八年级上期末考试数学试题及答案
人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。
河南省洛阳市2023-2024学年八年级上学期期末考试数学试卷(含解析)

洛阳市2023—2024学年第一学期期末考试八年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题.请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.2023年9月,第19届亚运会在杭州举行.如图所示是以往四届亚运会会徽设计的部分图案,其中是轴对称图形的是()A.B.C. D.2.“洛阳牡丹甲天下”,某品种的牡丹花粉直径约为米,则数据用科学记数法表示为()A.B.C.D.3.如图,为估计湖岸边、两点之间的距离,小洛在湖的一侧选取一点.测得米,米,则、间的距离可能是()A.50米B.70米C.200米D.250米4.已知,下列计算正确的是()A.B.C.D.5.若点的坐标是,点的坐标是,则与满足()A.关于轴对称B.关于轴对称C.轴D.轴6.已知分式有意义,则满足的条件是()A.B.C.D.任何实数7.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图2中,的大小是()A.B.C.D.8.位于高新区的火炬大桥是洛阳市区目前最靠西的一座跨洛河桥,也是洛阳市宽度最宽、承重能力最强、单孔跨度最大、配建立交规模最大的桥梁,其侧面示意图如图所示,其中,现添加以下条件,不能判定的是()A.B.C.D.9.如图1,将边长为的正方形纸片,剪去一个边长为的小正方形纸片.再沿着图1中的虚线剪开,把剪成的两部分(1)和(2)拼成如图2的平行四边形,这两个图能解释的数学公式是()A.B.C.D.10.某工厂要加工个零件,甲队单独完成需小时,乙队单独完成比甲队少用3小时,则两队一起加工这批零件需要()小时.A.B.C.D.二、填空题(每小题3分,共15分)11.计算:.12.分解因式:x2(x﹣3)﹣x+3=.13.回顾尺规作图法中作一个角等于已知角的过程不难发现,实质上是我们首先作一个三角形与另一个三角形全等,再根据全等三角形对应角相等完成的.那么两个三角形全等的理论依据是.14.某兴趣小组利用几何图形画出螳螂的简笔画,如图,已知,,且,则.15.如图,在锐角三角形中,,.的平分线交于点,、分别是和上的动点,则的最小值是.三、解答题(本大题共8个小题,共75分)16.(1)计算:(2)解方程:17.先化简,再求值:,其中,.18.已知,在中,,.请根据要求完成以下任务:(1)利用直尺和圆规,作的角平分线交于点,作的垂直平分线,垂足为,与交于点;(2)求的度数.19.如图,点,,,在同一条直线,,.有下列三个条件:①,②,③.(1)请在上述三个条件中只选取其中一个,使得,写出你选的条件并证明;(2)求证:.20.在四边形中,.,点、分别在边、上,且平分.(1)求证:平分;(2)若,求的度数.21.为深入学习二十大重要讲话精神,落实立德树人根本任务,某中学开展了以“品红色文化”为主题的研学活动.现去中共洛阳组诞生地纪念馆有两条路线可供选择,路线A的全程是27千米,但交通比较拥堵,路线B比路线A的全程多6千米,但平均车速比走路线A时能提高.若走路线B能比走路线A少用10分钟.求走路线A和路线B的平均速度分别是多少?22.将完全平方公式进行适当的变形,可以解决很多的数学问题,例如:若,求的值.解:,,即.又,,得.根据上面的解题思路与方法,解决下列问题:(1)若,,则______;(2)为推动学生劳动实践的有效进行,某学校在校园开辟了劳动教育基地,培养学生劳动品质.如图,校园内有两个正方形场地、,()它们面积和为,边长和为,学校计划在中间阴影部分摆放花卉,其余地方分配给各班作为种植基地.请求出摆放花卉场地的面积.23.(1)问题发现:如图1,和都是等边三角形,连接、,延长交于点,求证:,;(2)类比探究:如图2,和都是等腰直角三角形,即,,,则与存在怎样的数量关系及位置关系,并说明理由;(3)问题解决:若和都是等腰三角形,且,,,请直接写出线段和的数量关系及它们所在直线的夹角.参考答案与解析1.D解析:A、B、C选项均无法找到这样的一条直线,使得沿着这条直线折叠之后,直线两旁的部分能完全重合,故它们都不是轴对称图形;D选项,沿着如图所示的虚线折叠,直线两旁的部分能够完全重合,故它是轴对称图形.故选:D2.C解析:解:,故选C.3.C解析:解:∵,则,即.则符合条件的只有C.故选C.4.D解析:解:A、,计算错误,不符合题意;B、,计算错误,不符合题意;C、,计算错误,不符合题意;D、,计算正确,符合题意;故选D.5.A解析:解:∵点的坐标是,点的坐标是,∴点与点的横坐标相同,纵坐标互为相反数,∴这两个点关于轴对称,故选:A.6.D解析:解:∵分式有意义,而,∴满足的条件是:为全体实数;故选D7.C解析:解:∵是正五边形,∴,∵,∴,∴,故选C.8.A解析:解:∵,∴,∵,∴若添加,无法证明,A选项符合题意;若添加,可利用证明,B选项不符合题意;若添加,可借助证明,C选项不符合题意;若添加,可借助证明,D选项不符合题意;故选:A.9.B解析:解:图1中(1)(2)两部分的面积和可以看作两个正方形的面积差,即,图2是由(1)(2)两部分拼成的底为,高为的平行四边形,因此面积为,因此有,故选:B.10.B解析:解:由题意可得:,故选B.11.####1.5解析:.故答案为:12..解析:解:===.故答案为:.13.##边边边解析:解:如图,由作图可知:,∴;故答案为:.14.##20度解析:过点C作,∴∵,,∴,∴,∵.故答案为:15.5解析:解:过作于,作关于的对称点,连接,∵平分,∴在上,∴,当,,共线,且垂直时,最短,即,在上,即的长,,,,∴的最小值是5.故答案为:516.(1);(2)解析:解:(1);(2),去分母得:,去括号得:,∴,解得:;经检验:是原方程的根,∴原方程的根为.17.,.解析:解:,当,时,原式.18.(1)画图见解析(2)解析:(1)解:如图,射线,直线即为所求;.(2)∵,,∴,∵平分,∴,∵是的垂直平分线,∴,∴.19.(1)选③,证明见解析(2)证明见解析解析:(1)解:选择③,在与中,,∴.(2)∵,∴,∴.20.(1)证明见解析(2)解析:(1)解:如图,过作于,平分,,.,,又∵,;∴平分;(2)在和中,,,,由(1)知,∴,∴,∵,∴.21.走路线A的平均速度是30千米/时,走路线B的平均速度是45千米/时解析:设走路线A的平均速度为x千米/时,则走路线B的平均速度为千米/时.根据题意,得,解得:,经检验,是该分式方程的解.∴.答:走路线A的平均速度是30千米/时,走路线B的平均速度是45千米/时.22.(1)(2)解析:(1)解:∵,∴,∵,∴,解得:;(2)设大正方形的边长为,正方形的边长为,面积和为,边长和为,,,,,解得:,,,②,由①②解得:,.23.(1)证明见解析,(2),;(3),它们所在直线的夹角为解析:证明:(1)和都是等边三角形,∴,,,∴,∴,在和中,,∴,∴,,记,的交点为,则,∴.(2)和都是等腰直角三角形,∴,,,∴,∴,在和中,,∴,∴,,记,的交点为,则,∴,∴.(3)如图,∵,,,∴∴,∴,在和中,,∴,∴,,延长,相交于,∵,∴,即和所在直线的夹角为。
人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,轴对称图形的个数是()A .1个B .2个C .3个D .4个2.下列长度的三条线段能组成三角形的是()A .4、5、6B .2、4、7C .8、10、20D .5、15、83.已知△ABC ≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为()A .80°B .40°C .60°D .120°4.点P (﹣2,3)关于y 轴对称点的坐标在第()象限A .第一象限B .第二象限C .第三象限D .第四象限5.下列计算正确的是()A .325a a a +=B .326a a a ⋅=C .()325a a =D .624a a a ÷=6.要使分式12x x +-有意义,则x 的取值应满足()A .2x ≠B .1x ≠-C .2x =D .1x =-7.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,若AB =4,AD =2,则△AED 的周长是()A .6B .7C .8D .108.如果2(1)9x m x +-+是一个完全平方式,那么m 的值是()A .7B .-7C .-5或7D .-5或59.已知a+b=3,ab=1,则多项式a 2b+ab 2-a-b 的值为()A .-1B .0C .3D .610.如图,等边△ABC 中,BD ⊥AC 于D ,AD =3.5cm ,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2cm ,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为()A .3cmB .4cmC .5cmD .6cm二、填空题11.因式分解:24x -=__________.12.一个n 边形的内角和是540°,那么n =_____.13.若分式12x x --的值为0,则x=_____.14.若3,6m n x x ==,求m n x +的值为___________________.15.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .16.如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠ADE =_______°.三、解答题17.计算:()()()2322x x x ---+18.解方程:34 x 1x=-19.先化简,再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中3x =-.20.如图,已知EC =AC ,∠BCE =∠ACD ,∠A =∠E ,BC =3.求DC 的值.21.在新冠肺炎疫情发生后,某企业加快转型步伐,引进,A B 两种型号的机器生产防护服,已知一台A 型机器比一台B 型机器每小时多加工20套防护服,且一台A 型机器加工800套防护服与一台B 型机器加工600套防护服所用时间相等.(1)每台AB 型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排AB 、两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A 型机器?22.如图,AC 平分∠BAD ,CE ⊥AB ,CD ⊥AD ,点E 、D 为垂足,CF=CB .(1)求证:BE=FD ;(2)若CD=6,AD=8,求四边形ABCF 的面积.23.a 、b 、c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长24.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACB 交AB 于E ,EF ⊥AB 交CB 于F .(1)求证:CD //EF ;(2)若∠A =70°,求∠FEC 的度数.25.如图1,ABC 是直角三角形,90C ∠=︒,CAB ∠的角平分线AE 与AB 的垂直平分线DE 相交于点E .(1)如图2,若点E 正好落在边BC 上.①求B Ð的度数;②证明:3BC DE =.(2)如图3,若点E 满足C 、E 、D 共线.线段AD 、DE 、BC 之间是否满足AD DE BC +=,若满足请给出证明;若不满足,请说明理由.参考答案1.B【分析】根据轴对称图形的概念可直接判断.【详解】解:由轴对称图形的定义可直接判断第2个和第4个是轴对称图形,第1个和第3个不是,所以有两个轴对称图形.故选:B【点睛】本题主要考查轴对称图形的定义,理解轴对称图形,学会判断即可.2.A【分析】根据将两条较短的线段长度之和是否大于第三条线段的长度进行判断.【详解】A选项:4+5>6,故能组成三角形;B选项:2+4<7,故不能组成三角形;C选项:8+10<20,故不能组成三角形;D选项:5+8<15,故不能组成三角形;故选:A.【点睛】考查了三角形三边关系,解题关键是判定三条线段能否构成三角形时,只需将两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.C【分析】先利用三角形的内角和为180°求出∠C的度数,再根据全等三角形的对应角相等得∠C′=∠C 即可求解.【详解】解:∵在△ABC中,∠A=80°,∠B=40°,∴∠C=180°﹣80°﹣40°=60°,∵△ABC≌△A′B′C′,∴∠C′=∠C=60°,故选:C.【点睛】本题考查全等三角形的性质、三角形的内角和定理,掌握全等三角形的对应角相等是解答的关键.4.A【解析】∵点P(-2,3)在第二象限,∴点P关于y轴的对称点在第一象限.故选A.5.D【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】A、∵2a和3a不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵3256a a a a⋅=≠,∴此答案错误,不符合题意;C、∵()3265a a a=≠,∴此答案错误,不符合题意;D、∵624a a a÷=,∴此答案正确,符合题意.故选D【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.A【详解】解:∵12xx+-在实数范围内有意义,∴x20-≠.∴x2≠故选A.7.A【分析】根据角平分线的性质以及平行线的性质得出△BDE为等腰三角形,然后将△ADE的周长转化为AB+AD得出答案.【详解】∵BD平分∠ABC,∴∠DBC=∠ABD,∵DE∥BC,∴∠EDB=∠DBC ,∴∠EDB=∠EBD ,∴BE=DE ,∴ADE C =AE+DE+AD=AE+BE+AD=AB+AD=4+2=6,故选A .点睛:本题主要考查的是角平分线的性质以及平行线的性质,属于基础题型.解答这个问题的关键就是得出△BDE 为等腰三角形.8.C【分析】根据完全平方公式,中间项等于首项和尾项底数乘积的±2倍列式即可得出m 的值.【详解】解:∵x 2+(m-1)x+9是一个完全平方式,∴(m-1)x=±2•x•3,∴m-1=±6,∴m=-5或7,故选:C .【点睛】本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方公式有(a+b)2=a 2+2ab+b 2和(a-b)2=a 2-2ab+b 2两个.9.B【分析】根据分解因式的分组分解因式后整体代入即可求解.【详解】解:a 2b+ab 2-a-b=(a 2b-a )+(ab 2-b )=a (ab-1)+b (ab-1)=(ab-1)(a+b )将a+b=3,ab=1代入,得原式=0.故选:B.【点睛】本题考查了因式分解的应用,解决本题关键是掌握分组分解因式的方法.10.C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.5cm,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.5cm,∴QD=DQ′=1.5(cm),∴CQ′=BP=2(cm),∴AP=AQ′=5(cm),∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5(cm),∴PE+QE的最小值为5cm.故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.11.(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-12.5【分析】根据多边形的内角和公式列出方程,解方程即可【详解】解:设这个多边形的边数为n ,由题意,得(n ﹣2)•180°=540°,解得n =5.故答案为:5.【点睛】本题考查了多边形的内角和,熟练掌握n 边形的内角和为(n ﹣2)•180°是解题的关键13.1.【分析】分式的值为零时,分子等于零,且分母不为零.【详解】若分式12x x --的值为0,则10,x -=解得: 1.x =此时x-2≠0.故答案为1.【点睛】考查分式的值为零的条件,分子为0,分母不为0.14.18【分析】逆用同底幂的乘法法则可以得到解答.【详解】解:原式=·3618m n x x =⨯=故答案为18.【点睛】本题考查同底幂的运算,灵活运用同底幂的乘法法则计算是解题关键.15.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵F 是CE 的中点,23AEF S cm∆=∴226ACE AEF S S cm ∆∆==,∵E 是BD 的中点,∴ADE ABE S S ∆∆=,CDE BCE S S ∆∆=,∴12ACE ABC S S ∆∆=,∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.16.46【分析】由△ABC 中,∠ACB =90°,∠A =22°,可求得∠B 的度数,由折叠的性质可得:∠CED =∠B =68°,由三角形外角的性质,可求得∠ADE 的度数.【详解】△ABC 中,∠ACB =90°,∠A =22°,∴∠B =180°-90°﹣∠A =68°,由折叠的性质可得:∠CED =∠B =68°,∴∠ADE =∠CED ﹣∠A =46°.故答案为:46.【点睛】本题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.17.613x -+【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=6x 13-+【点睛】本题考查平方差公式,以及完全平方公式,熟练掌握公式是解题关键.18.x=4【分析】去分母化为整式方程,再求解.【详解】解:去分母得:3x=4(x-1),去括号得:3x=4x-4,移项合并得:x=4,经检验:x=4是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解法,注意检验.19.11x x -+;2【分析】先算括号里的减法,把除法变成乘法,求出结果,最后代入求出即可.【详解】解:()()()222134223422111211121x x x x x x x x x x x x x x -+++---⎛⎫-÷=⋅= ---++-++⎝⎭当3x =-时,原式31231--==-+,故答案为11x x -+;2.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.20.3【分析】求出∠ACB=∠ECD ,由“ASA”可证△ACB ≌△ECD ,可得BC=DC=3.【详解】解:∵∠BCE=∠ACD ,∴∠BCE+∠ACE=∠ACD +∠ACE ,即∠ACB=∠ECD ,在△ACB 和△ECD 中,A E AC EC BCA DCE ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ACB ≌△ECD (ASA ),∴BC=DC=3.【点睛】本题考查了全等三角形的判定和性质,证明△ACB ≌△ECD 是本题的关键.21.(1)每台B 型号的机器每小时加工60套防护服,每台A 型号的机器每小时加工80套防护服;(2)6台【分析】(1)设每台B 型号的机器每小时加工x 套防护服,每台A 型号的机器每小时加工(x +20)套防护服,根据题意,列出分式方程即可求出结论;(2)设需要安排a 台A 型机器,根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设每台B 型号的机器每小时加工x 套防护服,每台A 型号的机器每小时加工(x +20)套防护服由题意可得80060020x x=+解得:x=60经检验:x=60是原方程的解,且符合题意60+20=80(套)答:每台B 型号的机器每小时加工60套防护服,每台A 型号的机器每小时加工80套防护服;(2)设需要安排a 台A 型机器由题意可得80a +60(10-a )≥720解得:a≥6答:至少需要安排6台A 型机器.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解题关键.22.(1)证明见解析;(2)48.【分析】(1)先根据角平分线的性质可得CE CD =,再根据直角三角形全等的判定定理与性质即可得证;(2)先根据全等三角形的性质可得Rt BCE Rt FCD S S = ,再根据直角三角形全等的判定定理与性质可得Rt ACE Rt ACD S S = ,然后利用割补法求面积即可得.【详解】(1)AC 平分BAD ∠,,CE AB CD AD ⊥⊥,CE CD ∴=,在Rt BCE V 和Rt FCD 中,CE CD CB CF=⎧⎨=⎩,()Rt BCE Rt FCD HL ∴≅ ,BE FD ∴=;(2)由(1)已证:Rt BCE Rt FCD ≅ ,Rt BCE Rt FCD S S ∴= ,在Rt ACE △和Rt ACD △中,CE CD AC AC=⎧⎨=⎩,()Rt ACE Rt ACD HL ∴≅ ,Rt ACE Rt ACD S S ∴= ,则四边形ABCF 的面积为Rt ACE Rt BCE ACF S S S ++ ,()Rt ACE Rt FCD ACF S S S =++ ,Rt ACE Rt ACD S S =+ ,2Rt ACD S = ,122AD CD =⨯⋅,12862=⨯⨯⨯,48=,即四边形ABCF 的面积为48.【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理与性质,熟练掌握直角三角形全等的判定定理与性质是解题关键.23.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ;(2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a ab b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点睛】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.24.(1)见解析;(2)25°【分析】(1)根据垂直于同一条直线的两直线平行证明;(2)根据直角三角形的性质求出∠ACD ,根据角平分线的定义求出∠ACE ,结合图形求出∠DCE ,根据平行线的性质解答即可.【详解】(1)证明:∵CD ⊥AB ,EF ⊥AB ,∴CD ∥EF ;(2)解:∵CD ⊥AB ,∴∠ACD =90°﹣70°=20°,∵∠ACB =90°,CE 平分∠ACB ,∴∠ACE =45°,∴∠DCE =45°﹣20°=25°,∵CD ∥EF ,∴∠FEC =∠DCE =25°.【点睛】本题考查的是平行线的判定和性质、直角三角形的性质,掌握两直线平行、内错角相等、直角三角形的两锐角互余是解题的关键.25.(1)①30°;②见解析;(2)满足,证明见解析【分析】(1)①由角平分线与垂直平分线的性质证明:CAE DAE B ∠=∠=∠,再利用三角形的内角和定理可得答案;②先利用角平分线的性质证明:EC ED =,再利用30B ∠=︒,证明2BE DE =,从而可得结论;(2)过点E 作EF AC ⊥于点F ,证明:EF CF =,再证明()Rt ADE Rt AFE HL ≌,可得AD AF =,再利用线段的和差可得答案.【详解】(1)①解:∵AE 平分CAB∠∴CAE BAE∠=∠又∵ED 是AB 的垂直平分线∴EA EB=∴B DAE ∠=∠,∴CAE DAE B∠=∠=∠又∵90C ∠=︒∴190303B ∠=⨯︒=︒;②证明:∵AE 平分CAB ∠,且EC AC ⊥,ED AB⊥∴EC ED =,在Rt EDB 中,30B ∠=︒∴2BE DE =,3BC BE CE BE DE DE =+=+=;(2)解:线段AD 、DE 、BC 之间满足AD DE BC +=,证明如下:过点E 作EF AC ⊥于点F ,∵ED 是AB 的垂直平分线,且C 、E 、D 共线∴CD 也是AB 的垂直平分线∴CA CB=又90ACB ∠=︒∴ABC 是等腰直角三角形.∴45ACD ∠=︒∴CEF △是等腰直角三角形.∴EF CF=∵AE 平分CAB ∠,且EF AC ⊥,ED AB⊥∴EF ED=∴ED FC =,在Rt ADE △和Rt AFE 中EF ED AE AE=⎧⎨=⎩∴()Rt ADE Rt AFE HL ≌∴AD AF =,∴BC AC AF FC AD DE ==+=+.【点睛】本题考查的是三角形的内角和定理,角平分线的性质,垂直平分线的性质,直角三角形全等的判定与性质,含30°的直角三角形的性质,掌握以上知识是解题的关键.。
山东省聊城市东昌府区2023-2024学年八年级上学期期末数学试题(含答案)

2023-2024学年第一学期期末学业水平检测八年级数学试题说明:1,全卷共6页,考试时间为120分钟,满分120分.2.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在答卷密封线左边的空格内.3.答题可用黑色或蓝色字迹的钢笔或签字笔按要求答在答卷上,但不能用铅笔或红笔.4.答案写在试题上无效.5.一律不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列代数式中,不是分式的是( )A.B .C .D .3.若点与点关于轴对称,则的值为()A .3B .7C .11D .154.下列式子从左到右的变形一定正确的是( )A .B .C .D .5.某学校为了了解学生的读书情况,抽查了部分同学在一周内的阅读时间,并进行了统计,结果如表:()1x y m -2a b-3x x +a b a b+-()3,4A m -()2,6B n +y m n -11a a b b +=+a ac b bc =133ab ab =33a a b b=时间12345人数12201053则这些学生阅读时间的众数和中位数分别是()A .20,20B .2,2C .20,10D .2.5,26.下列命题中,是假命题的是()A .在同一平面内垂直于同一条直线的两条直线平行B .如果两个角互余,那么它们的余角也互余C .如果两个有理数的和为负数,那么它们的积也为负数D .如果两个角不相等,那么这两个角不是对顶角7.如图,交于点,添加以下四个条件中的一个,其中不能使的条件是( )第7题图A .B .C .D .8.若,则的值是( )A .B .C .D .9.如图,将矩形沿对角线折叠,点的对应点为点与交于点.若,则的度数为( )第9题图A .B .C .D .10.如图,,且于于.若,则的长为( )/h,AC BD ,O BO DO =A ABO CDO △≌△BAC DCA ∠=∠AB CD=AB CD ∥AO CO =32a b b -=a a b+4375-2757ABCD BD C ,E BE AD F 55CDB ∠=︒AFB ∠70︒60︒65︒40︒AB CD ⊥,AB CD CE AD =⊥,E BF AD ⊥F 7,4,3CE BF EF ===AD第10题图A .7B .8C .5D .411.如图,已知,下列说法:①;②是的中线;③;④与面积相等.其中正确的是:( )第11题图A .1个B .2个C .3个D .4个12.如图,为任意三角形,以为圆心,任意长为半径做弧,交于点,交于点,分别以点和点为圆心,以大于的长为半径作弧,两弧交于点,做射线,交于点,分别以点和为圆心,大于长为半径作弧,两弧相交于两点,作直线交于点,连接.下列结论正确的是( )第12题图A .B .C .D .第Ⅱ卷(非选择题 共84分)AOB COD △≌△ABO CBO ∠=∠OB ABC △AB CD ∥COD △BOC △ABC △B AB F BC G F G 12FG H BH AC D B D 12BD ,M N MN AB E DE 12DE BC =DE AE =AED ABC ∠=∠AD CD=二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.当______时,分式的值为零.14.在直角坐标系中,直线是经过点,且平行于轴的直线,点与点,关于直线成轴对称,则______.15.如图,在中,点是边上的一点,连接垂直平分,垂足为,交于点,若,则______.第15题图16.若关于的方程无解.则______.17.如图,已知:射线,点在射线上,点在射线上,均为直角三角形,若,将各边边长分别扩大2倍得到,将各边边长分别扩大2倍得到……则的面积为______.第17题图三、解答题(本题共8小题,共69分.解答应写出必要的文字说明、推理过程或演算步骤)18.(8分)如图,在平面直角坐标系中,已知,x =2293x x x--l ()1,0y ()2,P n (),3Q m -l 2m n -=ABC △D BC ,AD CE AD F AB E 32,50ACB B ∠=︒∠=︒BED ∠=x 222x m x x =+--m =OM ON 、123A A A ⋅⋅⋅、、、OM 123B B B ⋅⋅⋅、、、ON 112223334A B B A B B A B B ⋅⋅⋅△、△、△、12121,2B B A B ==112A B B △223A B B △223A B B △334A B B △202021A B B △()()()4,2,2,0,1,4A B C --(1)在平面直角坐标系中画出,则的面积是______.(2)画出关于轴对称的,其中点的对应点分别为点(3)已知点为轴上一点,若的面积为3,求出点的横坐标.19.(7分)先化简,再从0,1,2,3中选择一个恰当的的值代入求值.20.(8分)甲、乙两名运动员参加某体育项目训练,为了便于研究,把最近6次训练成绩绘制成折线统计图.(1)要评价两名运动员的平均水平,你选择什么统计量?求这个统计量.(2)请根据折线图分别求出甲运动员的中位数是______,乙运动员的众数是______.(3)计算甲、乙两个运动员成绩的方差,并判断哪位运动员的成绩更稳定?21.(7分)八年级学生去距学校60千米的纪念馆参观,师生乘大巴车前往,某老师因有事情,推迟了20分钟出发,自驾汽车以大巴车速度的1.5倍前往,结果同时到达,求老师自驾汽车的速度是多少?22.(8分)如图所示,在中,平分交于点交于点是的中点.ABC △ABC △ABC △y A B C '''△,,A B C A B C '''、、P x ABP △P 2222112212x x x x x x x x x ---÷++++-x ABC △CD ACB ∠AB ,D DE AC ∥AB ,D F CD第22题图(1)试说明:平分.(2)若,那么的周长是多少?23.(9分)已知:如图,线段和射线交于点.第23题图(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线上作一点,使;②做的垂直平分线交的延长线于点,交于点,连接.(2)在(1)所作的图形中,若求的度数.24.(10分)如图,点在一条直线上,均为等边三角形,连接和,分别交于点交于点,连接,第24题图(1)试说明;(2)试判断的形状?并说明理由?25.(12分)如图:在中,,点是斜边的中点,.EF CED ∠13DB BC +=BDE △AB BM B BM C AC AB =AB DE BC E AC F BF 50A ∠=︒BFC ∠,,A B C ,ABD BCE △△AE CD AE ,CD BD ,,M P CD BE Q ,PQ BM AE CD =BPQ △ABC △90,BAC AB AC ∠=︒=D BC DE DF ⊥第25题图(1)试判断与的大小关系?并说明理由.(2)与全等吗?为什么?(3)若,求四边形的面积.2023—2024学年第一学期期末学业水平检测八年级数学试题参考答案一、选择题(本大题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.C 2.В 3.A 4.C 5.B 6.C 7.B 8.D 9.A 10.B 11.С 12.C二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13. 14.6 15.48° 16.2 17.三、解答题(本题共8小题,共69分.解答应写出必要的文字说明、推理过程或演算步骤)18.(8分)(1)如图所示的面积是9.(2)如图所示(3)设点的横坐标为,ADE ∠CDF ∠ADE △CDF △6cm AB =AEDF 3-382ABC △ABC △A B C '''△P x或点的横坐标为5或.19.(7分)为了使分式有意义,当时,原式20.(8分)解:(1)选择平均数,甲运动员:分乙运动员:分(2)甲运动员的中位数是7分,乙运动员的众数是8分.(3)因为,所以甲运动员的成绩更稳定.21.(7分)解:设大巴车的平均速度为千米/时,则老师自驾小车的平均速度为千米/时,根据题意列方程为:.解得经检验是分式方程的解,并且符合题意.1232ABC S x =⨯-=△23x -=23x -=±5x =1-P ∴1-2222112212x x x x x x x x x ---÷++++-()()()()21121(1)12x x x x x x x x x +---=÷+++-()()()()21112(1)12x x x x x x x x x +-+-=⋅++--x x=+2x=0,1,2x ≠3x =26x ==96767776+++++=458781076+++++=222(97)2(67)16S -+⨯-==甲22222(47)(57)2(87)(107)46S -+-+⨯-+-==乙22S S <乙甲x 1.5x 6060201.560x x =+60x =60x =所以,老师自驾汽车的速度是90千米/时.22.(8分)解:(1)平分,.又,,,为等腰三角形.是的中点,平分.(2)由(1)可知的周长:,所以的周长为13.23.(9分)(1)(2)垂直平分,.,,是的一个外角,.24.(10分)解:(1)为等边三角形,,.在和中,,,,,.1.590x =CD ACB ∠ACD BCD ∴∠=∠DE AC ∥ACD CDE ∴∠=∠BCD CDE ∴∠=∠DEC ∴△F CD EF ∴CED ∠DE EC=BDE △DB BE DE++DB BE CE=++DB BC=+13=BDE △DE AB AF BF ∴=50A ∠=︒ 50ABF ∴∠=︒BFC ∴∠ABF △5050100BFC ∴∠=︒+︒=︒,ABD BCE △△,,BC BE BD AB CBE EBD ABD EBD ∴==∠+∠=∠+∠CBD ABE ∴∠=∠CBD △EBA △BC BE =CBD ABE ∠=∠BD AB =CBD EBA ∴△≌△AE CD ∴=(2)为等边三角形,理由:,.由(1)可知.在和中,,,,,为等边三角形.25.(12分)解:(1),理由:,点是斜边的中点,,.又,,.(2)与全等.理由:,.又点是中点,,.在和中,,,,.(3),,BPQ △60CBE ABD ∠=∠=︒ 60EBP ∴∠=︒BCQ BEP ∠=∠CBQ △EBP △,BCQ BEP CB BE ∠=∠=CBQ PBE ∠=∠CBQ EBP ∴△≌△BQ BP ∴=BPQ ∴△ADE CDF ∠=∠90,BAC AB AC ∠=︒= D BC AD DC ∴⊥90CDF ADF ∴∠+∠=︒DE DF ⊥ 90ADE ADF ∴∠+∠=︒ADE CDF ∴∠=∠ADE △CDF △,90AB AC BAC =∠=︒ 45C ∴∠=︒ D BC 45CAD BAD ∴∠=∠=︒C EAD DAC ∴∠=∠=∠AD CD ∴=ADE △CDF △ADE CDF ∴∠=∠AD CD =C DAE ∠=∠ADE CDF ∴△≌△ADE CDF △≌△ADE CDF S S ∴=△△ADF DFCAEDF S S S ∴=+△△四边形11所以四边形的面积为.ADCS =△29cm =AEDF 29cm。
湖北省宜昌市2023-2024学年八年级上学期期末数学试题(含解析)

.....若分式的值为,则( )....11x x -+A .166.已知一个等腰三角形的一边长等于A .13cm A .100厘米xy x y =-≠三、解答题(将解答过程写在答题卡上指定的位置,本大题共有分)19.先化简,再从20.如图,在下列带有坐标系的网格中,,(1)画出关于轴的对称的22121x x x x x -+÷-+-()23A -,(B -ABC x嘉铭同学通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如下图,在上截取,使得,连接,可以得到全等三角形,进而解决此问题方法2:如下图,延长到点,使得,连接,可以得到等腰三角形,进而解决此问题(1)根据探究,直接写出,,之间的数量关系;【迁移应用】(2)如下图,在中,是上一点,,于,探究,,之间的数量关系,并证明.【拓展延伸】(3)如下图,为等边三角形,点为延长线上一动点,连接.以为边在上方作等边,点是的中点,连接并延长,交的延长线于点.若,求证:;AC AE AE AB =DE .AB E BE BD =DE .AC AB BD ABC D BC 2B C ∠=∠AD BC ⊥D CD AB BD ABC D AB CD CD CD CDE F DE AF CD G G ACE ∠=∠GF AE AF =+参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意得: 解得:x=1故答案为B|x|-1=010x ⎧⎨+≠⎩【点睛】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.5.C在和中,,∴,∴,∵,∴,故④正确;故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,等腰三角形三线合一的性质,垂线段最短等知识,能正确证明两个三角形全等是解此题的关键.16.(1)(2)【分析】(1)先计算积的乘方,再根据多项式除以单项式的计算法则求解即可;(2)先根据完全平方公式和平方差公式去括号,然后合并同类项即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了整式的混合计算,熟知相关计算法则是解题的关键.17.(1)(2)AFB △CNA V 4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩()ASA AFB CAN ≌AF CN =AF AE =AE CN =23y xy+25x +()233xy xy xy ⎡⎤+÷⎣⎦()3223xy x y xy=+÷23y xy =+()()()2122x x x +-+-()22214x x x =++--22214x x x =++-+25x =+()22m n +-()()233x x +-,.21.(1);(2)(3)证明见解析.117678768+=⨯⨯⨯11(1)(2)+1n n n n +=⨯+⨯+,证明,得出,证明出是等腰直角三角形,得出,从而得出,即可得解.【详解】(1)证明:,,,,;(2)解:,而,为等腰直角三角形,过作的垂线交延长线于,,,而,,,在和中,,,,,又,,在中,,为等腰直角三角形,,CH BH 、()SAS BOC CEH ≌OCB EHC BC CH ∠=∠=,B C H V 45CBH ∠=︒45ADB CBH ∠=∠=︒22220a ab b c -+-= ()22a b c ∴-=000a b c >≤> ,,a b c ∴-=AB OC ∴=0b = AB OC =ABC ∴ A BF BF G ABF BCF ∠=∠ 90ABC ∠=︒90FBC FCB ∴∠+∠=︒90BFC ∴∠=︒ABG BCF △90ABF BCF G BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()AAS ABG BCF ∴ ≌AG BF ∴=BG CF =2CF BF = BF FG AG ∴==AFG 90FG AG G =∠=︒,AFG ∴ 45AFG ∠=︒;(3)①证明:,,,,又,,;②的度数为定值,,过作于,取,连接,,,,,,,即是等腰直角三角形,,,∴,∴可由平移所得,,,.135AFB ∴∠=︒()0E c b - ,()E c OE x c b x b OC CE ∴==-=+-=+OC c = CE b ∴=-()0B b ,OB b ∴=-CE OB \=BDE ∠135BDE ∠=︒E EH OE ^E EH OC =CH BH 、OB CE BOC CEH OC EH =∠=∠= ,,()SAS BOC CEH ∴ ≌OCB EHC BC CH ∴∠=∠=,90OCB ECH CHE ECH ∴∠+∠=∠+∠=︒90BCH ∴∠=︒B C H V 45CBH ∴∠=︒AB OC OC EH == ,AB EH =EH AB AE BH ∴∥45ADB CBH ∴∠=∠=︒135BDE ∴∠=︒24.(1);(2) ,证明见解析;(3)证明见解析.【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,等边三角形的性质;(1)方法一:证明得到,,根据三角形的外角性质和等腰三角形的判定证得,则,进而可得结论;方法二:先根据等腰三角形的性质和外角性质证得,再证明得到,进而可得结论;(2)在上取,连接,根据等边对等角得出,根据三角形的外角的中得出,进而得出,即可得证;(3)先证明 ,过作,交于点,证明,根据等角对等边得出,即可得出结论.【详解】(1)证明:方法一:∵平分,∴,在和中,,,,∴∴,,∵,∴,∴,∴,∴;方法二:延长到点E ,使得,连接,∴,则,∵,AC AB BD =+CD AB BD =+ABD AED ≌ BD ED =2AED ABC C ∠=∠=∠ED EC =BD EC =E C ∠=∠()AAS EAD CAD ≌AE AC =CD DE DB =AE AEB B ∠=∠CAE C ∠=∠EA EC =ACE BCD ≌()SAS D D H A E ∥AG H AEF HDF ≌△△GH HD =AD BAC ∠BAD CAD ∠=∠BAD EAD AD AD =BAD EAD ∠=∠AB AE =()SAS ABD AED ≌BD ED =2AED ABC C ∠=∠=∠AED C EDC ∠=∠+∠EDC C ∠=∠ED EC =BD EC =AC AB BD =+AB BE BD =DE E BDE ∠=∠2ABD E BDE E ∠=∠+∠=∠2ABC C ∠=∠∴,∵平分,∴,在和中,,,,∴,∴,∵,∴;(2)在上取,连接,∵于∴∴∵,∴,∴∴;(3)如图所示,∵,为等边三角形,∴,,∴∴,∴ ∴∴过作,交于点,E C ∠=∠AD BAC ∠BAD CAD ∠=∠EAD CAD EAD CAD ∠=∠E C ∠=∠AD AD =()AAS EAD CAD ≌AE AC =AE AB BE =+AC AB BD =+CD DE DB =AE AD BC ⊥DAE AB=AEB B∠=∠AEC C CAE ∠=∠+∠2B C∠=∠CAE C ∠=∠EA EC=CD CE ED AE DB AB DB =+=+=+CDE ABC 60ACB ECD ∠=∠=︒,CA CB CE CD ==ACB ECB ECD ECB∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌()SAS 120EAC DBC ∠=∠=︒60ACE AEC ∠+∠=︒D D H AE ∥AG H∴,∵是的中点,∴,又∴∴ ,,而,∴,又∵∴∴即 .EAF FHD ∠=∠F ED =EF FD AFE HFD∠=∠()ASA AEF HDF ≌AF HF =AE DH =AEF HDF∠=∠120GDF HDF GDH ∠=∠+∠=︒6060120AEF ACE FEC AEC ACE ∠+∠=∠+∠+∠=︒+︒=︒ACE GDH ∠=∠G ACE∠=∠G GDH∠=∠GH HD AE ==GF AE AF =+。
人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

监利市2023-2024学年度上学期期末考试八年级数学试题本卷满分120分,考试时间120分钟,共三大题,24个小题. 一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.数学中有许多精美的曲线,以下是“笛卡尔叶形线”“阿基米德螺线”“三叶玫瑰线”和“星形线”.其中一定不.是.轴对称图形的是() A . B . C . D .2.在下列运算中,正确的是() A .236a a a ⋅=B .22(3)6a a =C .()325aa =D .32a a a ÷=3.如图,DAC BAC ∠=∠,再添加下列条件,仍不能判定ABC ADC △≌△的是()A .DC BC =B .AB AD =C .D B ∠=∠D .DCA BCA ∠=∠4.下列各式与aa b−相等的是() A .22()a a b −B .22()a ab a b −−C .33aa b− D .aa b−+ 5.一个三角形的两边长为3和8,且第三边长为奇数,则第三边长为() A .7B .9C .5或7D .7或96.将下列多项式分解因式,结果中不含因式1x −的是() A .21x −B .(2)(2)x x x −+−C .221x x −+D .221x x ++7.边长分别为a 和2a 的两个正方形按如下图的样式摆放并连线,则图中阴影部分的面积为()A .23aB .274a C .22aD .232a 8.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为km/h x ,那么可列方程为()A .12012011.5x x −= B .12012011.5x x −=+ C .12012011.5x x −= D .12012011.5x x−=+9.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC △的面积为()A .40B .46C .48D .5010.如图,在ABC △中,9AB =,13AC =,点M 是BC 的中点,AD 是BAC ∠的平分线,//MF AD ,则CF 的长为()A .12B .11C .10D .9二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分)11.分式11x x +−的值为0,则x 的值为______.12.一个多边形的内角和是外角和的2倍,这个多边形的边数为______. 13.若3m n +=,则222426m mn n ++−的值为______.14.如图,在ABC △中,74B ∠=︒,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,若AB BD BC +=,则BAC ∠的度数为______.15.若27193m n =,则23n m −的值是______.16.如图,在ABC △中,AB AC =.点D 为ABC △外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为______.三、解一解,试试谁更棒(本大题共8小题,满分72分) 17.(本题满分8分)计算:(1)()()21a a −+ (2)()()22224ab a b −÷−18.(本题满分8分)分解因式:(1)329a ab −(2)2(2)8x y xy +−19.(本题满分6分)如图AE BD =,AC DF =,BC EF =,求证:A D ∠=∠.20.(本题满分10分)(1)先化简,再求值:524223m m m m −⎛⎫+−⨯⎪−−⎝⎭,其中4m =. (2)若分式方程15102x mx x−=−−无解,求m 的值. 21.(本题满分8分)如图是68⨯的小正方形构成的网格,每个小正方形的边长为1,ABC △的三个顶点A ,B ,C 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S ,使得BSC CAB ≌△△(S 不与A 重合);. (2)在图2中AB 上取一点K ,使CK 是ABC △的高; (3)在图3中AC 上取一点G ,使得AGB ABC ∠=∠.22.(本题满分10分)如图1,ABC △中,AB AC =,点D 在AB 上,且AD CD BC ==.(1)求A ∠的大小;(2)如图2,DE AC ⊥于E ,DF BC ⊥于F ,连接EF 交CD 于点H . ①求证:CD 垂直平分EF ;②请求出线段AE ,DB ,BF 之间存在的数量关系并说明理由.23.(本题满分10分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元. (1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优恵销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?24.(本题满分12分)平面直角坐标系中,点B 在x 轴正半轴,点C 在y 轴正半轴,ABC △是等腰直角三角形,CA CB =,90ACB ∠=︒,AB 交y 轴负半轴于点D .(1)如图1,点C 的坐标是(0,4),点B 的坐标是(8,0),求点A 的坐标;(2)如图2,AE AB ⊥交x 轴的负半轴于点E ,连接CE ,CF CE ⊥交AB 于F . ①求证:CE CF =; ②求证:点D 是AF 的中点; ③求证:1=2ACD BCE S S △△.2023-2024学年度上学期八年级数学期末考试参考答案一、选一选,比比谁细心11.=-1x 12. 6 13. 1214.69° 15. 1 16. 5三、解一解,试试谁更棒17.(1)22a a −−(2)-3b18.(1)(3)(3)a a b a b +−(2)2(2)x y − 19.证明:∵AE =BD ,∴AE +BE =DB +BE ,即AB =DE , 在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A =∠D . 20.(1)原式化简得:2(m +3) 当m =4时,原式=2×(4+3)=14 (2)m =-821.解:(1)如图1中,点S 即为所求;(2)如图2中,线段CK 即为所求; (3)如图,点G 即为所求.22.(1)解:设∠A =x , ∵AD =CD ,∴∠ACD =∠A =x ,∵CD =BC ,∴∠CBD =∠CDB =∠ACD +∠A =2x ; ∵AC =AB ,∴∠ACB =∠B =2x ,则∠DCB =x , ∵x +2x +2x =180°, ∴x =36°,即∠A =36°;(2)①证明:由(1)得:∠ACD =∠A =x ,∠DCB =x , ∴∠ACD =∠DCB ,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵CD=CD,∴△DEC≌△DFC(AAS),∴DE=DF,CE=CF,∴CD垂直平分EF;②解:三条线段AE,DB,BF之间的数量关系为:AE=DB+BF,理由如下:在CA上截取CG=CB,连接DG,如图2所示:由①已得:DE=DF,CE=CF,且CG=CB,∴CG﹣CE=CB﹣CF,即GE=BF,∵DE⊥AC,DF⊥BC,∴∠DEG=∠DFB=90°,∴△DEG≌△DFB(SAS),∴DG=DB,∠DGE=∠B,由(1)得:∠B=2x,∠A=x,∴∠DGE=2∠A,∵∠DGE=∠A+∠GDA,∴∠A=∠GDA,∴AG=DG,∴AE=AG+GE=DG+BF=DB+BF.23.解:(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得x=100.经检验,x=100是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则(100+100×2﹣20)•y+20×0.5 y≥1000+2400+950,解得y≥15.答:每千克这种水果的标价至少是15元.24.(1)解:如图1中,过点A作AH⊥y轴于点H.∵点C的坐标是(0,4),点B的坐标是(8,0),∴OC=4,OB=8,∵∠AHC=∠COB=∠ACB=90°,∴∠ACH+∠BCO=90°,∠BCO+∠CBO=90°,∴∠ACH=∠CBO,在△AHC 和△COB 中,AHC COB ACH CBO CA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHC ≌△COB (AAS ), ∴AH =OC =4,CH =OB =8, ∴OH =CH ﹣CO =8﹣4=4, ∴A (﹣4,﹣4);(2)证明:①如图2中,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBF =45°, ∵AE ⊥AB ,∴∠EAC =∠CAB =∠CBF =45°,∴CE ⊥CF ,∴∠ECF =∠ACB =90°,∴∠ECA =∠FCB , 在△ECA 和△FCB 中,ECA FCB CA BCEAC FBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ECA ≌△FCB (ASA ),∴CE =CF ;②如图2中,过点F 作FN ⊥CD 于点N ,过点A 作AM ⊥CD 于点M . ∵∠ECF =∠EOC =∠CNF =90°,∴∠ECO +∠FCN =90°,∠FCN +∠CFN =90°, ∴∠ECO =∠CFN , 在△EOC 和△CNF 中,EOC CNF ECO CFN CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△CNF (AAS ), ∴OC =FN ,同法可证,△BOC ≌△CMA (AAS ),∴OC =AM , 在△FND 和△AMD 中,90FDN ADM FND AMD FN AM ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△FND ≌△AMD ,∴DF =AD ;③设OE =a ,OB =b ,OC =c , ∵△EOC ≌△CNF ,△BOC ≌△CMA , ∴CN =OE =a ,CM =OB =b ,OC =AM =c , ∴MN =b ﹣a ,∵△FND ≌△AMD ,∴DN =DM =12(b ﹣a ), ∴CD =DN +CN =12(a +b ), ∵S △ACD=12•CD •AM =12•=12(a +b )•AM =14(a +b )•c ,S △BCE=12•EB •CO =12(a +b )•OC =12(a +b )•c ,∴S △ACD=12S △ECB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第一学期期末考试试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内) 1.16的算术根是( ).A .4B .4-C .4±D .8±2有意义,则x 的取值范围是( ). A .1x >B .1x ≥C .1x ≥且32x ≠D . 1x >且32x ≠ 3.下列图形不是..轴对称图形的是( ). A .线段 B .等腰三角形C .角D .有一个内角为60°的直角三角形 4.下列事件中是不可能事件的是( ).A .随机抛掷一枚硬币,正面向上.B .a 是实数,a =-.C .长为1cm ,2cm ,3cm 的三条线段为边长的三角形是直角三角形.D .小明从古城出发乘坐地铁一号线去西单图书大厦.5. 初二年级通过学生日常德育积分评比,选出6位获“阳光少年”称号的同学.年级组长李老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小君等6位同学.这些奖品中3份是学习文具,2份是体育用品,1份是科技馆通票.小君同学从中随机取一份奖品,恰好取到体育用品的可能性是( ).A.16 B .13C. 12D. 236.有一个角是︒36的等腰三角形,其它两个角的度数是( ).A.︒︒108,36 B .︒︒72,36 C. ︒︒72,72 D. ︒︒108,36或︒︒72,727.下列四个算式正确的是( ).A .B .÷C=D.-8.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB =4, AC=3,则△ADF周长为().A.6B.7C.8D.109.如图,滑雪爱好者小明在海拔约为121米的B处乘雪橇沿30°的斜坡下滑至A处所用时间为2秒,已知下滑路程S(米)与所用时间t(秒)的关系为210S t t=+,则山脚A 处的海拔约为(). ( 1.7≈)A.100.6米B.97米C.109米D.145米10.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是().A.6 B.8 C.4 D.12二、填空题(本大题共6个小题,每小题4分,共24分,把答案填在题中横线上)11.约分:22515mnm n-=_____________.12.若整数p满足:⎪⎩⎪⎨⎧-<<.12,72ppp则p的值为_________.13. 若分式55qq-+值为0,则q的值是________________.14.如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC的三个顶点均在格点上,则△ABC的周长为_________________,面积为____________________.15.如图,在Rt△ABC中,∠C=90°,AC= BC,将其绕点A逆时针旋转15°得到Rt△''C,''B C交AB于E,若图中阴影部分面积为'B E的长为.16.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射.线.BC上一动点D,从点B匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).三、解答题(本大题共4个小题,每小题5分,共20分)DC第8题第9题第10题AB第15题17.计算:()213.142π-⎛⎫--- ⎪⎝⎭.解:18.解方程:238111x x x +-=--. 解:19. 解:20.先化简,再求值已知:23x y =,求222569222y x xy y x y x y x y ⎛⎫-+--÷⎪--⎝⎭的值. 解:四、列方程解应用题(本题5分)21. 据报道,2013年11月8日超强台风“海燕”在菲律宾中部萨马省登陆,给菲律宾造成巨大经济财产损失.中国政府伸出援助之手,捐款捐物.某地决定向灾区捐助帐篷.记者采访了某帐篷制造厂如何出色完成任务.下面是记者与工厂厂长的一段对话:根据记者与厂长的一段对话,请求出原计划每天加工多少顶帐篷. 解:五、解答题(本大题共3个小题,每题5分共15分)22.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF . 求证:AB =DC . 证明:23. 已知:如图,△ABC 是等边三角形. D 、E 是△ABC 外两点,连结BE 交AC 于M ,连C结AD 交CE 于N ,AD 交BE 于F ,AD =EB . 当AFB ∠度数多少时,△ECD 是等边三角形?并证明你的结论.解:当AFB ∠=__________时,△ECD 是等边三角形. 证明:24. 已知:在△ABC 中,24=AB ,5AC =,oABC 45=∠,求BC 的长.解:六、几何探究(本题6分)25.如图1,在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l ⊥AO 于H ,分别交直线AB 、AC 、BC 、于点N 、E 、M . (1)当直线l 经过点C 时(如图2),求证:BN =CD ;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.(1)证明:(2)当M 是BC 中点时,CE 和CD 之间的等量关系为_________________________. 证明:(3)请你探究线段BN 、CE 、CD 之间的等量关系, 并直接写出结论.七、选作题图1图2B备用图26. 如图,在△ABC 中,AB =AC ,108A ∠=°,请你在图中,分别用两种不同方法,将△ABC 分割成四个小三角形,使得其中两个是全等..的不等边三角形......(不等边三角形指除等腰三角形以外),而另外两个是不全等...的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).图1 图2BB石景山区2013-2014学年度第一学期期末考试初二数学答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.二、填空题(本题共6道小题,每小题4分,共24分)11.3nm-; 12.3; 13.5; 14.36;(各2分)15.2; 16答对一个2分,答对两个3分,答对3个4分)三、解答题(本题共4个小题,每小题5分,共20分)17. 解:原式=14- ………………………………………………………4分=3--………………………………………………………………5分 18. 解:2(3)(1)81x x x ++-=- …………………………………………………1分 224381x x x ++-=- …………………………………………………2分 44x = …………………………………………………3分 1x = ………………………………………………………4分经检验:1x =是原方程的增根,所以原方程无解 ……………………………5分19. 解:原式 …………………………………………3分…………………………………………4分……………………………………………………5分20. 解:原式=()()()22225213x y x y y x yx y +-⎡⎤-⨯⎢⎥--⎣⎦…………………………………………1分=()()()()22522223y x y x y x y x y x y -+--⋅--= ()22293y x x y -- …………………………………………………………………2分=33y xy x +- ……………………………………………………………………3分 解法一:∵23x y =,不妨设()2,30x k y k k ==≠ …………………………………4分∴原式=9292k k k k +- =117 ………………………………………5分 解法二:3333x y x y xy x y++=-- ………………………………………4分 ∵23x y =∴原式=231132733+=- ………………………………………5分 (阅卷说明:如果学生直接将2,3x y ==代入计算正确者,本题扣1分)四、列方程解应用题(本题5分)21. 解:设原计划每天加工x 顶帐篷. ……………………………………………………1分1500300150030042x x---= …………………………………………………2分 解得 150x = ………………………………………………………………3分 经检验,150x =是原方程的解,且符合题意. ………………………………4分答:原计划每天加工150顶帐篷.……………………………………………………5分 五、解答题(本大题共3个小题,每题5分,共15分) 22.证明:∵AE ∥DF ,∴∠AEB =∠DFC . …………………………………………………………1分 ∵BF =CE , ∴BF +EF =CE +EF .即BE =CF . …………… ……………2分在△ABE 和△DCF 中,AE DF AEB DFC BE CF =⎧⎪∠=∠⎨⎪=⎩………………………………………………………3分 ∴△ABE ≌△DCF ………………………………………………………4分 ∴AB =DC ………………………………………………………5分23. 解:AFB ∠=60° ………………………………………………………………1分 证明:∵△ABC 是等边三角形∴CA =CB ,4∠=60° …………………………………………………………2分 ∵∠2+∠4=∠5∠1+∠3=∠5且∠3=60°∴∠1=∠2 ……………… ………………3分 又∵BE =AD∴△BCE ≌△ACD (SAS )∴CE =CD ,∠BCE =∠ACD ……………………………………………4分 ∴∠BCE -∠6=∠ACD -∠6 即∠4=∠7=60°∴△ECD 是等边三角形 ………………………………………………5分 24. 解:分类讨论(1)如图,过A 作AD ⊥BC 交BC (延长线)于D ,………………………1分 ∴∠D =90°, ∴在Rt △ABD 中,∠B +∠BAD =90°, ∴∠BAD =45° ∴DA DB =,又∵222AB DB DA =+,不妨设x DB DA == 则3222=+x x ,解得4=x ,∴DA =DB =4 ……………………………2分∵∠D =90°,∴在Rt △ACD 中,222AC DA DC =+3452222=-=-=AD AC CD ……………………………3分∴BC =BD -CD =4-3=1 ……………………………4分 (2)如图:由(1)同理:DB =4,CD =3 ∴BC =BD +CD =4+3=7.综上所述:BC =1或BC =7 ……………………………5分 (阅卷说明:只计算出一种情况,本题得4分) 六、几何探究(本题6分) 25. (1)证明:连结ND∵AO 平分BAC ∠,∴12∠=∠ ∵直线l ⊥AO 于H , ∴4590∠=∠=︒∴67∠=∠ ∴AN AC =∴NH CH =∴AH 是线段NC 的中垂线 ∴DC DN = ∴98∠=∠∴AND ACB ∠=∠∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3∠=∠B ∴DN BN =∴BN DC = ……………………………………………………………………2分 (2)当M BC 是中点时,CE 和CD 之间的等量关系为2CD CE =证明:过点C 作'CN AO ⊥交AB 于'ND C 'C B A最新试卷word 电子文档-可编辑由(1)可得'BN CD =,',AN AC AN AE == ∴43∠=∠,'NN CE =过点C 作CG ∥AB 交直线l 于点G ∴42∠=∠,1B ∠=∠ ∴23∠=∠∴CG CE = ∵M BC 是中点, ∴BM CM = 在△BNM 和△CGM 中,1,,,B BM CM NMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM ∴BN CG = ∴BN CE =∴''2CD BN NN BN CE ==+= …………………………………………4分 (3)BN 、CE 、CD 之间的等量关系:当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-………………………………6分 (阅卷说明:三种情况写对一个给1分,全对给2分)七、选作题 26.。