八年级上期末试题及答案
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和44.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.10.(3分)当x=时,分式的值为零.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.12.(3分)已知y﹣x=3xy,则代数式的值为.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是.14.(3分)已知=+,则整式A﹣B=.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为cm.16.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1=(2)+=18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)若关于x的方程+2=有增根,求增根和k的值.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF ⊥CD,垂足为F,求证:EF=AP.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.【解答】解:由题意可知:﹣2+=0x2﹣2x(x﹣5)+(x﹣5)(x+1)=0x2﹣2x2+10x+x2﹣4x﹣5=06x=5x=经检验,x=是分式方程的解故选:B.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和4【解答】解:∵数据3,4,x,6,7的平均数是5,∴3+4+x+6+7=5×5解得:x=5,∴中位数为5,方差为s2= [(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选:B.4.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等【解答】解:A、等边三角形的三个角都是60°,正确;B、平行于同一条直线的两直线平行,正确;C、直线经过外一点有且只有一条直线与已知直线平行,正确;D、两边及一角分别对应相等的两个三角形全等,错误;故选:D.5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°【解答】解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4【解答】解:分式方程去分母得:2x+a=﹣x+2,移项合并得:3x=2﹣a,解得:x=,∵分式方程的解为非负数,∴≥0,且≠2,解得:a≤2,且a≠﹣4.故选:C.二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.10.(3分)当x=3时,分式的值为零.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.12.(3分)已知y﹣x=3xy,则代数式的值为4.【解答】解:∵y﹣x=3xy,∴x﹣y=﹣3xy,则原式====4.故答案是:4.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是3.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是(2x1﹣1+2x2﹣1+2x3﹣1+2x4﹣1+2x5﹣1)=3.故答案为:3.14.(3分)已知=+,则整式A﹣B=﹣1.【解答】解:∵=+=,∴3x﹣4=A(x﹣2)+B(x﹣1),整理得出:3x﹣4=(A+B)x﹣2A﹣B,∴,解得:,则整式A﹣B=1﹣2=﹣1,故答案为:﹣1.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为8cm.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE 的周长是:CD +DE +CE=AE +DE +CD=AD +CD=8,故答案为:8.16.(3分)如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,△ABC 的面积是 42 .【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD=×4×(AB +AC +BC )=×4×21=42,故答案为:42.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1= (2)+=【解答】解:(1)方程两边都乘以2(x+3),得:4x+2(x+3)=7,解得:x=,当x=时,2(x+3)=≠0,所以分式方程的解为x=;(2)方程两边都乘以(1﹣3x)(1+3x),得:(1﹣3x)2﹣(1+3x)2=12,解得:x=﹣1,当x=﹣1时,(1﹣3x)(1+3x)=﹣8≠0,所以分式方程的解为x=﹣1.18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.(6分)若关于x的方程+2=有增根,求增根和k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.【解答】解:(1)∵两组数据:3,a,2b,5与a,6,b的平均数都是8,∴,解得:;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,即众数为12.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.【解答】(1)证明:过点D作DF∥AC交BC于点F,∴∠ACB=∠DFB,∠FDP=∠E,∵AB=AC(已知),∴∠ACB=∠ABC,∴∠ABC=∠DFB,∴DF=DB;又∵CE=BD(已知),∴CE=DF;又∵∠DPF=∠CPE,∴△ECP≌△DFP,∴PE=PD;(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),∴BD:AB=1:5,∵DF∥AC,∴△BDF∽△BAC,∴==;∵BC=10,∴BF=2,FC=8,∵△DFP≌△ECP,∴FP=PC,∴PF=4,则BP=BF+FP=6.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:在线段BC上截取BE=BA,连接DE,如图所示.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.【解答】证明:连接PC,∵四边形ABCD是正方形,∴∠BCD=90°,∠ABD=∠CBD=45°,BA=BC,∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∴AP=EF.。
八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a3.下列各式中,是最简二次根式的是()A. B.C.D.4.化简(﹣)÷的结果是()A.y B.C.D.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤108.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=.12.计算=.13.若分式的值为0,则a的值为.14.若9x2﹣mxy+25y2是完全平方式,则m=.15.实数a、b在数轴上的位置如图所示,化简=.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是(只填序号).三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.22.解方程:+=.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据积的乘方等于乘方的积,单项式的除法系数除系数,同底数的幂相除;差的平方等于平方和减积的二倍;合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的除法系数除系数,同底数的幂相除,故B错误;C、差的平方等于平方和减积的二倍,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了整式的除法,熟记法则并根据法则计算是解题关键.3.下列各式中,是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.化简(﹣)÷的结果是()A.y B.C.D.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定【考点】分母有理化.【分析】把a=的分母有理化即可.【解答】解:∵a===2﹣,∴a=b.故选B.【点评】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤10【考点】角平分线的性质;垂线段最短.【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为10,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于10,∴点P到OB的距离为10,∵点Q是OB边上的任意一点,∴PQ≥10.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.【考点】分式的值.【分析】根据题意将原式变形得出a﹣5+=0,进而利用完全平方公式得出(a+)2=25,进而得出答案.【解答】解:∵a2﹣5a+2=0,∴a﹣5+=0,故a+=5,∴(a+)2=25,∴a2++4=25,∴=a2+=21.故选:A.【点评】此题主要考查了分式的值以及完全平方公式的应用,正确应用完全平方公式是解题关键.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD【考点】剪纸问题.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=﹣1.5.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式(﹣×1.5)2015×1.5=﹣1.5.故答案为:﹣1.5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.计算=.【考点】二次根式的混合运算.【专题】计算题.【分析】根据乘方的意义得到原式=[(﹣1)(+1)]•(+1),然后前面两项利用平方差公式进行计算.【解答】解:原式=[(﹣1)(+1)]•(+1)=(2﹣1)(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.13.若分式的值为0,则a的值为4.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:a2﹣16=0且a+4≠0,解得x=4.故答案为:4.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.14.若9x2﹣mxy+25y2是完全平方式,则m=±30.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵9x2﹣mxy+25y2=(3x)2﹣mxy+(5y)2,∴﹣mxy=±2•3x•5y,解得m=±30.故答案为:±30.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.实数a、b在数轴上的位置如图所示,化简=﹣2b.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】由数轴可知a<0,b>0,a﹣b<0,根据二次根式的性质=|a|,化简计算.【解答】解:∵a<0,b>0,a﹣b<0,∴,=|a|﹣|b|﹣|a﹣b|,=﹣a﹣b+a﹣b=﹣2b.故本题答案为:﹣2b.【点评】本题考查了二次根式的性质与化简.关键是根据数轴判断被开方数中底数的符号.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为3cm.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到NB=NA,根据三角形的周长公式计算即可.【解答】解:∵线段AB的垂直平分线交AC于点N,∴NB=NA,△BCN的周长=BC+CN+BN=7cm,∴BC+AC=7cm,又AC=4cm,∴BC=3cm,故答案为:3.【点评】此题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是(﹣1,3).【考点】全等三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】过B作BE⊥x轴于E,过D作DF⊥y轴于F,于是得到∠BEA=∠DFA=90°,根据正方形的性质得到AD=AB,∠DAB=90°,求得∠DAF=∠BAE,推出△ABE≌△ADF,根据全等三角形的性质得到BE=DF,AE=AF,即可得到结论.【解答】解:过B作BE⊥x轴于E,过D作DF⊥y轴于F,∴∠BEA=∠DFA=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAF=∠BAE,在△ABE与△AFD中,,∴△ABE≌△ADF,∴BE=DF,AE=AF,∵B的坐标是(3,1),∴AE=3,BE=1,∴AF=3,DF=1,∴点D的坐标是(﹣1,3).故答案为:(﹣1,3).【点评】本题考查了全等三角形的判定和性质,坐标与图形的性质,正方形的性质,正确的作出辅助线构造全等三角形是解题的关键.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是②③④(只填序号).【考点】全等三角形的判定与性质.【分析】①由三角形内最多只有一个直角得出该结论不成立;②通过证明△ABE≌△DBC得出AE=DC,根据直角三角形斜边上中线的特点,可得出结论成立;③通过证明△ABM≌△DBN得出∠DBN=∠ABM,通过等量替换得出结论成立;④由②中的三角形全等可知其面积也相等,故其面积的一半也相等,结论成立.【解答】解:①∵∠ABD=∠DBC,且点B在线段AC上,∴∠ABD=∠DBC=180°÷2=90°,在△BDC中,∠DBC=90°∴∠BDN=∠BDC<90°(三角形中最多只有一个直角存在),∴∠ABD≠∠BDN,即①不成立.②在直角△ABE与直角△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,又M,N分别是AE,CD的中点,∴BM=AE,BN=DC,∴BM=BN,即②成立.③在△ABM和△DBN中,,∴△ABM≌△DBN,∴∠DBN=∠ABM,∴∠MBN=∠MBD+∠DBN=∠MBD+∠ABM=∠ABD=90°,∴MB⊥NB,即③成立.④∵M,N分别是AE,CD的中点,∴S△ABM=S△ABE,S△BCN=S△DBC,由②得知,△ABE≌△DBC,∴S△ABM=S△BCN,即④成立.故答案为:②③④.【点评】本题考查的全等三角形的判定和性质,解题的关键是通过证明三角形全等找到相应的等量关系,从而验证给出结论成立不成立.三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=8+1﹣11=﹣2;(2)原式=•﹣=﹣=,∴当x=﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.【考点】分式的化简求值;提公因式法与公式法的综合运用.【分析】(1)先提取公因式,再根据平方差公式进行分解即可;(2)先求出a+b,a﹣b及ab的值,再代入代数式进行计算即可.【解答】解:(1)原式=x(16x2﹣1)=x(4x+1)(4x﹣1);(2)∵a=2+,b=2﹣,∴a+b=4,ab=﹣1,a﹣b=2,∴原式====8.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.【考点】等腰三角形的性质.【分析】先根据AB=AD,∠BAD=24°求出∠B的度数,再由AD=DC得出∠C=∠DAC,根据三角形内角和定理得出∠DAC的度数,进而可得出结论.【解答】解:∵AB=AD,∠BAD=24°,∴∠B==78°.∵AD=DC,∴∠C=∠DAC.∵∠B+∠BAD+∠DAC+∠C=180°,即78°+2∠DAC+24°=180°,解得∠DAC=39°,∴∠BAC=∠BAD+∠DAC=24°+39°=63°.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.22.解方程:+=.【考点】解分式方程.【专题】计算题.【分析】把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;(2)分别作出点A、B、C关于直线l对称的点,然后顺次连接,并写出△A1B1C1三个顶点的坐标.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:A1(﹣4,4),B1(﹣6,3),C1(﹣3,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】探究型.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE,CF平分DE(三线合一).【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?【考点】分式方程的应用.【分析】(1)第一批衬衫的进价为x元,则第二批的进价(x+4)元,利用总价÷单价=数量分别求得两次购进衬衫的数量即可;(2)根据题意可得等量关系:第一批所进的件数×2=第二批所进的件数,根据等量关系列出方程,解方程即可.【解答】解:(1)第一次购进这种衬衫件,第二次购进这种衬衫件;(2)依题意有:×2=,解得:x=40,经检验x=40是原分式方程的解.x+4=44,第一次,第二次的进价分别是40元和44元,第一次购进200件,第二次购进400件,所以两次共盈利200×18+400×14=9200元.答:在这次服装生意中共盈利9200元.【点评】此题主要考查了分式方程的应用,关键是理解题意,找出题目中的等量关系:第一批所进的件数×2=第二批所进的件数,列出方程,解决问题.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.【考点】一次函数综合题.【分析】(1)根据a2﹣2ab+b2=0,可得a=b,又由∠AOB=90°,所以可得出△AOB的形状;(2)OD=OE,OD⊥OE,通过证明△OAD≌△OBE可以得证;(3)由∠DEB+∠BEO=45°,∠ACB=∠COE+∠BEO=45°,得出∠DEB=∠COE,根据三角形外角的性质得出∠ABC=∠BDE+∠DEB=90°,从而得出∠BDE+∠COE=90°,所以∠BDE与∠COE互余.【解答】解:(1)∵a2﹣2ab+b2=0.∴(a﹣b)2=0,∴a=b,又∵∠AOB=90°,∴△AOB为等腰直角三角形;(2)OD=OE,O D⊥OE,理由如下:如图②,∵△AOB为等腰直角三角形,∴AB=BC,∵BO⊥AC,∴∠DAO=∠EBO=45°,BO=AO,在△OAD和△OBE中,,△OAD≌△OBE(SAS),∴OD=OE,∠AOD=∠BOE,∵∠AOD+∠DOB=90°,∴∠DOB+∠BOE=90°,∴OD⊥OE;(3)∠BDE与∠COE互余,理由如下:如图③,∵OD=OE,OD⊥OE,∴△DOE是等腰直角三角形,∴∠DEO=45°,∴∠DEB+∠BEO=45°,∵∠ACB=∠COE+∠BEO=45°,∴∠DEB=∠COE,∵∠ABC=∠BDE+∠DEB=90°,∴∠BDE+∠COE=90°∴∠BDE与∠COE互余.【点评】本题是一次函数的综合题,考查了等腰三角形的判定和性质,三角形全等的判定和性质以及三角形外角的性质,熟练掌握性质定理是解题的关键.。
八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.04.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1 7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x2﹣3x=.12.(3分)方程=1的解是.13.(3分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD的周长是.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.21.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形【解答】解:三角形具有稳定性.故选:A.2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选:C.3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.0【解答】解:根据题意得,x﹣1=0且x+1≠0,解得x=1且x≠﹣1,所以x=1.故选:A.4.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1【解答】解:A、(x3)2=x6,此选项错误;B、(﹣2x)2÷x=4x2÷x=4x,此选项正确;C、(x+y)2=x2+2xy+y2,此选项错误;D、+=﹣==﹣1,此选项错误;故选:B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠A PF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE , ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF , ∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .故④正确, 故选:C .二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x 2﹣3x= x (x ﹣3) . 【解答】解:x 2﹣3x=x (x ﹣3).故答案为:x (x ﹣3)12.(3分)方程=1的解是 x=3 .【解答】解:去分母得:x ﹣1=2, 解得:x=3,经检验x=3是分式方程的解, 故答案为:x=313.(3分)如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是 15 .【解答】解:∵DE 是BC 的垂直平分线, ∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15, 故答案为:15.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=﹣10或10.【解答】解:∵代数式x2+kx+25是一个完全平方式,∴k=﹣10或10.故答案为:﹣10或10.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)【解答】解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷2ab=4ab÷2ab=2;(2)原式=•(﹣)=﹣.17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【解答】解:(1)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当xy=1时,原式=9;(2)原式=1﹣+=1﹣+=1+=,当x=0时,原式=2.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∵∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,即∠ADC=90°,∴∠CAD+∠C=90°,∵BF⊥AC,∠BAC=45°,∴∠CBF+∠C=90°,∠BFC=∠AFE=90°,BF=AF,∴∠CAD=∠CBF;在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA).21.(8分)计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、你是最聪明的,该怎样选你一定很清楚吧(每小题2分,共20分)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,82.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4 C.a2•a3=a6D.(a2b)3=a2•a34.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是()A.70°B.60°C.50°D.40°5.下列分式是最简分式的是()A.B.C.D.6.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个7.下列算式计算结果为x2﹣4x﹣12的是()A.(x+2)(x﹣6)B.(x﹣2)(x+6)C.(x+3)(x﹣4)D.(x﹣3)(x+4)8.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD 等于()A.30°B.36°C.38°D.45°9.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣110.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个二、比一比,看谁填得最好(每小题2分,共20分)11.若分式的值为0,则x的值等于.12.六边形的内角和等于度.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.15.已知x m=6,x n=4,则x m+n的值为.16.分解因式:a4﹣16=.17.已知,则的值是.18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)20.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).三、解答题(每小题5分,共15分)21.计算:.22.因式分解:(x﹣y)3﹣4(x﹣y).23.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.四、(每小题5分,共15分)24.先化简,再求值:(a+2b)2+(a+b)(b﹣a),其中a=2,b=﹣1.25.解方程:.26.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.五、(每小题7分,共14)27.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.28.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.六、(每小题8分,共16分)29.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.30.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.参考答案与试题解析一、你是最聪明的,该怎样选你一定很清楚吧(每小题2分,共20分)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,8【考点】三角形三边关系.【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【解答】解:A、1+2=3,不符合三角形三边关系定理,故本选项错误;B、4+5=9,不符合三角形三边关系定理,故本选项错误;C、6+8>10,6+10>8,8+10>6,符合三角形三边关系定理,故本选项正确;D、5+8<15,不符合三角形三边关系定理,故本选项错误;故选C.【点评】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000000031=3.1×10﹣9,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4 C.a2•a3=a6D.(a2b)3=a2•a3【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A、C,根据幂的乘方,可判断B,根据积的乘方,可判断D.【解答】解:A a•a2=a3,故A错误;B (a2)2=a4,故B正确;C a2•a3=a5,故C错误;D(a2b)3=a6b3,故D错误;故选:B.【点评】本题考查了幂的乘方与积得乘方,幂的乘方底数不变指数相乘,积得乘方等于每个因式分别乘方,再把所得的幂相乘.4.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是()A.70°B.60°C.50°D.40°【考点】三角形内角和定理.【分析】因为三角形的内角度数和是180°,已知两个内角,先用减法求出第三个内角的度数由此得解.【解答】解:180°﹣60°﹣80°=40°.故选D.【点评】此题主要考查三角形的内角和,关键是根据三角形的内角和是180度解答.5.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A.不能约分,是最简分式,B.=,C.=,D.=﹣1,故选:A.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.6.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形.所以轴对称图形有第一个与第四个共2个图形.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.下列算式计算结果为x2﹣4x﹣12的是()A.(x+2)(x﹣6)B.(x﹣2)(x+6)C.(x+3)(x﹣4)D.(x﹣3)(x+4)【考点】多项式乘多项式.【分析】利用十字相乘法分解因式即可得到结果.【解答】解:x2﹣4x﹣12=(x+2)(x﹣6),则(x+2)(x﹣6)=x2﹣4x﹣12.故选A.【点评】此题考查了多项式乘多项式,熟练掌握十字相乘法是解本题的关键.8.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD 等于()A.30°B.36°C.38°D.45°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.【解答】解:∵AB=AC,∠BAC=108°,∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,∵BD=AB,∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.故选B.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.9.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣1【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:A、x2+x+1,无法分解因式,故此选项错误;B、x2+2x+1=(x+1)2,故此选项错误;C、x2+2x﹣1,无法分解因式,故此选项错误;D、x2﹣2x﹣1,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.10.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等腰直角三角形.【分析】结论①错误.因为图中全等的三角形有3对;结论②正确.由全等三角形的性质可以判断;结论③正确.利用全等三角形的性质可以判断.结论④正确.利用全等三角形和等腰直角三角形的性质可以判断.【解答】解:结论①错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论②正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论③正确,理由如下:∵△AOD≌△COE,∴OD=OE;结论④正确,理由如下:∵△AOD≌△COE,∴CE=AD,∵AB=AC,∴CD=EB,∴CD+CE=EB+CE=BC.综上所述,正确的结论有3个.故选:C.【点评】本题是几何综合题,考查了等腰直角三角形、全等三角形的判定与性质等重要几何知识点.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、比一比,看谁填得最好(每小题2分,共20分)11.若分式的值为0,则x的值等于1.【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.六边形的内角和等于720度.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:(6﹣2)•180=720度,则六边形的内角和等于720度.【点评】解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是:(﹣3,﹣2).故答案为:(﹣3,﹣2).【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x m=6,x n=4,则x m+n的值为24.【考点】同底数幂的乘法.【专题】计算题;实数.【分析】原式逆用同底数幂乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x m=6,x n=4,∴x m+n=x m•x n=6×4=24.故答案为:24.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.16.分解因式:a4﹣16=(a+2)(a﹣2)(a2+4).【考点】因式分解-运用公式法.【分析】根据平方差公式进行分解即可,注意分解因式要彻底.【解答】解:a4﹣16=(a2﹣4)(a2+4)=(a+2)(a﹣2)(a2+4).故答案为:(a+2)(a﹣2)(a2+4).【点评】此题主要考查了公式法分解因式,正确记忆平方差公式是解题关键.17.已知,则的值是﹣2.【考点】分式的加减法.【分析】先把所给等式的左边通分,再相减,可得=,再利用比例性质可得ab=﹣2(a﹣b),再利用等式性质易求的值.【解答】解:∵﹣=,∴=,∴ab=2(b﹣a),∴ab=﹣2(a﹣b),∴=﹣2.故答案是:﹣2.【点评】本题考查了分式的加减法,解题的关键是通分,得出=是解题关键.18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.【考点】三角形的外角性质;等腰三角形的性质.【分析】根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.19.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).【点评】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.20.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为4n+2(用含n的代数式表示).【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故答案为:4n+2.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.三、解答题(每小题5分,共15分)21.计算:.【考点】分式的混合运算.【分析】根据运算顺序,先算括号里面的,再约分即可.【解答】解:原式=÷=•=.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.22.因式分解:(x﹣y)3﹣4(x﹣y).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x﹣y)[(x﹣y)2﹣4]=(x﹣y)(x﹣y+2)(x﹣y﹣2).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)由AB的垂直平分线DE交AC于D,垂足为E,根据线段垂直平分线的性质,易得AD=BD,即可求得∠ABD的度数,又由三角形外角的性质,即可求得答案;(2)易得△BCD是含30°角的直角三角形的性质,继而求得BD的长,则可求得答案.【解答】解:(1)∵AB的垂直平分线DE交AC于D,垂足为E,∴AD=BD,∴∠ABD=∠A=30°,∴∠BDC=∠ABD+∠A=60°;(2)∵在△ABC中,∠C=90°,∠BDC=60°,∴∠CBD=30°,∴BD=ACD=2×3=6,∴AD=BD=6,∴AC=AD+CD=9.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.四、(每小题5分,共15分)24.先化简,再求值:(a+2b)2+(a+b)(b﹣a),其中a=2,b=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=2,b=﹣1时,原式=﹣8+5=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母,得(x﹣1)(x+2)﹣(x2﹣4)=8,解这个方程,得x=6,经检验,x=6是原方程的根,则原方程的解为x=6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.26.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.五、(每小题7分,共14)27.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【考点】作图-轴对称变换.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1,并写出点C1的坐标即可;(2)根据关于y轴对称的点的坐标特点画出△A2B2C2,并写出点C2的坐标即可.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.28.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】利用HL证明Rt△BEC与Rt△AED全等,再利用全等三角形的性质解答即可.【解答】解:垂直关系,理由如下:∵BE⊥CD于点E,在Rt△BEC与Rt△AED中,,∴Rt△BEC≌Rt△AED(HL),∴∠B=∠D,∵∠D+∠EAD=90°,∠EAD=∠FAB,∴∠B+∠FAB=90°,∴DF⊥BC.【点评】此题考查全等三角形的判定和性质,关键是利用HL证明Rt△BEC与Rt△AED全等.六、(每小题8分,共16分)29.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.【考点】分式方程的应用.【分析】根据题意,设原来火车的速度是x千米/时,进而利用从甲站到乙站的运行时间缩短了11小时,得出等式求出即可.【解答】解:设原来火车的速度是x千米/时,根据题意得:﹣=11,解得:x=80,经检验,是原方程的根且符合题意.故80×3.2=256(km/h).答:高铁的行驶速度是256km/h.【点评】此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.30.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【分析】(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.【解答】解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,∴∠AEB=∠CEB﹣∠CED=60°;(2)∠AEB=90°,AE=BE+2CM,理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A、D、E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.。
八年级(上)期末数学试卷有答案

八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.点P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是354.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD6.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分)7.的平方根是.8.某班有学生36人,其中男生比女生的2倍少6人.如果设该班男生有x人,女生有y人,那么可列方程组为.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则BC=.10.已知点A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,则m=.11.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是千米/小时.12.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=.13.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.16.解方程组:.17.已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.18.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与B C的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).四、(本大题共4小题,每小题各8分,共32分)19.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?21.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.22.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?五、(本大题共1小题,每小题10分,共10分)23.已知△ABC与△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)试说明AE2,BE2,EF2三者之间的关系.六、(本大题共1小题,每小题12分,共12分)24.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.点P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第三象限内点的横坐标小于零,纵坐标小于零,可得答案.【解答】解:(﹣3,﹣4)位于第三象限,故选:C.【点评】本题考查了各象限内点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题.【分析】将各项中x与y的值代入方程检验即可得到结果.【解答】解:将x=1,y=0代入方程得:左边=1﹣0=1,右边=1,即左边=右边,则是方程x﹣2y=1的解.故选B【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条【考点】勾股定理;角平分线的性质;含30度角的直角三角形.【分析】利用线段垂直平分线的性质得出BE=EC,再利用全等三角形的判定与性质得出AB=BE,进而得出答案.【解答】解:∵∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足,∴AD=DE=4,BE=EC,∵DC=8,AD=4,∴BE=EC=4,在△ABD和△EBD中,∴△ABD≌△EBD(AAS),∴AB=BE=4,∴图中长为4的线段有3条.故选:B.【点评】此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【考点】平行线的判定;翻折变换(折叠问题).【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.【点评】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.6.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【考点】一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.二、填空题(本大题共8个小题,每小题3分,共24分)7.的平方根是±3.【考点】算术平方根;平方根.【分析】直接根据平方根的定义即可求解.【解答】解:的平方根是±3,故答案为:±3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.8.某班有学生36人,其中男生比女生的2倍少6人.如果设该班男生有x人,女生有y人,那么可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①男生+女生=36,②男生=女生的2倍﹣6.【解答】解:根据题意可得:,故答案为:.【点评】此题主要考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则BC=9.【考点】勾股定理.【分析】在Rt△ABC中,利用勾股定理可求出BC的长度.【解答】解:∵在Rt△ABC中,∠C=90°,AB=15,AC=12,∴BC===9.故答案为:9.【点评】此题考查了勾股定理的知识,属于基础题,掌握勾股定理的形式是关键.10.已知点A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,则m=1.【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,∴m+1=2m,解得m=1.故答案为:1.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.11.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是8千米/小时.【考点】函数的图象.【分析】求速度用距离与时间的比即可,注意把分钟化为小时.【解答】解:此人在这段时间内最快的行走速度是=8千米/小时,故答案为:8.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.12.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=132°.【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形内角和定理和角平分线的定义求出∠BAD的度数,再根据三角形外角性质和角平分线的定义求出∠CDE,然后根据平角定义即可求出∠BDE的度数.【解答】解:∵∠B=66°,∠C=54°,∴∠BAC=180°﹣66°﹣54°=60°,∵AD是∠BAC的平分线,∴∠BAD=∠B AC=30°,∴∠ADC=∠B+∠BAD=66°+30°=96°,∵DE平分∠ADC交AC于E,∴∠CDE=∠ADC=48°,∴∠BDE=180°﹣48°=132°.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质和角平分线的定义,熟练掌握性质和定理是解题的关键.13.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.【考点】等腰直角三角形.【专题】规律型.【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n个等腰直角三角形的斜边长.【解答】解:第一个斜边AB=,第二个斜边A1B1=,所以第n个等腰直角三角形的斜边长为:,故答案为:.【点评】此题考查等腰直角三角形问题,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为2或4.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】分类讨论.【分析】分为两种情况,画出图形,根据等腰三角形的性质求出即可.【解答】解:∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;【点评】本题考查了用待定系数法求出一次函数解析式,等腰直角三角形等知识点的应用,题目是一道比较典型的题目,综合性比较强.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用二次根式性质计算,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=1+﹣1﹣=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程组:.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②×3得:13x=﹣13,即x=﹣1,把x=﹣1代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.【考点】待定系数法求一次函数解析式.【分析】设y+1=k(x﹣1),将x=3,y=﹣5代入,通过解方程求得k的值;然后把y=5代入函数解析式即可求得相应的x的值.【解答】解:依题意,设y+1=k(x﹣1)(k≠0),将x=3,y=﹣5代入,得到:﹣5+1=k(3﹣1),解得:k=﹣2.所以y+1=﹣2(x﹣1),即y=﹣2x+1.令y=5,解得x=﹣2.【点评】本题考查了待定系数法求得一次函数解析式.求一次函数的解析式时,设y=kx+b,注意k≠0.18.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).【考点】勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】(1)连接AC,再利用勾股定理列式求出AB2、BC2、AC2,然后利用勾股定理逆定理解答;(2)类似于(1)的图形解答.【解答】解:(1)如图,连接AC,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC;(2)∠α+∠β=45°.证明如下:如图,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,等腰直角三角形的判定与性质,熟练掌握网格结构以及勾股定理和逆定理是解题的关键.四、(本大题共4小题,每小题各8分,共32分)19.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.【考点】平行线的判定.【分析】根据同角的补角相等,和平行线的判定定理即可作出判断.【解答】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【点评】本题考查了平行线的判定定理,根据同角的补角相等证明∠BOE=∠OBF是关键.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为50名;抽样中考生分数的中位数所在等级是良好;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【专题】压轴题.【分析】(1)从条形图中各部分人数加起来就是所求的结果,中位数数据从小到大排列位于中间位置的数.(2)不及格的有8人,8除以总人数就是我们要求的结果.(3)从扇形统计图中根据九年级的人数可求出全校的人数,进而求出全校优良人数.【解答】解:(1)8+14+18+10=50,中位数是18,位于良好里面;故答案为:50,良好.(2)8人,×100%=16%;抽样中不及格的人数是8人.占被调查人数的百分比是16%.(3)500÷=1500,1500×=840(人).全校优良人数有840人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是(200,150);(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.【考点】坐标确定位置.【分析】(1)由于A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校,则可确定A点位置,然后画出直角坐标系;(2)利用第一象限点的坐标特征写出B点坐标;(3)根据坐标的意义描出点C.【解答】解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.22.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.五、(本大题共1小题,每小题10分,共10分)23.已知△ABC与△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)试说明AE2,BE2,EF2三者之间的关系.【考点】勾股定理;全等三角形的性质;全等三角形的判定.【分析】(1)可以根据全等三角形的性质,进行判断;(2)在(1)的基础上,得AE=BF,进而根据勾股定理即可证明.【解答】解:(1)AE=BF.理由如下:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF.又AC=BC,CE=CF,∴△ACE≌△BCF,∴AE=BF.(2)AE2+BE2=EF2.理由如下:由已知,得∠CAE=∠CBF=45°,则∠EBF=90°.则BF2+BE2=EF2,又AE=BF,因此AE2+BE2=EF2.【点评】此题综合运用了等腰直角三角形的性质、全等三角形的性质和判定、以及勾股定理.六、(本大题共1小题,每小题12分,共12分)24.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=x中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.21。
人教版八年级上册语文期末测试题及答案

人教版八年级上册语文期末测试题及答案八年级(上)语文期末测试题(人教版)一二三四总分一、积累与运用(28分)一)基础知识(24分)1、中国书法是我们民族文化的瑰宝,请将下面格言抄写在方格内,要求正确、工整、整洁(3分)古之立大事者,不惟有超世之才,亦必有坚韧不拔之志。
2、下列词语中加点字读音有误的一项是()(2分)A惟妙惟肖(xiào)绮丽(qǐ)憎恨(zēng)两栖(qī)B销声匿迹(nì)愧怍(zuò)琐屑(xiè)追溯(sù)C风雪载途(zài)蹒跚(pán shān)褶皱(zhě)震悚(sǒng)D日薄西山(bó)箱箧(qiè)殷红(yān)绥靖(súi)3、请根据具体的语境和拼音写出汉字。
(4分)①父亲明显该高兴,却露出些gān gà(。
)的笑。
②历史、现实,在雨中融合了——融成一幅悲哀而美丽、真实而荒miù()的画面③一个物种在新的环境中必然遵循物jìng(。
)天择的法则④有一个信客,年龄不小了,已经长途báshè(。
)了二三十年。
4、下列句子中加点词语使用有误的一项是()(2分)A、各级政府应该加大力度,因地制宜的发展地方农村经济,增加农民收入。
B、巴勒斯坦的XXX被誉为“东方的瑞士”,但“9.11”事件以后,来这里旅游的人几乎是凤毛麟角。
C、玉雕作品“翠玉白菜”因其材质上乘,惟妙惟肖,富有创意而被誉为我国的国宝。
D、看着他瘦骨嶙峋的样子,母亲的眼角潮湿了。
5、下列句子中说法错误的一项是()(2分)A、记序文的主要表达体式格局是叙说和描述,但议论和抒情在记序文中也经常运用。
B、申明文是客观的申明事物、说明事理的一种文体。
常见的申明顺序有三种:时间顺序,空间顺序和逻辑顺序。
C、说明文的结构一般有两种:总——分式和总——分——总式。
事物说明文大都用前者,事理说明文大都用后者。
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.13.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.下列运算正确的是()A.B.C.D.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为.12.(1)(a2)3•(a2)4÷(a2)5=;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=.13.等腰三角形一个角为50°,则此等腰三角形顶角为.14.已知4x2+mx+9是完全平方式,则m=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.若分式有意义,则x的取值范围是.17.已知x+y=6,xy=4,则x2y+xy2的值为.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.19.已知关于x的分式方程=1有增根,则a=.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.23.计算:(1)﹣a﹣1(2)(﹣)÷.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.26.解方程:.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.1【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0)进而得出答案.【解答】解:(π﹣2013)0=1.故选:D.【点评】此题主要考查了零指数幂:a0=1(a≠0),正确根据定义得出是解题关键.3.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x【考点】整式的混合运算.【专题】计算题.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用同分母幂的乘法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、(x3)2=x6,故选项错误;B、2a﹣5•a3=2a﹣2,故选项错误;C、3﹣2=,故选项正确;D、6x3÷(﹣3x2)=﹣2x,故选项错误.故选C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【考点】解分式方程.【分析】根据等式的性质:两边都乘以(x﹣2),可得答案.【解答】解:去分母,得1+(1﹣x)=x﹣2,故D正确;故选:D.【点评】本题考查了解分式方程,利用了等式的性质.5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】根据三角形的内角和定理就可以求出∠DAB=∠CBA,由等式的性质就可以得出∠DAE=∠CBE,根据AAS就可以得出△DEA≌△CEB;由△DEA≌△CEB就可以得出CE=DE,∠1=∠2就可以得出AE=BE,就可以得出结论.【解答】解:∵∠1+∠C+∠ABC=∠2+∠D+∠DAB=180°,且∠1=∠2,∠C=∠D,∴∠ABC=∠DAB,∴∠ABC﹣∠2=∠DAB﹣∠1,∴∠DAB=∠CBA.故A正确;在△DEA和△CEB中,∴△DEA≌△CEB(AAS),故B错误;∴AC=BD.∵∠1=∠2,∴BE=AE,∴△EAB是等腰三角形,AC﹣AE=BD﹣BE,故D正确;∴CE=DE.故C正确.故选B.【点评】本题考查了三角形全等的判定及性质的运用,等腰三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形全等是关键.6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【考点】因式分解的意义.【专题】因式分解.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【考点】因式分解的应用;因式分解-运用公式法.【专题】计算题.【分析】把已知等式左边分解得到(a﹣b)2=0且(b+c)(b﹣c)=0,则a=b且b=c,即a=b=c,然后根据等边三角形的判定方法矩形判断.【解答】解:∵a2﹣2ab+b2=0且b2﹣c2=0,∴(a﹣b)2=0且(b+c)(b﹣c)=0,∴a=b且b=c,即a=b=c,∴△ABC为等边三角形.故选D.【点评】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.8.下列运算正确的是()A.B.C.D.【考点】分式的乘除法;分式的加减法.【分析】利用分式的乘除运算与加减运算法则求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、,故本选项错误;B、,=•=,故本选项错误;C、,==,故本选项正确;D、==﹣,故本选项错误.故选C.【点评】此题考查了分式的乘除运算与加减运算法则.此题难度不大,注意掌握符号的变化是解此题的关键.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】开放型.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为 6.08×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000608用科学记数法表示为6.08×10﹣4,故答案为6.08×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(1)(a2)3•(a2)4÷(a2)5=a4;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=2y2﹣4xy.【考点】整式的混合运算.【分析】(1)利用整式的乘方法则,积的乘方法则以及单项式的乘法法则化简即可.(2)先提公因式,然后再化简可以简便运算.【解答】解:(1)原式=a6•a8÷a10=a14﹣10=a4.故答案为a4.(2)原式=(2x﹣y)(2x﹣y﹣2x﹣y)=(2x﹣y)•(﹣2y)=2y2﹣4xy.故答案为2y2﹣4xy.【点评】本题考查整式的乘方法则,积的乘方法则以及单项式的乘法法则,灵活掌握运算法则是正确解题的关键.13.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.已知4x2+mx+9是完全平方式,则m=±12.【考点】完全平方式.【分析】这里首末两项是2x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【解答】解:∵4x2+mx+9是完全平方式,∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.【点评】此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.若分式有意义,则x的取值范围是x≠.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于0列式计算即可.【解答】解:由题意得,1﹣2x≠0,解得,x≠,故答案为:x≠.【点评】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.17.已知x+y=6,xy=4,则x2y+xy2的值为24.【考点】因式分解的应用.【专题】因式分解.【分析】先提取公因式xy,整理后把已知条件直接代入计算即可.【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.【点评】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.19.已知关于x的分式方程=1有增根,则a=1.【考点】分式方程的增根.【专题】计算题.【分析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.【解答】解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为80度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和和折叠的性质计算即可.【解答】解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴△EGF∽△CAF,∴α=∠EAC=80°.故填80°.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.【考点】作图-轴对称变换.【分析】(1)先找出对称轴,再从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)从图中可以看出四边形ABED是一个梯形,根据梯形的面积公式计算.【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)【点评】本题的关键是找出各点的对应点,然后顺次连接.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式ab,进而利用平方差公式分解因式得出答案;(2)直接提取公因式xy,进而利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)x3y3﹣2x2y2+xy=xy(x2y2﹣2xy+1)=xy(xy﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.计算:(1)﹣a﹣1(2)(﹣)÷.【考点】分式的混合运算.【分析】(1)先通分,再进行加减即可;(2)根据运算顺序,先算括号里面的,再进行分式的除法运算.【解答】解:(1)原式=﹣﹣==;(2)原式=(﹣)÷=•==﹣.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式被除数括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,将x与y 的值代入计算,即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=5,y=﹣6时,原式=﹣5﹣(﹣6)=﹣5+6=1.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【专题】证明题.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.26.解方程:.【考点】解分式方程.【专题】计算题.【分析】方程右边分子分母提取﹣1变形后,两边都乘以x﹣3去分母后,去括号,移项合并将x系数化为1,求出x的值,将x的值代入检验,即可得到分式方程的解.【解答】解:方程变形为+2=,去分母得:1+2(x﹣3)=x﹣4,去括号得:1+2x﹣6=x﹣4,解得:x=1,将x=1代入得:x﹣3=1﹣3=﹣2≠0,则分式方程的解为x=1.【点评】此题考查了解分式方程,做题时注意分式方程要检验.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【考点】分式方程的应用;二元一次方程的应用.【分析】(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=C Q,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄渡完小八年级(上)数学期末试题
(满分: 150分 时间: 150分钟)
班级___ ____ 姓名_ ______ 总分__ _____
一.选择题(每小题3分,共30分)
1.下列各式由左边到右边的变形中,是分解因式的为( )。
A 、a (x + y) =a x + a y
B 、x 2-4x+4=x(x -4)+4
C 、10x 2-5x=5x(2x -1)
D 、x 2-16+3x=(x -4)(x+4)+3x
2.下列运算中,正确的是( )。
A 、x 3·x 3=x 6
B 、3x 2÷2x=x
C 、(x 2)3=x 5
D 、(x+y 2)2=x 2+y 4
3.下列图形中,不是轴对称图形的是( )。
4.已知△ABC 的周长是24,且AB=AC ,又AD ⊥BC ,D 为垂足,若△ABD 的周长是20,则AD 的长为( )。
A 、6
B 、8
C 、10
D 、12 5.8.已知m 6x =,3n x =,则2m n x -的值为( )。
A 、9
B 、
43 C 、12 D 、34
6. 一次函数y =-3x +5的图象经过( )
A 、第一、三、四象限
B 、第二、三、四象限
C 、第一、二、三象限
D 、第一、二、四象限
7.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。
A 、14
B 、16
C 、10
D 、14或16 8.已知m
6x =,3n
x =,则2m n
x
-的值为( )。
A 、9
B 、43
C 、12
D 、
34
9.已知正比例函数y kx = (k ≠0)的函数值y 随x 的增大而减小,则一次函数
y=x +k 的图象大致是( ).
10.直线与1y x =-两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,
则满足条件的点C 最多有( )。
A 、4个
B 、5个
C 、7个
D 、8个
二.填空题 (每小题3分,共30分)
11.当m= _______时,函数y=(m -3)x 2+4x-3是一次函数。
12.一个汽车牌在水中的倒影为 ,则该车牌照号码____________。
13.设a 是9的平方根,b=(3)2,则a 与b 的关系是 。
14. 已知点A (l ,-2) ,若A 、B 两点关于x 轴对称,则B 点的坐标为________。
15.分解因式3
3
2
2
x 2y x y xy -+= 。
16.若函数y =4x +3-k 的图象经过原点,那么k = 。
17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 。
18. 多项式142+a 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以
是___________。
(填上一个你认为正确的即可) 19.已知x +y =1,则
2211
22
x xy y ++= 。
20.如图EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F =90°,
∠B =∠C ,AE =AF 。
给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ;④CD=DN 。
其中正确的结论有 (填序号) 三、简答题:(共6题,共90分) 21.化简(每题6分,共12分)
(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x
22. 分解因式(每题6分,共12分)
(1) 416a - (2) 2
2
29x xy y -+-
23.(6分)作图题(不写作图步骤,保留作图痕迹).
已知:如图,求作点P ,使点P 到A 、B 两点的距 离相等,且P 到∠MON 两边的距离也相等.
x
y
O A
x
y O
B
x
y
O
C x
y O
D
A B C D
M
N A
B
C
D E F
1 2
M .
· A
B
24.(10分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且
BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度.
25.(10分)已知函数y=(m+1)x+m –1
若这个函数的图象经过原点,求m 的值;并画出函数的图像。
26.(10分) 一次函数y=k 1x -4与正比例函数y=k 2x 的图象经过点(2,-1),
(1) 分别求出这两个函数的表达式;
(2) 求这两个函数的图象与x 轴围成的三角形的面积。
27.(10分)先化简,再求值:
8m 2-5m(-m +3n) +4m(-4m -2
5
n),其中m =2,n =-1
28.(10分)如图,直线y=k x +6分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为 (-8,0),
点A 的坐标为(0,6)。
(1)求k 的值; (2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出△OPA 的
面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:当P 运动到什么位置时,△OPA 的面积为8
27
,并说明理由。
29.(10分)已知a ,b,c 是△ABC 的三边,且满足关系式a 2+c 2=2a b+2bc -2b 2,试说明△ABC 是
等边三角形.
八年级期末试题参考答案
一、选择:
1、C
2、A
3、B
4、B
5、C
6、D
7、D
8、C
9、A 10、B 二、填空:
F
x
y O
A
E
11、y=x+8,(2<x<8).12、M17936.13、3,等边三角形14、(1,2)15、2
(1)xy xy -16、K=3.17、015或 075.18、答案不唯一。
19
、
1
2
20、①②③ 三、简答题: 21、解:(1) (2)
22222(52)4(22)5288328
a a a a a a a a +-+=+--=-+- 22
2
425(1)(1)
5(1)
55x x x x x x x +-=-=-
22、解:(1) (2)
4
2
2
216
(4)(4)(4)(2)(2)
a a a a a a -=+-=++-
2
222()3((39
)23)
x y x y x y x xy y =--=-+----+
24、解:∠AQN=60º,
如图,在△ABM 和△BCN 中,易证∠BCN=∠ABM=60º,CN=BM ,又∵AB=AC ,
∴△ABM ≌△BCN ,∴∠BAM=∠CBN ,
又∵∠AQN=∠BAQ+∠ABQ=∠NBC+∠ABQ=∠ABC=60º.
∴∠AQN =∠ABC=60º。