2017八年级数学下册期末试卷

合集下载

2017人教版八年级数学下册期末试卷含答案

2017人教版八年级数学下册期末试卷含答案

测试(时间:90分钟满分:120分)题号一二三总分合分人复分人得分一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.12B.23 C.0.3 D.72.▱ABCD中,∠A=40°,则∠C=()A.40°B.50°C.130°D.140°3.下列计算错误的是()A.3+22=5 2 B.8÷2= 2C.2×3= 6D.8-2= 24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.下列各组数不能作为直角三角形三边长的是()A.3,4, 5 B.3,4,5C.0.3,0.4,0.5 D.30,40,506.函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6 B.中位数是6 C.平均数是6 D.方差是49.(孝感中考)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为()A.-1 B.-5 C.-4 D.-310.(牡丹江中考)如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF 交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB∶OE=3∶2.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每小题4分,共24分)11.二次根式x -2有意义,则x 的取值范围是.12.将正比例函数y =-2x 的图象向上平移3个单位,则平移后所得图象的解析式是. 13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组⎩⎪⎨⎪⎧2x +y =b ,x -y =a 的解是⎩⎪⎨⎪⎧x =-1,y =3.则直线y =-2x +b 与直线y =x -a 的交点坐标是__________.15.如图,在△MBN 中,已知BM =6,BN =7,MN =10,点A ,C ,D 分别是MB ,NB ,MN 的中点,则四边形ABCD 的周长是.16.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE =15°,则∠BOE 的度数为____________.三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|. 18.(8分)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边上的点F 处,折痕为AE.若BC =10 cm ,AB =8 cm ,求EF 的长.19.(8分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(2010湖南娄底)如图10,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD21.(10分)某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次小王60 75 100 90 75小李70 90 100 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分) 中位数(分) 众数(分) 方差小王80 75 75 190小李(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场购树苗数量销售单价不超过1 000棵时4元/棵超过1 000棵的部分 3.8元/棵乙林场购树苗数量销售单价不超过2 000棵时4元/棵超过2 000棵的部分 3.6元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元),y乙(元).(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y甲,y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是EB=FD;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.。

2017年下学期八年级数学期未考试卷

2017年下学期八年级数学期未考试卷

考场号 考号 年级 班级_____________姓名_____________……………………………………………………装……………………………订…………………………线………………………岳纸学校2017年下学期期末考试题八 年 级 数 学时 量:90分钟 满 分:120分一、选择题:(请将唯一正确答案的编号填入括号中,每小题3分,共30分)1. 在-35,9,0.010010001…,97,3,2π这六个实数中无理数有 ( ) A. 2个 B. 3个 C. 4个 D. 5个2. 若分式242+-x x 的值为0,则x 的值为 ( )A. 2-=xB. 2±=xC. 2=xD. 0=x 3. 下列各式中,计算正确的是 ( )A. 133=+-x xB. 3332x x x =⋅C. 2818=-D. 283=-4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为 ( )A. 0.37×10 -5B. 37×10 -5C. 37×10 -4D. 3.7×10 -5 5. 要使m m -=-4)4(2成立,则m 的取值( )A. m≤4B. m≥4C. 0≤m≤3D. 一切实数6. 若解分式方程()x x x x m x x 11112+=++-+产生增根,则m 的值是 ( ) A. -1或-2 B. -1或2 C. 1或2 D. 1或-27. 若实数a ,b ,c 在数轴上对应位置如图所示,则下列不等式成立的是 ( ) A .ac >bc B .ab >cbC .a+c >b+cD .a+b >c+b8. 如图,在等腰直角△ABC 中,∠ACB=900,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=900,则下列结论:① AO = CO = BO ;② △DOE 是等腰直角三角形;③ CE = AD ;④ 图中全等的三角形只有两对;⑤ △ABC 的面积等于四边形CDOE 的面积的2倍.其中真命题的个数有 ( ) A. 2个 B. 3个 C. 4个 D. 5个9. 如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于 ( )A. 900B. 1800C. 2100D. 2700D CO BA E第8题图 A B ED C 2 13 第9题图10. 某商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折,如果用27元,最多可以购买该商品的件数是 ( )A. 8件B. 9件C. 10件D. 11件二、填空题:(本大题共8个小题,每小题3分,共24分)11.64的平方根是 ,立方根是 .12. 计算: =-+⎪⎭⎫⎝⎛++---013)14.3(3112273127π .13. 如果一个三角形的三边的长均为整数,且其中两边的长分别为2和4,则第三边的长为 .14.如图,点D 、E 在△ABC 的BC 边上,∠B = ∠C ,要推理得出△ABE ≌△ACD ,可以补充的一个条件是 .(不潻加辅助线,写出一个即可)15.如图,在Rt △ABC 中,斜边AB 上的垂直平分线交直角边BC 于D ,交AB 于E ,若BC=10cm ,AC=6cm ,则△ADC 的周长为 cm.16. 若△ABC ≌△DEF ,BC = EF = 6,△ABC 的面积为18,则EF 边上高的长为 . 17.满足不等式14-x <7-x 的最大整数是 .18.分式方程2123=+x 的解为 .三、解答题:(共66分)19. 计算(本大题共2小题,每小题6分,共12分)⑴ ⎪⎭⎫ ⎝⎛++÷⎪⎭⎫ ⎝⎛-+--1111412a a a a a; ⑵ ()363821123--++.20.(6分)解分式方程:12422=-+-x xx .第14题图E D A CB第15题图21.(8分)解不等式组,并把解集在数轴上表示出来:22. (10分)先化简,再求值:1221214322+-+÷⎪⎭⎫⎝⎛---+x x x x x x ,其中15+=x .23.(10分) 某工厂生产一批产品,由甲车间单独完成需要40天,如果由乙车间单独先做10天,甲、乙两车间再一起合作20天恰好生产完这批产品,求由乙车间单独生产这批产品需要多少天?21-x ≤1,2-x <()14+x .{24. (10分)如图,C 是线段AB 上一点,△ACD 、△CBE 均为等边三角形.求证:⑴ AE = BD ; ⑵ △CFG 是等边三角形.25. (10分)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.⑴ 若学校单独租用这两种车辆,各需多少钱?⑵ 若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节约租金,请你帮助该学校选择一种最节省的租车方案.FED G A。

2017年八年级下册数学期末试卷【含答案】

2017年八年级下册数学期末试卷【含答案】

2017年八年级下册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪个函数在其定义域内是增函数?A. y = -x^2B. y = x^3C. y = 1/xD. y = -2x3. 在直角坐标系中,点P(2, -3)关于原点的对称点是?A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是多少平方厘米?A. 60cm^2B. 78cm^2C. 80cm^2D. 130cm^25. 下列数列中,哪个数列是等差数列?A. 1, 3, 6, 10,B. 2, 4, 8, 16,C. 3, 6, 12, 24,D. 1, 4, 9, 16,二、判断题(每题1分,共5分)1. 两个锐角互余。

()2. 任何两个等边三角形都是全等的。

()3. 两条平行线上的任意一对同位角相等。

()4. 任何一个正整数都可以表示为两个整数的平方差。

()5. 对角线互相垂直的四边形一定是菱形。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的周长为20cm,腰长为8cm,则底边长为______cm。

2. 若一个数的平方根是4,则这个数是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若一个等差数列的首项为2,公差为3,则第10项是______。

5. 若一个圆的半径为5cm,则这个圆的面积是______cm^2。

四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。

2. 什么是勾股定理?给出一个应用勾股定理的例子。

3. 简述一次函数的性质。

4. 什么是等差数列?给出一个等差数列的例子。

2017八年级下册数学期末试卷

2017八年级下册数学期末试卷
7
一、选择题
参考答案
1.C 2.D 3.B 4.C 5.B 6.A 7.D 8.D 9.C 10.D
二、填空题
11. 3 3 , 12. 17, 13. 4 , 14. 10 5 3 , 15. 20 , 16. 5, 17. 答案不唯一
18. 29,19. 乙, 20. ( 3)n 1.
三、解答题(本题共 8 小题,满分共 60 分) 9 x 0 xx 96 ,∴ 6 x 9
24. (9 分) 小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点 会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的 2 倍,小颖在小亮出 发后 50 min才乘上缆车,缆车的平均速度为 180 m/min.设小亮出发 x min后行走的路 程为 y m.图中的折线表示小亮在整个行走过程中 y 与 x 的函数关系. ⑴小亮行走的总路程是___________m,他途中休息了________min. ⑵①当 50≤x≤80 时,求 y 与 x 的函数关系式; ②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
即 GE=DF,GE∥DF, ∴四边形 DEGF 是平行四边形;
(2)连接 DG, ∵四边形 AGCD 是平行四边形, ∴AD=CG, ∵G 为 BC 中点, ∴BG=CG=AD, ∵AD∥BG,
8
∴四边形 ABGD 是平行四边形, ∴AB∥DG, ∵∠B=90°, ∴∠DGC=∠B=90°, ∵F 为 CD 中点, ∴GF=DF=CF, 即 GF=DF, ∵四边形 DEGF 是平行四边形, ∴四边形 DEGF 是菱形. 24. 解:⑴3600,20.
5、如图,在平行四边形 ABCD 中,∠B=80°,AE 平分∠BAD 交 BC 于点 E,CF∥AE 交 AD

2017人教版八年级数学下学期期末测试卷(最新人教版)

2017人教版八年级数学下学期期末测试卷(最新人教版)

人教版八年级数学下学期期末测试卷(最新人教版) 姓名一、选择题:(每小题 分,共 分)  如果代数式有意义,那么⌧的取值范围是( )✌.⌧♏ .⌧♊ .⌧> .⌧♏且⌧♊ 下列各组数中,以♋、♌、♍为边的三角形不是直角三角形的是( ) ✌ 1.5,2,3a b c ===  7,24,25a b c ===  6,8,10a b c ===  3,4,5a b c ===如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为 和 ,则b 的面积为( ) A. B. .  D.   下列二次根式是最简二次根式的是( )✌. . . . 如图,在平行四边形✌中,对角线✌, 相交于点 ,点☜,☞分别是边✌,✌的中点,☜☞交✌于点☟,则的值为( )✌.... 0)y kx b k =+≠(的图象如图所示,当0y >时,x 的取值范围是( ) ✌0x < 0x > 2x < 2x > 体育课上, 人一组进行足球比赛,每人射点球 次,已知某一组的进球总数为 个,进球情况记录如下表,其中进 个球的有⌧人,进 个球的有⍓人,若(⌧,⍓)恰好是两条直线的交点坐标,则这两条直线的解析式是进球数人数⌧ ⍓✌⍓⌧与⍓23⌧223  ⍓-⌧与⍓23⌧223 ⍓-⌧与⍓-23⌧223 ⍓⌧与⍓-23⌧223 已知正比例函数y kx = ☎≠ ✆的函数值⍓随⌧的增大而减小,则一次函数⍓⌧的图象大致是☎ ✆xyO A xy OBxyOCx y OD已知 Δ✌中 ✌✌7 则Δ✌的面积是☎ ✆✌  7 7 如图,已知一条直线经过点✌( , )、点 ( , ),将这条直线向左平移与⌧轴、⍓轴分别交与点 、点 .若 ,则直线 的函数解析式为 ☎ ✆✌ ⍓⌧  ⍓⌧ ⍓⌧  ⍓⌧.四边形✌中,对角线✌、 相交于点 ,下列条件不能判定这个四边形是平行四边形的是( )✌. ✌ ,✌ . ✌ ,✌ . ✌ ,. ✌ ,✌.有一块直角三角形纸片,如图 所示,两直角边✌= ♍❍= ♍❍ ,现将直角边✌沿直线✌折叠,使它落在斜边✌上,且与✌☜重合,则 等于( )♋♌♍●✌. ♍❍ . ♍❍ . ♍❍ . ♍❍.如图,在 ✌中,✌,✌,∠ 的平分线交 ✌的延长线于点☜,则✌☜的长为( )✌. .  . . 二、填空题 ( 分)  计算:___________52021=÷+- .若正方形的边长为 ,则它的对角线长是 ..计算的结果为 ..计算:﹣() 若一次函数⍓⌧( 为常数, ♊)的图象经过第一、二、三象限,则 的取值范围是 ..如图, ✌的周长为 ♍❍,✌☜平分∠ ✌,若 ☜♍❍,则✌的长度是、 四边形✌中,对角线✌、 相交于点 ,给出下列四个条件: ♊✌;♋✌;♌✌;♍从中任选两个条件,能使四边形✌为平行四边形的选法有 种  把直线⍓=⌧+ 向上平移 个单位所得到的解析式为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉。

2017年人教版八年级下册期末数学试卷附答案解析【两套汇编二】

2017年人教版八年级下册期末数学试卷附答案解析【两套汇编二】

人教版2017年八年级下册期末数学试卷附答案解析【2套汇编二】2017年八年级(下)期末数学试卷一一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2 D.±22.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.485.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是507.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为()A.3 B. C. D.48.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3 D.69.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)=.12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.14.已知x+=,那么x﹣=.15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC 的长为.三、解答题(共8小题,满分72分)17.(6分)计算:(1)(+)﹣(﹣)(2)(+)÷.18.(6分)如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.19.(8分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.20.(8分)已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.21.(8分)如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.22.(11分)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?23.(12分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.24.(13分)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2 D.±2【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简,即可解答.【解答】解:=2,故选:C.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.2.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定【考点】勾股定理的逆定理.【分析】此题要分两种情况进行讨论:;①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.【解答】解;①当3和4为直角边时,第三边长为=5,②当4为斜边时,第三边长为:=,故选:C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【考点】命题与定理.【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选A.【点评】本题主要考查了命题与定理的知识,解题的关键是掌握特殊四边形的判定定理,此题难度不大.4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.48【考点】算术平均数.【分析】根据已知条件列出算式,求出即可.【解答】解:余下数的平均数为(45×10﹣4﹣70)÷8=47,故选C.【点评】本题考查了算术平均数,能根据题意列出算式是解此题的关键.5.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.【解答】解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是50【考点】众数;加权平均数;中位数.【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【解答】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点评】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为()A.3 B. C. D.4【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE 的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选:D.【点评】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.8.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3 D.6【考点】轴对称-最短路线问题;菱形的性质.【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM 的最小值.【解答】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴PA+PM=PC+PM=CM=3.故选C.【点评】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.9.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米【考点】函数的图象.【分析】4小时后已经在返回的路上,故求出返回时的速度,并求出1小时的行程即可.【解答】解:∵4小时后已经在返回的路上,而小明返回时240km的路程用时4小时,∴返回时的速度为:240÷4=60(km/h)∴1小时行程:1×60=60(km)∴240﹣60=180(km).答:小明出发4小时后距A地180千米.【点评】本题考查了函数图象及其应用,解题的关键是认真审题,获得必要的数据信息,难点就是能把函数图象与实际运动情况互相吻合.10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100【考点】一次函数图象与几何变换.【分析】根据题意结合勾股定理得出CA的长,进而得出平移后C点的横坐标,求出BC平移的距离,进而得出线段BC扫过的面积.【解答】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA==8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.【点评】此题主要考查了一次函数的图象与几何变换,根据题意得出C点平移后横坐标是解题关键.二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)=2.【考点】二次根式的混合运算.【分析】利用平方差公式计算.【解答】解:原式=()2﹣()2=7﹣5=2.故答案为2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为x≥1.【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x≥1时,直线y=ax+4不在直线y=kx的上方,于是可得到不等式kx≥ax+4的解集.【解答】解:当x≥1时,kx≥ax+4,所以不等式kx≥ax+4的解集为x≥1.故答案为x≥1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是54.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得到三角形是直角三角形,然后根据三角形的面积公式即可得到结论.【解答】解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.【点评】本题考查了勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.14.已知x+=,那么x﹣=±3.【考点】二次根式的化简求值.【分析】直接利用完全平方公式得出x2+=11,进而得出x﹣的值.【解答】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+﹣2=(x﹣)2=9,∴x﹣=±3.故答案为:±3.【点评】此题主要考查了二次根式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为77.【考点】方差;算术平均数.【分析】根据方差公式、算术平均数公式、完全平方公式计算即可.【解答】解:由题意得:x+y+8+9+10=45,(x﹣9)2+(y﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2=10,∴x+y=18,x2+y2﹣18x﹣18y=﹣154,∴(x+y)2﹣2xy﹣18(x+y)=﹣154,解得,xy=77,故答案为:77.【点评】本题考查的是方差的计算和算术平均数的计算,掌握方差的计算公式是:s2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2]是解题的关键.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC 的长为2.【考点】翻折变换(折叠问题).【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6﹣x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:BC=2.故答案为:.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题(共8小题,满分72分)17.计算:(1)(+)﹣(﹣)(2)(+)÷.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.【解答】解:(1)原式=5+3﹣3+2=2+5;(2)原式=(4+)÷2=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.【考点】正方形的性质;三角形的面积.【分析】首先用a表示出AN、AM和MN的长,再利用勾股定理的逆定理证明△AMN是直角三角形,最后利用三角形面积公式计算即可.【解答】解:在Rt△ABN中,AN2=AB2+BN2,∴AN2=a2+(a)2=a2,在Rt△ADM中,AM2=AD2+DM2,∴AM2=a2+()2=a2,在Rt△CMN中,MN2=CM2+CN2,∴MN2=(a)2+(a)2=a2,∵a2=a2+a2,∴AN2=AM2+MN2,∴△AMN是直角三角形,∴S=AM•AN=×a×a=a2.△AMN【点评】本题主要考查了正方形的性质以及勾股定理的知识,解题的关键是证明△AMN是直角三角形,此题难度不大.19.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.【考点】平行四边形的判定与性质.【分析】(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;(2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F 为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.【解答】解:(1)证明:∵CE∥AB,∴∠BAC=∠ECA,在△DAF和△ECF中,,∴△DAF≌△ECF (ASA),∴CE=AD,∴四边形ADCE是平行四边形;(2)∵AE⊥EC,四边形ADCE是平行四边形,∴四边形ADCE是矩形,在Rt△AEC中,F为AC的中点,∴AC=2EF=2,∴AE2=AC2﹣EC2=22﹣12=3,∴AE=,∴四边形ADCE的面积=AE•EC=.【点评】此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出∴△DAF≌△ECF 是解题关键.20.已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】由“一次函数图象与y轴的交点在x轴的下方,且y随x的增大而减小.”即可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围.【解答】解:由题意,得:,解得:a<2.【点评】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及解一元一次不等式组,解题的关键是根据一次函数图象上点的坐标特征结合一次函数的性质得出关于a的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质结合一次函数的单调性找出不等式是关键.21.如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.【考点】平行四边形的判定;等边三角形的性质;直角三角形斜边上的中线.【分析】(1)连结BD,根据直角三角形的性质可得BD=AC=AD,利用等边三角形的性质可得AE=BE,然后证明△ADE≌△BDE,进而可求出∠AED=∠BED=30°,然后再证明∠BED+∠EBC=180°,从而可得结论;(2)当AB=AC或AC=2AB时,四边形DCBE是平行四边形,首先利用三角函数求出∠C=30°,然后证明DC∥BE,再有DE∥BC,可得四边形DCBE是平行四边形.【解答】(1)证明:连结BD.∵点D为Rt△ABC的斜边AC的中点,∴BD=AC=AD,∵△ABE是等边三角形,∴AE=BE,在△ADE与△BDE中,,∴△ADE≌△BDE(SSS),∴∠AED=∠BED=30°,∵∠CBE=150°,∴∠BED+∠EBC=180°,∴DE∥CB;(2)解:当AB=AC或AC=2AB时,四边形DCBE是平行四边形.理由:∵AB=AC,∠ABC=90°,∴∠C=30°,∵∠EBC=150°,∴∠EBC+∠C=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.【点评】此题主要考查了平行四边形的判定,以及直角三角形的性质,等边三角形的性质,关键是掌握两组对边分别平行的四边形是平行四边形.22.(11分)(2016春•云梦县期末)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?【考点】一次函数的应用.【分析】(1)观察函数图象即可得出甲比乙晚出发1个小时,再根据“速度=路程÷时间”即可算出乙的速度;(2)由乙的速度即可得出直线OC的解析式,令y=80,求出x值即可得出结论;(3)根据点D、E的坐标利用待定系数法即可求出直线DE的解析式,联立直线OC、DE的解析式成方程组,解方程组即可求出交点坐标,由此即可得出结论.【解答】解:(1)由图可知:甲比乙晚出发1个小时,乙的速度为:60÷3=20(km/h).故:甲比乙晚出发1个小时,乙的速度是20km/h.(2)由(1)知,直线OC的解析式为y=20x,∴当y=80时,x=4,∴乙到达终点B地用了4个小时.(3)设直线DE的解析式为y=kx+b,将D(1,0)、E(3,80)代入y=kx+b,得:,解得:,∴直线DE的解析式为y=40x﹣40.联立直线OC、DE的解析式得:,解得:.∴直线OC与直线DE的交点坐标是(2,40),∴在乙出发后2小时,两人相遇.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解二元一次方程组,解题的关键是:(1)根据“速度=路程÷时间”求出乙的速度;(2)找出直线OC的解析式;(3)联立两直线解析式成方程组.本题属于中档题,难度不大,解决该题型题目时,观察函数图象,根据函数图象给定数据解决问题是关键.23.(12分)(2013•遂宁)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,= [(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.【点评】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24.(13分)(2016春•云梦县期末)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)根据坐标轴上点的特点直接求值,(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.【解答】解:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);△PAO(3)存在,理由:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4∵S△AOB=OA×OB=AB×OP,∴OP==,∴EF最小=OP=.【点评】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.2017八年级(下)期末数学试卷二一、选择题1.化简﹣x的结果为()A.x﹣x B.x﹣C.2x D.02.已知甲乙两组各10个数据的平均数都是8,甲组数据的方差S甲2=0.12,乙组2=0.5,则()数据的方差S乙A.甲组数据的波动大B.乙组数据的波动大C.甲乙两组数据的波动一样大D.甲乙两组数据的波动大小不能比较3.a、b、c为某一三角形的三边,且满足a2+b2+c2=6a+8b+10c﹣50,则三角形是()A.直角三角形B.等边三角形C.等腰三角形D.锐角三角形4.若最简二次根式与可合并,则ab的值为()A.2 B.﹣2 C.﹣1 D.15.矩形边长为10cm和15cm,其中一内角平分线把长边分为两部分,这两部分是()A.6cm和9cm B.7cm和8 cm C.5cm和10cm D.4cm和11cm6.若一次函数+5,y随x的增大而减小,则m的值为()A.2或﹣2 B.3或﹣3 C.﹣3 D.37.某地区某月前两周从周一至周五每天的最低气温是(单位:℃)x1,x2,x3,x4,x5,和x1+1,x2+2,x3+3,x4+4,x5+5,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为()A.7℃B.8℃C.9℃D.10℃8.已知正方形ABCD中,E是BC上一点,如果DE=2,CE=1,那么正方形ABCD 的面积为()A.B.3 C.4 D.5二、填空题9.当x=时,二次根式取最小值,其最小值为.10.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为.11.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.12.如图,平行四边形ABCD的对角线相交于点O,且DC≠AD,过点O作OE⊥BD交BC于点E.若△CDE的周长为6cm,则平行四边形ABCD的周长为.13.直线y=3x+2沿y轴向下平移5个单位,则平移后与y轴的交点坐标为.14.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.15.甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10.乙:7、8、9、8、8.则这两人5次射击命中的环数的平均数甲=乙=8,方差S甲2S乙2.(填:“>”“<”或“=”)三、解答题(本大题共8个小题满分75分)16.(7分)先化简,再求值:已知m=2+,求的值.17.(8分)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18.(8分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.19.(10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF . (1)线段BD 与CD 有什么数量关系,并说明理由;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由.20.(10分)某校八年级(1)班20名学生某次数学测验的成绩统计如表:(1)若这20名学生成绩的平均数为82分,求x 和y 的值.(2)在(1)的条件下,求这20名学生本次测验成绩的众数和中位数. 21.(10分)已知直线与x 轴交于点A ,与y 轴交于点B ,直线y=2x +b经过点B 且与x 轴交于点C ,求△ABC 的面积.22.(10分)某校校长暑假将带领该校三好学生去北京旅游,甲旅行社说:“若校长买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按票价的六折优惠”.已知全程票价为240元.(1)设学生数为x ,甲旅行社的收费为y 甲(元),乙旅行社的收费为y 乙(元),分别求出y 甲,y 乙关于x 的函数关系式;(2)当学生数是多少时,两家旅行社的收费一样; (3)根据学生人数讨论哪家旅行社更优惠.23.(12分)如图,直线y=kx ﹣1与x 轴、y 轴分别交于B 、C 两点,且OB=OC . (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内直线y=kx ﹣1的一个动点,试写出△AOB 的面积与x 的函数关系式.(3)当点A 运动到什么位置时,△AOB 的面积是.。

2017人教版八年级数学下册期末试卷

2017人教版八年级数学下册期末试卷

期末测试一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是( )2.▱ABCD中,∠A=40°,则∠C=( )A.40° B.50° C.130° D.140°3.下列计算错误的是( )A.3+22=5 2 ÷2= 2×3= 6 -2=24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是,乙的成绩的方差是,根据以上数据,下列说法正确的是( )A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定 D.无法确定甲、乙的成绩谁更稳定5.下列各组数不能作为直角三角形三边长的是( ),4, 5 B.3,4,5C.,, D.30,40,506.函数y=x-2的图象不经过( )A.第一象限 B.第二象限C.第三象限 D.第四象限7.矩形、菱形、正方形都具有的性质是( )A.对角线相等 B.对角线互相平分C.对角线互相垂直 D.对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是( )A.众数是6 B.中位数是6 C.平均数是6 D.方差是49.(孝感中考)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为( )A.-1 B.-5 C.-4 D.-310.(牡丹江中考)如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD 是菱形;④MB∶OE=3∶2.其中正确结论的个数是( )A.1 B.2 C.3 D.4二、填空题(每小题4分,共24分)11.二次根式x -2有意义,则x 的取值范围是.12.将正比例函数y =-2x 的图象向上平移3个单位,则平移后所得图象的解析式是. 13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组⎩⎪⎨⎪⎧2x +y =b ,x -y =a 的解是⎩⎪⎨⎪⎧x =-1,y =3.则直线y =-2x +b 与直线y =x -a 的交点坐标是__________.15.如图,在△MBN 中,已知BM =6,BN =7,MN =10,点A ,C ,D 分别是MB ,NB ,MN 的中点,则四边形ABCD 的周长是.16.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE=15°,则∠BOE 的度数为____________.三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|.18.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10 cm,AB=8 cm,求EF的长.19.(8分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.21.(10分)某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次小王60751009075小李70901008080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差小王807575190小李(2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适说明你的理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场购树苗数量销售单价不超过1 000棵时4元/棵超过1 000棵的部分元/棵乙林场购树苗数量销售单价不超过2 000棵时4元/棵超过2 000棵的部分元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元),y乙(元).(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y甲,y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么23.(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.参考答案1.D10.C 提示:①③④正确,②错误. 11.x≥2 =-2x +3 14.(-1,3) ° 17.原式=6-3-26-(3-6)=-6.18.由条件知AF =AD =BC =10 cm ,在Rt △ABF 中,BF =AF 2-AB 2=102-82=6(cm),∴FC =BC -BF =10-6=4(cm).设EF =x cm ,则DE =EF =x ,CE =8-x ,在Rt △CEF 中,EF 2=CE 2+FC 2,即x 2=(8-x)2+42.解得x =5,即EF =5 cm.19.(1)由题意,得k +3=4,解得k =1,∴该一次函数的解析式是y =x +3.(2)由(1)知,一次函数的解析式是y =x +3.当x =-1时,y =2,即点B(-1,5)不在该一次函数图象上;当x =0时,y =3,即点C(0,3)在该一次函数图象上;当x =2时,y =5,即点D(2,1)不在该一次函数图象上. 20.(1)证明:∵AC∥DE,∴∠ACD =∠EDF.∵BD=CF ,∴BD +DC =CF +DC ,即BC =DF.又∵∠A=∠E,∴△ABC ≌△EFD(AAS).∴AB=EF.(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B =∠F.∴AB∥EF.又∵AB=EF ,∴四边形ABEF 为平行四边形. 21.(1)84 80 80 104(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为25×100%=40%,小李的优秀率为45×100%=80%.(3)因为小李的成绩较小王稳定,且优秀率比小王的高,因此选小李参加比赛比较合适. 22.(1)5 900 6 000(2)y 甲=⎩⎪⎨⎪⎧4x (0≤x≤1 000且x 为整数),+200(x>1 000且x 为整数);y 乙=⎩⎪⎨⎪⎧4x (0≤x≤2 000且x 为整数),+800(x>2 000且x 为整数). (3)①当0≤x≤1 000时,两家林场单价一样,因此到两林场购买所需要费用都一样;②当1 000<x≤2 000时,甲林场有优惠而乙林场无优惠,∴当1 000<x≤2 000时,到甲林场购买合算;③当x >2 000时,y 甲=+200,y乙=+800,y 甲-y 乙=+200-+800)=-600.(ⅰ)当y 甲=y 乙时,-600=0,解得x =3 000.∴当x =3 000时,到两林场购买所需要费用都一样;(ⅱ)当y 甲<y 乙时,-600<0,解得x <3 000.∴当2 000<x <3 000时,到甲林场购买合算;(ⅲ)当y甲>y乙时,-600>0,解得x>3 000.∴当x>3 000时,到乙林场购买合算.综上所述,当0≤x≤1 000或x=3 000时,到两林场购买所需要费用都一样;当1 000<x<3 000时,到甲林场购买合算;当x>3 000时,到乙林场购买合算.23.(2)EB=FD.证明:∵△AFB为等边三角形,∴AF=AB,∠FAB=60°.∵△ADE为等边三角形,∴AD=AE,∠EAD=60°.∴∠FAB +∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE.∴△FAD≌△BAE.∴EB=FD.(3)∠EGD不发生变化.∵△ADE为等边三角形,∴∠AED=∠EDA=60°.∵△ABF,△AED均为等边三角形,∴AB=AF,∠FAB=60°,AE=AD,∠EAD=60°.∴∠FAD=∠BAE.∴△FAD≌△BAE.∴∠AEB=∠ADF.设∠AEB为x°,则∠ADF也为x°,于是有∠BED为(60-x)°,∠EDF为(60+x)°,∴∠EGD=180°-∠BED-∠EDF=180°-(60-x)°-(60+x)°=60°.。

2017八年级下册数学期末试卷及答案

2017八年级下册数学期末试卷及答案

2017八年级下册数学期末试卷一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠33.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<15.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.97.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣1212.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.413.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P 是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= .18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= .19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标.(2)当P点移动了4秒时,直接写出点P的坐标(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为.23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为.24.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是,个体是,样本容量是;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?2017八年级下册数学期末试卷参考答案一、选择题(每小题3分,共48分)1.下列调查中,适宜采用普查方式的是( )A.了解某校初三一班的体育学考成绩B.了解某种节能灯的使用寿命C.了解我国青年人喜欢的电视节目D.了解全国九年级学生身高的现状【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某校初三一班的体育学考成绩,适合普查,故A正确;B、了解某种节能灯的使用寿命,调查具有破坏性,适合抽样调查,故B 错误;C、了解我国青年人喜欢的电视节目,调查范围广,适合抽样调查,故C 错误;D、了解全国九年级学生身高的现状,调查范围广,适合抽样调查,故D 错误;故选:A.2.函数y= 中,自变量x的取值范围是( )A.x>3B.x<3C.x=3D.x≠3【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选D.3.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不是对称点【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:由A的坐标为(2,3),点B的坐标为(﹣2,3),得点A与点B关于y轴对称,故选:B.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m 的取值范围是( )A.m>B.m<C.m>1D.m<1【考点】正比例函数的定义.【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m< .故选:B.5.点B(m2+1,﹣1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质确定出点B的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1≥1,∴点B(m2+1,﹣1)一定在第四象限.故选D.6.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟 0频数(通话次数) 20 16 9 5则通话时间不超过15分钟的频率是( )A.0.1B.0.4C.0.5D.0.9【考点】频数(率)分布表.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的频率.【解答】解:由表格可得,通话时间不超过15分钟的频率是:,故选D.7.在下列图象中,能作为一次函数y=﹣x+1的图象的是( )A. B. C. D.【考点】一次函数的图象.【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象即可.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,故选A.8.已知四边形ABCD是平行四边形,下列结论不正确的是( )A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形【考点】菱形的判定;平行四边形的性质;矩形的判定.【分析】根据对角线相等的平行四边形是矩形可得A错误;根据对角线互相垂直的平行四边形是菱形可得B正确;根据有一个角是直角的平行四边形是矩形可得C正确;根据一组邻边相等的平行四边形是菱形可得D正确.【解答】解:A、当AC=BD时,它是菱形,说法错误;B、当AC⊥BD时,它是菱形,说法正确;C、当∠ABC=90°时,它是矩形,说法正确;D、当AB=BC时,它是菱形,说法正确,故选:A.9.某校的校内有一个两个相同的正六边形(即六条边都相等,六个角都相等)围成的花坛,边长为2.5m,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )A.20mB.25mC.30mD.35m【考点】正多边形和圆;菱形的性质.【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m).故选:C.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≤3B.x≥3C.x≤D.x≥【考点】一次函数与二元一次方程(组).【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x≥ax+4的解集即可.【解答】解:∵函数y=2x的图象过点A(m,3),∴将点A(m,3)代入y=2x得,2m=3,解得,m= ,∴点A的坐标为( ,3),∴由图可知,不等式2x≥ax+4的解集为x≥ .故选:D.11.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y= x+12B.y=﹣2x+24C.y=2x﹣24D.y= x﹣12【考点】函数关系式.【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣ x+12(0故选:A.12.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4【考点】一次函数的应用.【分析】观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6= (小时),1+3 ,∴乙先到达B地,故④正确;正确的有3个.故选:C.13.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )A.(﹣1, )B.(﹣,1)C.( ,﹣1)D.(1,﹣ )【考点】坐标与图形变化-旋转.【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【解答】解:如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°﹣60°=30°,∴OC=2× = ,A′C=2× =1,∵点A′在第二象限,∴点A′(﹣,1).故选B.14.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=( )A. B. C. D.【考点】正方形的性质.【分析】先根据勾股定理求出对角线BD,证明△BEP是等腰直角三角形,得出PE=BE,再证明四边形OEPF是矩形,得出PF=OE,得出PE+PF=BE+OE=OB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB= BD,∴BD= = ,∠BOC=90°,∴OB= ,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB= ;故选:B.15.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN= AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴M N= AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.16.如图,在平面直角坐标系中,直线y=﹣ x+3与矩形OABC的边AB、BC 分别交于点E、F,若点B的坐标为(m,2),则m的值可能为( )A. B. C. D.【考点】一次函数图象上点的坐标特征;矩形的性质.【分析】求出点F和直线y=﹣ x+3与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、F两点的纵坐标相同,B点的纵坐标为2,∴点F的纵坐标为2,∵点F在y=﹣ x+3上,∴点F的坐标( ,2),∵直线y=﹣ x+3与x轴的交点为(2,0),∴由图象可知点B的横坐标∴选项中只有B符合.故选B.二、填空题(每小题3分,共12分)17.P(m﹣4,1﹣m)在x轴上,则m= 1 .【考点】点的坐标.【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【解答】解:∵P(m﹣4,1﹣m)在x轴上,∴1﹣m=0,解得m=1.故答案为:1.18.一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m= 2 .【考点】一次函数的性质.【分析】根据一次函数的增减性列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,∴ ,解得m=2.故答案为:2.19.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为 2 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,再证明△AOB是等边三角形,即可得出AB=OA,问题得解.【解答】解:∵四边形ABCD是矩形,∴OA= AC,OB= BD,BD=AC,∴OA=OB=1,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴AC=2OA=2,故答案为:2.20.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3) .【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BFC=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).三、解答题(本题8分)21.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.故这个多边形的边数是10.22.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周)(1)写出点B的坐标(4,6) .(2)当P点移动了4秒时,直接写出点P的坐标(4,4)(3)在移动过程中,当点P到x轴距离为5个单位长度时,则点P移动的时间为 4.5秒或7.5秒.【考点】四边形综合题.【分析】(1)由题意,根据A与C坐标确定出OC与OA的长,即可确定出B的坐标;(2)由P移动的速度与时间确定出移动的路程,求出AP的长,根据此时P 在AB边上,确定出P的坐标即可;(3)分两种情况考虑:当P在AB边上;当P在OC边上,分别求出P移动的时间即可.【解答】解:(1)∵长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),B在第一象限,∴OA=BC=4,OC=AB=6,则B坐标为(4,6);(2)∵P移动的速度为每秒2个单位,且运动时间是4秒,∴P移动的路程为8个单位,∴此时P在AB边上,且AP=4,则P坐标为(4,4);(3)分两种情况考虑:当P在AB边上时,由PA=5,得到P移动的路程为5+4=9,此时P移动的时间为9÷2=4.5(秒);当P在CO边上时,由OP=5,得到P移动的路程为4+6+6﹣5=11,此时P移动的时间是11÷2=5.5(秒),综上,P移动的时间为4.5秒或7.5秒.故答案为:(1)(4,6);(2)(4,4);(3)4.5秒或7.5秒23.如图,将▱ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,BC=6,则四边形ABFE的周长为12 .【考点】翻折变换(折叠问题);平行四边形的判定与性质.【分析】(1)根据折叠的性质得到EF=ED,∠CFE=∠CDE,根据平行四边形的性质得到AD∥BC,∠B=∠D,由平行线的判定得到AE∥BF,即可得到结论;(2)根据平行四边形的性质得到EF=AB=4.求得ED=4,得到AE=BF=6﹣4=2,于是得到结论.【解答】(1)证明:∵将 ABCD沿CE折叠,使点D落在BC边上的F处,∴EF=ED,∠CFE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴AE∥BF,∠B=∠CFE,∴AB∥EF,∴四边形ABFE为平行四边形;(2):∵四边形ABFE为平行四边形,∴EF=AB=4,∵EF=ED,∴ED=4,∴AE=BF=6﹣4=2,∴四边形ABFE的周长=AB+BF+EF+EA=12,故答案为:1224.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是某校七年级男生的体能情况,个体是每个男生的体能情况,样本容量是50 ;(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.【考点】频数(率)分布直方图.【分析】(1)根据总体、个体和样本容量的定义分别进行解答即可;(2)根据第一、第二、第三、第四小组的频数的比为1:3:4:2,可得第四小组的频率是,再用抽查的总人数乘以第四小组的频率即可求出频数;(3)根据1分钟跳绳次数在100次以上(含100次)的人数是第三、第四小组,再求出第三、第四小组的频率之和即可.【解答】解:(1)总体是某校七年级男生的体能情况;个体是每个男生的体能情况,样本容量是50;故答案为:某校七年级男生的体能情况;每个男生的体能情况;50.(2)第四小组的频率是: =0.2;第四小组的频数是:50× =10;(3)根据题意得:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是:×100%=60%.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.26.如图,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:∠BAE=∠DAE;(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?【考点】正方形的性质;线段垂直平分线的性质;作图—基本作图.【分析】(1)由SSS证明△ABC≌△ADC,得出对应角相等即可;(2)证出AB=BC=DC=AD,即可得出结论;(3)由等腰三角形的性质得出AC⊥BD,求出四边形ABCD的面积,即可得出拼成的正方形的边长.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAE=∠DAE;(2)解:四边形ABCD是菱形,理由如下:∵AB=AD,BC=DC,AB=BC,∴AB=BC=DC=AD,∴四边形ABCD是菱形;(3)解:∵AB=AD,∠BAE=∠DAE,∴AC⊥BD,∴四边形ABCD的面积= AC•BD=8×6=24(cm2),∴拼成的正方形的边长= =2 (cm).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竹溪县2016~2017学年度下学期期末考试
八年级数学试题
温馨提示:
1.本卷共25题,满分120分,考试时限120分钟.
2.在密封区内写明校名,姓名和考号,不要在密封区内答题.
题 号 一 二 三 总分 得 分
一、选择题(本题共10个小题,每小题3分,满分30分.下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填入下面的答题框内)
1.函数3y x =
-中,自变量x 的取值范围是( )
A.3x ≠
B.3x ≥
C.3x <
D.3x ≤ 2.下列二次根式中,不能与2合并的是( )
A.
1
2
B.8
C.12
D.18 3.如图,在□ABCD 中,AB =4,AD =7,∠ABC 的平分线BE 交AD 于点E ,则DE 的长是( )
A.4
B.3
C.3.5
D.2
4.在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长是( )
A.6.5
B.8.5
C.13
D.
60
13
5.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差s 2
,根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲
B.乙
C.丙
D.丁
6.若点(m ,n )在函数21y x =+的图象上,则2m n -的值是( )
A.2
B.﹣2
C.1
D.﹣1 7.将直线74y x =-+沿y 轴向下平移3个单位长度后得到的直线的表达式是( )
A.77y x =-+
B.71y x =-+
C.717y x =--
D.725y x =-+ 8.在四边形ABCD 中,AC ,BD 交于点O ,在下列各组条件中,不能判定四边形ABCD 为矩形的是( )
A.AB =CD ,AD =BC ,AC =BD
B.AO =CO ,BO =DO ,∠BAD =90°
C.∠BAD =∠BCD ,∠ABC +∠BCD =180°,AC ⊥BD
D.∠BAD =∠ABC =90°,AC =BD 9.如图,在4×4正方形网格中,每个小正方形的方格的边长均为1,则点A 到边BC 的距离为( )
A.
355 B.223 C.3
22
D.32 10.如图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C
题号 1 2 3 4 5 6 7 8 9 10 答案

乙 丙 丁 x (cm ) 561
560 561
560
s 2(cm 2) 3.5
3.5
15.5 16.5
第9题图
第3题图
→D →A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则下列图象中能大致反映y 与x 的函数关系的是( )
二、填空题:(每题3分,共18分.请直接将答案填写在横线上)
11.如图,在一次实践活动课上,小明为了测量池塘B ,C 两点间的距离,他先在池塘的一侧选定一点A ,然后测量出AB ,AC 的中点D ,E ,且DE =10米,于是可以计算出池塘B ,C 两点间的距离是______________米.
12.如图,点D 是直线l 外一点,在l 上取两点A ,B ,连接AD ,分别以点B ,D 为圆心,AD ,AB 的长为半径画弧,两弧交于点C ,连接CD ,BC ,则四边形ABCD 是平行四边形,理由是__________________________________. 13.某班的一次数学测验成绩,经分组整理后,各分数段的人数如图所示(满分为100,其中每组包含最小值,不含最大值).若此次考试没有满分,规定成绩在80分以上(含80分)为优秀,则这次测验全班的优秀率是_______________.
14.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在BC 边上的点F 处,则CE 的长是_______________.
15.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x <ax +4的解集为______________. 16.如图,在菱形ABCD 中,∠BCD =120°,AB =6,点E 在边AB 上,且AE =2,P 是对角线BD 上的一个动点,则PA +PE 的最小值是_______________.
A
B
C
D
第12题图
第13题图
第11题图
第10题图
三、解答题:(本题有9个小题,共72分)
17.(8分)计算:
(1)8+21832
-

2)()22
5
2-
18.(6分)如图,E,F分别是□ABCD的边AB,CD上的点,AE=CF.求证:DE=BF.
19.(6分)某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:
(1)求本次抽样人数有多少人?
(2)补全条形统计图;
(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?
20.(6分)如图,在正方形ABCD中,E是AB的中点,F是BC上一点,且CF=3BF.求证:DE⊥EF.
F
E
D C
B
A
21.(8分)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=5.
(1)求点B的坐标;
(2)若△ABC的面积为9,求直线l2的解析式.
22.(8分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=4,∠DCF=30°,求EF的长.
23.(8分)某年级在学校运动会期间需购买A,B两种奖品用于奖励本年级在运动会上表现优秀的学生.经过调查发现:若购买A种奖品1件和B种奖品2件,共需40元;若购买A种奖品2件和B种奖品1件,共需35元.
(1)求A,B两种奖品单价各是多少元?
(2)年级计划购买A,B两种奖品共60件,购买费用不超过700元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W的值.
24.(10分)如图,E 是正方形ABCD 边BC 上任意一点,G 是DC 上一点,∠EAG=450.
(1)求证:BE +DG =EG ;
(2)当E 是BC 中点时,求DG
GC
的值.
25.(12分)已知:直线24y x =+与x 轴交于点A ,与y 轴交于点B .
(1)求△AOB 的面积;
(2)若点B 关于x 轴的对称点为C ,点D 为线段OA 上一动点,连接BD ,将BD 绕点D 逆时针旋转90°得到线段DE ,求直线CE 的解析式;
(3)在(2)的条件下,直线CE 与x 轴交于点F ,与直线AB 交于点P ,当点D 在OA 上移动时,直线AB 上是否存在点Q ,使以F ,P ,D ,Q 为顶点的四边形为平行四边形,若存在求出Q ,D 的坐标;若不存在,说明理由.
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档