八上期末检测试题
八年级上学期数学《期末检测试卷》及答案解析

人 教 版 数 学 八 年 级 上 学 期期 末 测 试 卷一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -= 2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠ B. x 1> C. x 1< D. x 1≠- 3. 下列等式成立的是( )A. 123a b a b+=+ B.212a b a b =++ C. 2ab a ab b a b =-- D. a a a b a b =--++ 4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS 5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1 B. m ≥-1 C. m >-1且m ≠1 D. m ≥-1且m ≠1 6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )A. SSSB. SASC. ASAD. AAS8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线的交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-310. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.12. 分解因式234x x--=________________.13. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P 到BC的距离是_______.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 15. 若分式方程211x m x x -=--有增根,则m =________. 16. 若()22316x m x +-+是完全平方式,则m 的值等于_____.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.18. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线. 20. 如图,在△ABC 中,∠A=50°,O 是△ABC 内一点,且∠ABO=20°,∠ACO=30°.∠BOC 的度数是_________.三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值.24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值. 26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .27. 如图,△ABC 为等腰三角形,AC=BC ,△BDC 和△CAE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 并延长,交AB 于点G .求证:∠ACG=∠BCG .28. 已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?答案与解析一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -=【答案】D【解析】【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意; B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠B. x 1>C. x 1<D. x 1≠-【答案】A【解析】【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x ≠1,故选A.3. 下列等式成立的是( )A. 123a b a b +=+B. 212a b a b =++C. 2ab a ab b a b =--D. a a a b a b =--++ 【答案】C【解析】【分析】 根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a aba +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 试题解析:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .故选D .5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1B. m ≥-1C. m >-1且m ≠1D. m ≥-1且m ≠1 【答案】D【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.【详解】去分母得,()121m x -=-, ∴12m x +=, ∵方程的解是非负数,∴10m +≥即1m ≥-,又因为10x -≠,∴1x ≠, ∴112m +≠, ∴1m ≠,则m 的取值范围是1m ≥-且1m ≠.故选:D .【点睛】本题考查了分式方程的解,解答本题时,易漏掉1m ≠,这是因为忽略了10x -≠这个隐含的条件而造成的,这应引起同学们的足够重视.6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n .根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点【答案】A【解析】【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点睛】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 10. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD【答案】A【解析】【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B 、在△ABC 与△BAD 中,ABC BAD AB BA CAB DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,C D ABC BAD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (SAS ),故D 正确;故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.【答案】9.5×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-7, 故答案为9.5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 分解因式234x x --=________________.【答案】(4)(1)x x -+【解析】【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴234(4)(1)x x x x --=-+.故答案为:(4)(1)x x -+【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.13. 如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=6,则点P 到BC 的距离是_______.【答案】3【解析】分析:过点P 作PE ⊥BC 于E ,根据角平分线上的点到角的两边的距离相等,可得PA=PE ,PD=PE ,那么PE=PA=PD ,又AD=6,进而求出PE=3.详解:如图,过点P 作PE ⊥BC 于E ,∵AB ∥CD ,PA ⊥AB ,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA=PE ,PD=PE ,∴PE=PA=PD ,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab =1.∴原式=1.故本题应填写:1.15. 若分式方程211x m x x-=--有增根,则m =________. 【答案】-1【解析】【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.16. 若()22316x m x +-+是完全平方式,则m 的值等于_____. 【答案】7或1-【解析】【分析】由222)2(a ab b a b ±+=±,观察积的2倍项的系数特点得2(3)8,2(3)8m m -=-=-可得答案.【详解】解:因为:222)2(a ab b a b ±+=±,所以2(3)8,2(3)8m m -=-=-解得:7m =或1m =-故答案为:7或1-【点睛】本题考查完全平方式的特点,熟练掌握两个完全平方式是解题关键.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.【答案】75º【解析】【分析】根据三角板的特殊角和三角形的内角和是180度求解即可.【详解】由图知, ∠A=60°, ∠ABE=∠ABC-∠DBC=90°-45°=45°,∴∠AEB=180°-(∠A+∠ABE)= 180°-(60°+45°)=75° .故答案为:7518. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.【答案】3【解析】【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE 的长.【详解】∵△ABC为等边三角形,∴AB=BC=AC,∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=3.故答案为:3.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.【答案】6【解析】【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为6.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.20. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.【答案】100°【解析】【分析】延长BO 交AC 于E ,根据三角形内角与外角的性质可得∠1=∠A+∠ABO ,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO 交AC 于E ,∵∠A=50°,∠ABO=20°,∴∠1=∠A+∠ABO =50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理. 三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.【答案】(1)22a ;(2)22b -【解析】【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.详解】(1)2()()()2a b a b a b ab ++-+- 2222(2)()2a ab b a b ab =+++--22a =;(2)2232(2)()a b ab b b a b --÷--22222(2)a ab b a ab b =----+222222a ab b a ab b =---+-22b =-.【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.【答案】(1)()()m x y x y +-;(2)2(2)x - 【解析】【分析】(1)提公因式m 后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1)22mx my - 22()m x y =-()()m x y x y =+-;(2)(1)(3)1x x --+2431x x =-++2(2)x =-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值. 【答案】241x x -+,当2x =时,原式=0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x 的值代入计算即可求出值.【详解】原式=211(1)2(1)1(1)(1)(1)x x x x x x x x x ++---⋅+-++- =22(1)21(1)1x x x x x x -⋅--++ =2(1)211x x x --++ =241x x -+, ∵满足22x -≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=224021⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+. 24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.【答案】见解析【解析】【分析】根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC 和∠BCA 的角平分线的交点处.【详解】如图所示:点P 即为所求.【点睛】本题主要考查了作图的应用,关键是掌握角平分线交点到角两边的距离相等.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值.【答案】(1)154;(2)108【解析】【分析】(1)原式先提取公因式xy ,再利用完全平方公式变形,然后整体代入计算即可;(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】(1)33x y xy +22()xy x y =+2[()2]xy x y xy =+-,当6x y +=,7xy =时,原式=()27627⨯-⨯=154;(2)32m n x +32()()m n x x =⋅当3m x =,2n x =时,原式32()()m n x x =⋅108=.【点睛】本题考查了代数式求值,因式分解的应用,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的性质和平移的性质,可得∠ABC=∠ACB=∠DCE=∠DEC,AB=AC=DC=DE,根据全等三角形的判定与性质,可得答案;(2)利用平行线的性质证得CG=CH,根据全等三角形的判定与性质,可得答案.【详解】(1)由平移,知△ABC≌△DCE,∵AB=AC=DC=DE,∴∠ABC=∠ACB=∠DCE=∠DEC,∴∠BCD=∠ECA,∴△ACE≌DCB(SAS),∴AE=BD;(2)∵GH∥BE,∴∠CHG=∠HCE=∠ACB=∠CGH,∴CG=CH,∵∠BCH=∠ECG,BC=CE,∴△BCH≌△ECG(SAS),∴BH=GE.【点睛】本题考查了全等三角形的判定与性质,平移的性质,平行线的性质,等腰三角形的性质,掌握全等三角形的判定与性质是解题的关键.27. 如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.【答案】见解析【解析】【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.28. 已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC 交于点M,BD与AC交于点N.(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【解析】【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL).29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】(1)100;(2)二十.【解析】试题分析:(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.试题解析:解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:x=100,经检验x=100是原方程的解.答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:120012002 100100100%y=++,解得:y=20,经检验y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.。
八年级上册期末考试试卷精选及答案

八年级上册期末考试试卷精选及答案一、选择题1.若解关于x 的方程1222x m x x -=+--时产生增根,那么m 的值为( ) A .1 B .2 C .0 D .-12.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数.解:在ABC 和△ADC 中,AB AD CB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =※.则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC3.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +- 4.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A.12B.112C.2 D.35.关于x的分式方程22x mx+-=3的解是正数,则负整数m的个数为()A.3 B.4 C.5 D.66.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°7.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A.②③B.③④C.②③④D.①②③④8.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 9.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E10.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .钝角三角形 二、填空题 11.若|21(3)0x x y ++-=,则22x y +=_______.12.如图,在等边ABC 中,D 、E 分别是AB 、AC 上的点,将ADE 沿直线DE 折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .13.如图,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =1cm 2,则S △BEF =_____cm 2.14.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.15.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示,若DE=4,则DF=___.16.如图所示的方格中,∠1+∠2+∠3=_____度.17.分解因式:a2b-4b3=______.18.如果x2+mx+6=(x﹣2)(x﹣n),那么m+n的值为_____.19.在△ABC中,AB=AC,∠ABC=∠ACB,CE是高,且∠ECA=36°,平面内有一异于点A,B,C,E的点D,若△ABC≌△CDA,则∠DAE的度数为_____.20.如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤图中的等腰三角形有5个.其中正确的结论是___.(填序号)三、解答题21.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.22.如图,在四边形ABCD 中,//AD BC ,ABC ∠的平分线交CD 于点E ,交AD 的延长线于点F ,DEF F ∠=∠.(1)写出3对由条件//AD BC 直接推出的相等或互补的角;___________、_____________、_______________.(2)3∠与F ∠相等吗?为什么?(3)证明://DC AB .请在下面括号内,填上推理的根据,完成下面的证明://AD BC ,2F ∴∠=∠.(①_________);3F∠=∠(已证), 23∴∠=∠,(②__________); 又12∠=∠(③___________),13∠∠∴=,//DC AB ∴(④_____________).23.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .24.如图,在△ABC 中,A ABC ∠=∠,直线EF 分别交AB 、AC 点D 、E ,CB 的延长线于点F ,过点B 作//BP AC 交EF 于点P ,(1)若70A ∠=︒,25F ∠=︒,求BPD ∠的度数.(2)求证:2F FEC ABP ∠+∠=∠.25.已知m =a 2b ,n =2a 2+3ab .(1)当a =﹣3,b =﹣2,分别求m ,n 的值.(2)若m =12,n =18,求123a b+的值. 26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .28.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式31(1)(1)x x x ++-表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x -1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下:设31(1)(1)x x x ++-11A B x x =++- 则有31(1)(1)x x x ++-(1)(1)()(1)(1)(1)(1)(1)(1)A x B x A B x B A x x x x x x -+++-=+=+-+-+- 故此31A B B A +=⎧⎨-=⎩ 解得12A B =⎧⎨=⎩所以31(1)(1)x x x ++-=1211x x ++- 问题解决:(1)设1(1)1x A B x x x x -=+++,求A 、B . (2)直接写出方程111(1)(1)(2)2x x x x x x x --+=++++ 的解. 29.如图,//AB CD ,点E 在直线CD 上,射线EF 经过点,B BG ,平分ABE ∠交CD 于点G .(1)求证:BGE GBE ∠=∠;(2)若70∠︒=DEF ,求FBG ∠的度数.30.如图①所示是一个长为2m ,宽为2n(m n)>的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m 、n 的代数式表示); ()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)+、2(m n)-、mn 这三个代数式之间的等量关系:______;()4根据()3题中的等量关系,若m n 12+=,mn 25=,求图②中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】关于x 的方程1222x m x x -=+--有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得: 12(2)x m x -=+-, 整理得30x m -+=,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2.B解析:B 【解析】【分析】证△ABC≌△ADC,得出∠B=∠D=30°,∠BAC=∠DAC=12∠BAD=25°,根据三角形内角和定理求出即可.【详解】解:在ABC和△ADC中,AB ADCB CDAC AC=⎧⎪=⎨⎪=⎩(已知)(已知),所以△ABC≌△ADC,(SSS)所以∠BCA=∠DCA.(全等三角形的对应角相等)因为∠B=30°,∠BAC=25°,所以∠BCA=180°﹣∠B﹣∠BAC=125°,所以∠BCD=360°﹣2∠BCA=110°.故可得:@代表SSS;◎代表∠DCA;★代表对应角;※代表110°,故选:B.【点睛】此题考查三角形全等的判定及性质,证明过程的填写,正确掌握全等三角形的判定定理是解题的关键.3.A解析:A【解析】【分析】根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c)c=ac+bc-c2,故选项B、D正确,或“L”型钢材的截面的面积为:bc+(a-c)c=bc+ac-c2,故选项C正确,选项A错误,故选:A.【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.4.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.5.B解析:B【解析】【分析】首先解分式方程2=32x mx+-,然后根据方程的解为正数,可得x>0,据此求出满足条件的负整数m的值为多少即可.【详解】解:2=32x mx+-,2x+m=3(x﹣2),2x﹣3x=﹣m﹣6,﹣x=﹣m﹣6,x=m+6,∵关于x的分式方程2=32x mx+-的解是正数,∴m+6>0,解得m>﹣6,∴满足条件的负整数m的值为﹣5,﹣4,﹣3,﹣2,﹣1,当m=﹣4时,解得x=2,不符合题意;∴满足条件的负整数m的值为﹣5,﹣3,﹣2,﹣1共4个.故选:B.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.6.D解析:D【解析】【分析】根据SAS 即可证明△ABD ≌△ACE ,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,∵AB AC BAD CAE AD AE ∠∠=⎧⎪=⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD =CE ,故A 正确;∵△ABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∴∠ABD +∠DBC =45°.∵△BAD ≌△CAE ,∴∠ABD =∠ACE ,∴∠ACE +∠DBC =45°,故B 正确.∵∠ABD +∠DBC =45°,∴∠ACE +∠DBC =45°,∴∠DBC +∠DCB =∠DBC +∠ACE +∠ACB =90°,则BD ⊥CE ,故C 正确.∵∠BAC =∠DAE =90°,∴∠BAE +∠DAC =360°﹣90°﹣90°=180°,故D 错误.故选D .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.C解析:C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.8.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x |=2,则x =±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B .【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.9.C解析:C【解析】【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .10.B解析:B【解析】【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.二、填空题11.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 12.12【解析】【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D,AE=A′解析:12【解析】【分析】由题意得AE=A′E ,AD=A′D ,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D ,AE=A′E .则阴影部分图形的周长等于BC+BD+CE+A′D+A′E ,=BC+BD+CE+AD+AE ,=BC+AB+AC,=12cm.故答案为:12.【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.13.【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从解析:1 4【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从而完成解答.【详解】∵由于D、E、F分别为BC、AD、CE的中点∴△ABE、△DBE、△DCE、△AEC的面积相等S△BEC=12S△ABC=12S△BEF=12S△BEC=12×12=14故答案为:14.【点睛】本题考察了三角形中线的知识;求解的关键是熟练掌握三角形中线的性质,从而完成求解.14.2【解析】【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x根,则第三边是()根,根据三角形解析:2【解析】【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.15.8【解析】【分析】根据角平分线求出,在的中易求和的长,同理在求出的长,即可得出答案.【详解】,OC 是∠AOB 的平分线在中,在中,故答案为:8.【点睛】本题考查角平分线的解析:8【解析】【分析】根据角平分线求出30EOD FOD ∠=∠=︒,在30的Rt EOD 中易求OD 和OE 的长,同理在Rt EOF 求出EF 的长,即可得出答案.【详解】60AOB ∠=︒,OC 是∠AOB 的平分线30EOD FOD ∴∠=∠=︒在Rt EOD 中,30,4EOD DE ∠=︒= 228,43OD OE OD ED ∴==-=在Rt EOF 中,6043EOF OE ∠=︒=, 30,83EFO OF ∴∠=︒=2212EF OF OE ∴=-=1248DF EF DE ∴=-=-=故答案为:8.【点睛】本题考查角平分线的定义、含30的直角三角形的解法,掌握30直角三角形的特征是解题关键.16.135【解析】由题意得,在与中, ∵AB=DE, ∠ABC=∠ADE,BC=AD, , ,,又∵△DEF 是等腰直角三角形, ,.解析:135【解析】由题意得,在与中, ∵AB =DE ,∠ABC =∠ADE ,BC =AD ,()ABC ADE SAS ∴∆≅∆ ,,, 又∵△DEF 是等腰直角三角形, ,.17.b(a+2b)(a-2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】解:a2b-4b3=b(a2-4b2)=b(a+2b)(a解析:b(a+2b)(a-2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】解:a2b-4b3=b(a2-4b2)=b(a+2b)(a-2b).故答案为:b(a+2b)(a-2b).【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣解析:-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣(2+n),2n=6,∴n=3,m=﹣5,∴m+n=﹣5+3=﹣2.故答案为﹣2.【点睛】本题考查了因式分解的十字相乘法,我们可以直接套用公式()()()2x p q x pq x p x q+++=++即可求解. 19.117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=解析:117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.【点睛】本题考查了全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.20.①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,解析:①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,进而得出BD是∠ABC的角平分线,可得△BCD也是等腰三角形,BE=CE,ΔBCD是等腰三角形,ΔAMD为直角三角形,故这两个三角形不可能全等,由角的度数即可得图中的等腰三角形.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°又∵CE平分∠ACB,∴∠DCE=∠BCE=36°又∵AB的中垂线MN交AC于点D,交AB于点M,∴∠AMD=∠BMD=90°,AD=BD,∴∠ABD=∠BAD=36°,∠ADB=108°,又∵∠ADB=∠ACB+∠DBC=108°∴∠DBC=36°∠ABD=∠DBC,∴BD是∠ABC的角平分线,故①结论正确.∠BDC=72°=∠ACB,∴ΔBCD是等腰三角形,故②结论正确.∵∠DBC=∠ECB=36°∴△BEC为等腰三角形,∴BE=CE又∵∠BDC=∠CED=72°∴△DCE为等腰三角形,∴CD=CE∴BE=CD故③结论正确.∵ΔBCD是等腰三角形,ΔAMD为直角三角形∴这两个三角形不可能全等,故④结论错误.图中△ABC、△ADB、△BCD、△BEC、△DCE都为等腰三角形,故⑤结论正确.故本题正确的结论是①②③⑤.【点睛】此题主要考查等腰三角形的性质,熟练掌握,再利用等角转换,即可解题.三、解答题21.(1)见解析(2)17【解析】【分析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.【详解】(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27﹣10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.(1)2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒ (2)相等,理由见解析(3)见解析【解析】【分析】(1)根据平行线的性质解答;(2)根据对顶角的性质解答;(3)根据平行线的性质及等量代换,平行线的判定定理解答.【详解】(1)∵//AD BC ,∴2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒;故答案为:2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒; (2)3∠与F ∠相等.理由如下:DEF F ∠=∠,3DEF ∠=∠,3F ∴∠=∠.(3)//AD BC ,2F ∴∠=∠.(①两直线平行,内错角相等);3F∠=∠(已证), 23∴∠=∠,(②等量代换); 又12∠=∠(③角平分线的定义),13∠∠∴=,//DC AB ∴(④内错角相等,两直线平行).故答案为:①两直线平行,内错角相等;②等量代换;③角平分线的定义;④内错角相等,两直线平行.【点睛】此题考查平行线的性质定理及判定定理,角平分线的性质定理,等量代换的推理依据,熟练掌握平行线的判定及性质定理是解题的关键.23.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB ,∴∠ADB′=∠CB′D ,由翻折可知,∠B=∠DB′E=80°,∴∠CB′E+80°=∠CB ′D=∠ADB′.如图2-1中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD ,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E 与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°. 故答案为:∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)65°;(2)见解析【解析】【分析】(1)运用三角形内角和定理先求出∠C 的度数,再应用平行线性质求出∠PBF 的度数,最后应用三角形外角与内角的关系求出∠BPD .(2)先证明∠F+∠FEC=∠PBC ,再证∠PBC=2∠ABP .【详解】解:(1)在ABC ∆中,∵∠A=70°,∠A=∠ABC∴由内角和定理可得40C ∠=又∵//BP AC∴65BPD AEF C F ∠=∠=∠+∠=(2) 在ABC ∆中,∵∠A =∠ABC∴ 由内角和定理可得2180A C ∠+∠=同理, 在CEF ∆中由三角形内角和定理得180F FEC C ∠+∠+∠=∴2F FEC A ∠+∠=∠又∵//BP AC∴ABP A ∠=∠即2F FEC ABP ∠+∠=∠.【点睛】本题考查三角形内角和定理和三角形的外角等于和它不相邻的两个内角之和的综合题.用已知条件结合图形运用相关定理找角的关系是基本技能,是解本题的关键.25.(1)m 的值是﹣18,n 的值是36;(2)12【解析】【分析】(1)直接将a 、b 值代入,利用有理数的混合运算法则即可求得m 、n 值;(2)先由m 、n 值得出12=a 2b ,18=2a 2+3ab ,进而变形用a 表示出3ab 、2a+3b ,再通分化简代数式,代入值即可求解.【详解】解:(1)∵m=a2b,n=2a2+3ab,a=﹣3,b=﹣2,∴m=(﹣3)2×(﹣2)=9×(﹣2)=﹣18,n=2×(﹣3)2+3×(﹣3)×(﹣2)=2×9+18=18+18=36,即m的值是﹣18,n的值是36;(2)∵m=12,n=18,m=a2b,n=2a2+3ab,∴12=a2b,18=2a2+3ab,∴36a =3ab,18a=2a+3b,∴123a b+=32 3b aab+=18 36 a a=12.【点睛】本题考查代数式的求值、有理数的混合运算、分式的化简求值,熟练掌握求代数式的值的方法,第(2)中能用a表示出3ab、2a+3b是解答的关键.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC,∠ACD=∠D,再由∠ACD=∠B可得∠D=∠B,然后可利用AAS证明△ABC≌△CDE,进而得到CB=DE;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC∥DE,∴∠ACB=∠DEC,∠ACD=∠D,∵∠ACD=∠B.∴∠D=∠B,在△ABC和△DEC中,===ACB EB DAC CE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABC≌△CDE(AAS),∴BC=DE;(2)∵△ABC≌△CDE,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.(1)248∠=︒;(2)证明见解析;【解析】【分析】(1)先求六边形ABCDEF的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.28.(1)A=1,B=-2;(2)23 x=【解析】【分析】(1)根据题目所给方法进行求解即可;(2)根据题目所给方法先对等号左边各式进行变形化简,最后再解分式方程即可.【详解】解:(1)∵1(1)xx x-=+(1)1(1)(1)A B A x Bxx x x x x x++=++++()(1)A B x Ax x++=+,∴11A BA+=-⎧⎨=⎩,解得12 AB=⎧⎨=-⎩;(2)设1(1)(2)12x A B x x x x -=+++++, 则有1(2)(1)()2(1)(2)12(1)(2)(1)(2)x A B A x B x A B x A B x x x x x x x x -++++++=+==++++++++, ∴121A B A B +=-⎧⎨+=⎩,解得23A B =⎧⎨=-⎩, ∴123(1)(2)12x x x x x -=-++++, 由(1)知,112(1)1x x x x x -=-++, ∴原方程可化为13122x x x -=++, 解得23x =, 经检验,23x =是原方程的解. 【点睛】本题为关于分式及分式方程的创新题,此类型题重点在于理解题目所给的做题方法,并按照题目所给示例进行解答.29.(1)见解析;(2)145°【解析】【分析】(1)根据//AB CD ,可得ABG BGE ∠=∠,根据BG 平分ABE ∠,可得ABG GBE ∠=∠,进而可得BGE GBE ∠=∠;(2)根据//AB CD ,可得70ABE DEF ∠=∠=︒,根据平角定义可得180110ABF ABE ∠=︒-∠=︒,根据BG 平分ABE ∠,可得1352ABG ABE ∠=∠=︒,进而可得FBG ∠的度数.【详解】解:(1)证明://AB CD ,ABG BGE ∴∠=∠, BG 平分ABE ∠,ABG GBE ∴∠=∠,BGE GBE ∴∠=∠;(2)//AB CD ,70ABE DEF ∴∠=∠=︒,180110ABF ABE ∴∠=︒-∠=︒, BG 平分ABE ∠,1352ABG ABE ∴∠=∠=︒, 11035145FBG ABF ABG ∴∠=∠+∠=︒+︒=︒.答:FBG ∠的度数为145︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.30.(1)()m n -(2)①2(m n)-②2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)44【解析】【分析】()1由图①可知,分成的四个小长方形每个长为m ,宽为n ,因此图②中阴影部分边长为小长方形的长减去宽,即()m n -;()2①直接用阴影正方形边长的平方求面积;②用大正方形面积减四个小长方形的面积; ()3根据阴影部分面积为等量关系列等式;()4直接代入计算.【详解】()1小长方形每个长为m ,宽为n ,∴②中阴影部分正方形边长为小长方形的长减去宽,即()m n -故答案为()m n -()2①阴影正方形边长为()m n -∴面积为:2(m n)-故答案为2(m n)-②大正方形边长为()m n +∴大正方形面积为:2(m n)+四个小长方形面积为4mn∴阴影正方形面积=大正方形面积4-⨯小长方形面积,为:2(m n)4mn +- 故答案为2(m n)4mn +-()3根据阴影正方形面积可得:22(m n)4mn (m n)+-=-故答案为22(m n)4mn (m n)+-=-()224(m n)4mn (m n)+-=-且m n 12+=,mn 25= ,222(m n)(m n)4mn 1242514410044∴-=+-=-⨯=-=【点睛】本题考查了根据图形面积列代数式,用几何图形面积验证完全平方公式.找准图中各边的等量关系是解题关键.。
人教版数学八年级上学期《期末检测试题》含答案解析

∵∠EBD=65°,
∴65∘−∠EBC=60°−∠BAE,
∴65°−(60°−∠ABE)=60°−∠BAE,
∴∠ABE+∠BAE=55°,
∴∠AEB=180°−(∠ABE+∠BAE)=125°.
故选C.
[点睛]本题考查了全等三角形 判定与性质, 等边三角形的性质,根据等边三角形性质得出AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,求出∠ACE=∠BCD,证△ACE≌△BCD,根据全等三角形的性质得出∠CAE=∠CBD,求出∠ABE+∠BAE=55°,根据三角形内角和定理求出即可.
若提速前列车的平均速度为x km/h,行驶1200km的路程,提速后比提速前少用多长时间?
(2)若v=50,行驶1200km的路程,提速后所用时间是提速前的 ,求提速前列车的平均速度?
用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.
24.已知:BE⊥CD于E,BE=DE,BC=DA,
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方 一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
答案与解析
一、选一选(本大题共10小题,每小题3分,共30分)
1.下列计算正确的是()
A.(2ab3)•(﹣4ab)=2a2b4B. ,
(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()
(3)计算△ABC的面积.
22.如图,△ABC中,∠BAC=∠ADB,BE平分∠ABC交AD于点E,交AC于点F,过点E作EG//BC交AC于点G.
人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。
安徽省蚌埠市2023-2024学年八年级上学期期末教学质量监测物理试题(含答案)

2023—2024学年度第一学期期末教学质量监测八年级物理注意事项:1.物理试卷共四大题26小题,满分100分,考试时间90分钟;2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
一、填空题(每空2分,共20分)1.如图所示,橡皮擦的长度为________cm.2.a 、b 两辆小车同时从同一地点出发,沿直线同向运动,图甲是a 车运动的图像,图乙是b 车运动的图像。
那么a 、b 两车再次相遇时距出发点________m.甲 乙3.现代农业生产过程中常用无人机喷洒农药。
在某次无人机工作过程中,无人机相对于携带的药液罐________(选填“运动”或“静止”)的。
4.如图所示,小明将一根钢尺压紧在桌面上,用相同的力度拨动其伸出桌外的一端,观察到钢尺伸出桌面的长度越短,钢尺振动的越快,那么其听到声音的________(填声音的特性)在发生变化。
5.在小瓶里装满带颜色的水,在橡皮塞上插进一根细玻璃管,使橡皮塞塞住瓶口,这就做成了一个简易温度计,如图甲所示。
小明将简易温度计分别放入温度不同(高于室温)的水中,观察到细管中液面的位置如图乙、丙所示,则图________所反映的是放入温度较低的水中的情况。
甲 乙丙s t -v t -6.把两杯浓度不同的盐水放入冰箱冷冻室里,当杯内的盐水中出现冰块时测量它们的温度,温度计的示数如图所示,从实验现象可知,盐水的浓度越高,其凝固点越________。
甲 乙7.在图中,根据给出的反射光线OB 画出入射光线AO ,并标出入射角的大小。
8.在使用凸透镜成像时,物距发生变化,所成像的性质会随之改变。
当物距为时,成虚像,当物距为时,成实像,则________(选填“>”、“<”或“=”).9.歼-20是我国自主研制的第五代战斗机,为了减重,使用了大量新型合金材料。
飞机上某个器件使用了密度为的新型材料,则该密度值的物理意义是________。
部编版八年级上学期语文《期末检测试题》及答案解析

(1)妾妇之道____________
(2)居天下之广居_________________
19.把下列句子翻译成现代汉语.
(1)一怒而诸侯惧,安居而天下熄.
(2)富贵不能淫,贫贱不能移,威武不能屈.
20.孟子认为,大丈夫怎样才能做到“富贵不能淫,贫贱不能移,威武不能屈”?试用自己的话作答.
(选自《文汇报》,有删节)
14.阅读全文,说说中国年画的独特之处表现在哪些方面?
15.第2段主要采用了什么说明方法?有何作用?
16.外国人对我们春节贴年画的风俗感到奇怪,请你结合第3段内容,向他们说明年画为什么流传久远深受人们喜爱.
17.文中划线句中加点的词语能否删掉,为什么?
作品的题材多采用寓意或象征的手法,造型夸张具有装饰意味.
部 编 版 语 文 八年 _______姓名________成绩________
一、积累运用.(共28分)
1.下列加点词语读音完全正确的一项是()
A.池沼zhǎo箴言jiǎn诘问jié诲人不倦huǐ
B.俯瞰kàn追溯shù遒劲jìnɡ惟妙惟肖xiào
①________________________
②帮助蝴蝶晒太阳、汲取花蜜
③________________________
10.赏析第①段中画横线的句子.
11.第④段主要运用了什么表达方式?有什么作用?
12.第④段加点的两个词语“大沙漠”“沙尘暴”的含义各是什么?请列举一个日常生活中体现“人性和人心的沙尘暴”的事例.
②我以为事情到此结束了.然而,两个孩子又商量起了这只蝴蝶今后的生活.他们小心地把蝴蝶放在阳光下的草地上正开放着的一丛野蔷薇花上,让它一边晒太阳,一边汲取花蜜.但是,他们仍觉得这种安排不到家,他们担心贪嘴的鸟啄食了这需要安静疗养的可怜蝴蝶,就采了几片树叶搭起一个简易的绿色“避难所”,将蝴蝶护在里面.他们相信,待它安静休息一些时候,伤口愈合,体力恢复,它就能重新飞舞在春天的原野上.
山东省济南市历城区2023-2024学年八年级上学期期末考试物理试题(含答案)

2023—2024学年度第一学期期末质量检测八年级物理试题第I卷(选择题共40分)一、单项选择题(本大题共10个小题,每小题2分,共20分。
每小题给出的四个选项中,只有一个选项最符合题目的要求)1. 《吕氏春秋·察今》记载了刻舟求剑的故事,其中有这样的文字“舟已行矣,而剑不行. . . . .”。
从物理学角度看,“剑不行”所选择的参照物是()A. 舟B. 岸C. 流水D. 舟中人2. 1978年,在湖北随县出土了一套战国时期的编钟。
这是我国迄今为止发现的数量最多、保存最完好的一套编钟。
编钟音乐性能保存完好,声音优美,音域宽广,从最低音到最高音,共有五个八度,能演奏古今中外的乐曲。
这里所说的“音域宽广”描述的是声音的哪个特性?()A. 响度B. 音色C. 音调D. 频率3. 如图所示,是一种未来可用于航空飞行器制造的“微格金属”特殊材料,这是一种合成的3D多孔开放式蜂窝聚合物材料,该材料99. 99%中空结构,意味着99. 99%部分都是空气,可以放置在一朵蒲公英上;如果将一枚鸡蛋包裹在该材料中,从25楼扔下,即使砸坏地面鸡蛋也不会破损;用外力将它压缩50%,外力撤销后能够完全恢复原状。
下列物理属性与它无关的是()A. 密度小B. 导热性好C. 硬度大D. 弹性好4. 为了让学生们了解中华民族传统节日内涵,弘扬优秀传统文化,学校开展“温情寒冬,情满冬至”主题活动,其中一项就是包饺子,下列步骤中力的作用效果与其他三项不同的是()A. 手推面杖来回运动B. 面团被擀制成面皮C. 揉捏面团D. 面皮包馅捏成饺子5. 构建思维导图有助于梳理知识之间的联系,形成整体思维。
如图是小军复习摩擦力时构建的思维导图,适合放在图中③的实例是()A. 乒乓球拍粘上一层橡胶B. 瓶盖一侧有条纹C. 下雪天给轮胎装防滑链D. 磁浮列车6. 如图所示的光现象中,由于光的直线传播形成的是()A. 山峦在水中的“倒影”B. 雨后天空中的“彩虹”C. 放大镜把字“放大”D. 中国传统文化“皮影戏”7. 高原反应是指由平原进入高原或由高原进入更高海拔地区后,机体发生的一系列高原性缺氧应激反应。
八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010—2011学年度第一学期期末教学质量检测
八年级地理试卷(湘教版)
考试注意:1、本试卷共4页,两道大题,总分100分,考试时间为60分钟。
2、答卷前,考生请将自己的姓名、班级填在密封线内。
3、考生需用蓝色或黑色钢笔、圆珠笔书写试卷,注意保持试卷的干净、整洁。
..
A.中国领土最东端在台湾省
B.中国领土面积居世界第四位
C.中国领土南北跨纬度约50度
D.中国大陆海岸线长约2万多千米,陆上国界线约1.8万千米
2.我国的内海是()
A.渤海和南海
B.南海和东海
C.东海和黄海
D.渤海和琼州海峡
3.在我国通用的车牌号中,我们有时会见到这样的书写方式“晋C 12345”,由此可知此牌照发行的省行政
区应为()
A.陕西省
B.安徽省
C.甘肃省
D.山西省
4.我国人口的突出特点是()
A.人口分布不均
B.城镇人口增长迅速
C.人口的增长与经济发展不协调
D.人口基数大,人口增长快
5.下列叙述中,对我国人口数量过多带来的负面影响的是()
A.劳动力短缺
B.兵源不足
C.人口老龄化严重
D.住房紧张,就业困难
6.下列关于我国民族的叙述表达正确的是()
A.我国是一个多民族的国家,少数民族共有56个
B.在少数民族聚居区中,也有汉族人口的分布,各民族分布具有“大杂居,小聚居”的特点
C.中国人口在500万以上的少数民族共有8个
D.少数民族主要分布在我国的东北、东南和西北地区
7.我国人口最多的少数民族是()
A.壮族
B.汉族
C.土家族
D.回族
8.位于地势的第二级阶梯,地势平坦,很少有山脉分布的高原是()
A.青藏高原
B.内蒙古高原
C.黄土高原
D.云贵高原
9.我国五种地形所占面积比例最大的是()
A.山地
B.盆地
C.平原
D.丘陵
10.我国冬季南北温差大的主要原因是()
A.地形的影响
B.纬度位置的影响
C.洋流的影响
D.冬季风的影响
11.与我国一月份0℃等温线位置大致一致的山脉是()
A.太行山脉
B.昆仑山脉
C.秦岭
D.大兴安岭
12.我国半干旱地区与半湿润地区的分界线与多少毫米等降水量线相吻合()
A.800mm
B. 400mm
C.200mm
D.50mm
13.我国流入印度洋的河流是()
A.塔里木河
B.雅鲁藏布江
C.澜沧江
D.珠江
14. “一江春水向东流… …”“大江东去浪淘尽… …”这些描绘我国大江大河的诗歌,表明我国的河流大多自西向东流,这与自然环境的哪方面有关 A.我国的地势特点 B.我国的位置特点 C.我国山区面积广大 D.我国地形复杂多样
15.下列地区中,主要土地利用类型以耕地为主的是( )
A .长白山地
B .内蒙古高原
C .塔里木盆地
D .东北平原 16.解决我国水资源不足的途径中,同学们当前能积极直接参与的是( ) A .兴修水库 B .跨流域调水 C .海水淡化 D .节约用水 17.我国主要的糖料作物是( )
A .花生和油菜
B .茶叶和可可
C .椰子和油棕
D .甘蔗和甜菜 18. 青藏地区无污染的洁净能源有( )
A 太阳能、地热能、水能
B 石油、天然气、煤
C 核能、地热能、风能
D 生物能、风能、太阳能 19. 制约西北地区农业生产的主要因素是( )
A 、科技条件
B 、地形条件
C 、光照条件
D 、水源条件 20. 水、土是立国之本,我国水土资源的分布情况是 ( ) A 、南方耕地多,水资源少 B 、北方耕地多,水资源多
C 、南方耕地少,水资源多
D 、北方耕地少,水资源少
二、综合题 (运用你学会的读图和分析判断的技能,解答下列各题。
共60分)
1.连线题。
(共10分)
暖温带 东北平原 一年一熟
亚热带 黄河中下游地区 二年三熟 热带 长江中下游地区 一年二熟 高原气候区 海南岛 一年三熟 中温带 青藏高原 2. 读右图,回答下列问题。
(每空1分,共10分) 填出图中数码所代表的地理事物名称: 邻国:①____________ ②_____________
③____________ ④_____________ 隔海相望的国家:
⑤_____________ ⑥_____________ 海域:⑦_____________ ⑧_____________ 大洋:⑨_____________ ⑩_____________
亚洲区域图
3. 辨认下图中四个省级行政区的轮廓,并完成下列内容。
(每空1分,共10分)
⑤⑥⑦⑧f ①
④
②
③
F L K
A
⑪图中四个省级行政区中,少数民族数目最多的是_____ _;纬度最高的是_____ _;位于长江流域的是_____ _;位于珠江下游的是_____ _。
(填数字符号)
⑫图内四个省级行政区中,海岸线最长的省级行政区的是 __(填数字),濒临______海。
⑬写出图中四个省级行政区的简称:
①_____________ ②_____________ ③_____________ ④_____________
4. 读“长江水系”图并回答下列问题。
(每空1分,共10分)
长江水系图
⑪长江发源于青藏高原的 (山脉),注入海。
因其水能资源丰富,故有“
⑬主要支流:②___________③___________
⑭湖泊:C_____________
⑮重要水利枢纽工程:L_____________K_____________
5.下列表格是某中学生“十·一”期间随旅行团的游程安排,读图表回答下列问题:(共10分)
⑪列车从广州驶向武汉所走的路线所在地区是气候类型,途中经过的东西向山脉是
从宜昌乘长江轮到重庆,经过的东北—西南向山脉是。
⑫该旅行团在第天将经过我国的三峡风景区,举世注目的三峡水利枢纽工程大坝位于第二级阶梯和第级阶梯的过渡地带。
⑬五天的行程经过了很多地形区,请你写出其中三个地形区的名称:
;;。
⑭在第四、五天的旅途中,部分游客出现了呼吸局促等缺氧情况,可能的原因是(2分) A.纬度增高 B.纬度降低 C.海拔升高 D.海拔降低
6. 分析材料回答下列问题。
(共10分)
材料一:我国水资源从地区分布来看是不均匀的,华北地区人口占全国的24.1%,耕地占全国的45%,水资源占全国的6%,从降水的季节分配来看,我国绝大部分地区降水集中在5—10月,而华北地区则高度集中在7—8月,这两个月的降水量占全年降水量的80%,冬春季节则出现持续干旱。
材料二:多年来,邯郸市年平均降雨量约为548.9毫米,淡水资源总量为14.85亿立方米,人均、亩均占有水资源分别为170.4立方米和152.2立方米。
人均占有量仅占全国的7%,属于极度缺水地区。
加之本区人口众多且人口增长特别迅速,使农业用水、工业用水成倍增长,而人为的用水浪费、水资源污染等原因更是加重了水资源的严重匮乏。
⑪根据材料,请你从自然原因和社会原因两方面分析邯郸水资源紧张的原因。
(4分)
⑫针对邯郸市严重缺水的现状,你认为应该采取哪些保护水资源和节约用水的措施?(4分)
⑬为了唤起人们对淡水资源的危机意识,请你设计一则公益广告词。
(2分)
答案:
一、选择题:(下列各题的选项中,只有一项答案是正确的,请将正确选项的字母代号填入下表相应的空
二、综合题 (运用你学会的读图和分析判断的技能,解答下列各题。
共60分)
1.(共10分)
暖温带东北平原一年一熟
亚热带黄河中下游地区二年三熟
热带长江中下游地区一年二熟
高原气候区海南岛一年三熟
中温带青藏高原
2.(每空1分,共10分)
邻国:①俄罗斯②蒙古③哈萨克斯坦④印度
隔海相望的国家:⑤日本⑥菲律宾
海域:⑦东海⑧南海
大洋:⑨太平洋⑩印度洋
3. (每空1分,共10分)
⑪①④③②
⑫②南海
⑬云或滇粤鄂黑
4. (每空1分,共10分)
⑪唐古拉山脉东海“水能宝库”上游
⑫宜昌
⑬汉江湘江
⑭洞庭湖
⑮三峡葛洲坝
5.(共10分)
⑪亚热带季风南岭巫山
⑫二三
⑬(此三空顺序可颠倒)
中南丘陵(或江南丘陵)、长江中下游平原、四川盆地、青藏高原等
⑭ C (2分)
6.(共10分)
略。