民检察院()地方各级人民检察院的工作。
A.领导,监督B.领导,领导C.监督,监督D.监督,领导正确答案:D用户选择:A8、(单选题)全国人民代表大会每届任期()年。
A.一B.五C.十D.三正确答案:B用户选择:B9、(单选题)全国人民代表大会代表名额和代表产生办法由()规定。
A.行政法规B.国际惯例C.法律D.宪法正确答案:C用户选择:D10、(单选题)全国人民代表大会根据()的提名,决定中央军委其他组成人选。
A.中央军事委员会主席B.国务院总理C.最高人民检察院D.国家主席正确答案:A用户选择:A11、(单选题)中华人民共和国的国家机构实行()的原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12月11日
1、将粘土上刻成一个个单字,烧硬后用于排版印刷。
印完一版,单字可以卸下以备再用。
此项技术最早记载于
A. 《史通》
B. 《农政全书》
C. 《农书》
D. 《梦溪笔谈》
2、据百度百科介绍,中国古代有一部具有世界性影响的科学巨著,其资料被达尔文的《动物和植物在家养下的变异》一书引用。
这一著作很可能是:
A.《本草纲目》B.《农政全书》C.《授时历》D.《天工开物》
3、清朝蔡澄在《鸡窗丛话》中写道:“尝见古骨肆,古铜方二三寸,刻选诗或杜诗韩文二三句,字形反、不知何用。
识者日:此名书范,宋太宗(976-997)初年,颁行天下,刻书之式。
”从材料中可以得出的正确结论是
A.北宋初年非常重视科技成果推广B.宋代娱乐场所中已注重科技普及
C.铜活字技术在北宋就已经发明了D.宋朝之后活字印刷术得到新发展
12月12日
1、培根说:“这三种东西曾改变了整个世界事物面貌和状态:第一种在文化方面,第二种在战争上,第三种在航海上。
”培根所说的第一种东西是我国古代的()
A.印刷术 B.造纸术
C.古典文化 D.儒家学说
2、阅读下列材料,回答问题。
材料一:苏轼认为:“书必有神、气、骨、肉、血,五者阙一,不成为书也”。
强调书法的精神气度。
他还认为“我书意造本无法”。
黄庭坚也主张书法“入神”,对学习古人要“离迹师神”。
材料二:宋徽宗赵佶以画花鸟擅长,不仅建立了皇家画院,而且有考试制度。
如有一次出考题为“野水无人渡,孤舟尽日横”,……获得第一名的画的是船夫躺在船尾,独自吹着笛子。
画家要表达题中的“无”,是“非无舟人,只无行人”。
(1)材料1、2分别反映了北宋书法、绘画的什么特征?其共同特征是什么?(4分)
(2)结合所学知识,简要分析北宋书法、绘画呈现上述特征的主要原因。
(6分)
(1)北宋书法追求个性而忽略法度,倡导有意无法;山水画发展为独立的画种,画家更加注重意境。
其共同特征是强调精神和意境。
(4分)
(2)统治者重视文人,市民阶层兴起,社会生活丰富多彩,理学的兴起使文人更加
注重内心的修养,书法和绘画有着相同的社会生活环境。
(6分)。