高考理科数学卷(21)

合集下载

2021年高考理科数学全国1卷(word版,含答案)

2021年高考理科数学全国1卷(word版,含答案)

2021年高考理科数学全国1卷1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图所示,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图所示,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图所示:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图所示,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图所示,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图所示,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图所示,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

新课标Ⅰ高考数学理科真题试卷(含答案)

新课标Ⅰ高考数学理科真题试卷(含答案)

绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。

2022年全国甲卷数学(理科)高考真题原卷及参考答案

2022年全国甲卷数学(理科)高考真题原卷及参考答案

既然已经出发,就一定能到达!2022年普通高等学校招生全国统一考试(全国甲卷)理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若1z =−,则1zzz =−( )。

A .1−+B .1−C .1i 33−+ D .1i 33−− 2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差- 2 -3.设全集{2,1,0,1,2,3}U =−−,集合{}2{1,2},430A B x x x =−=−+=∣,则()U A B =ð( )A .{1,3}B .{0,3}C .{2,1}−D .{2,0}−4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .20 5.函数()33cos x x y x −=−在区间ππ,22⎡⎤−⎢⎥⎣⎦的图像大致为( ) A . B .C .D .6.当1x =时,函数()ln bf x a x x=+取得最大值2−,则(2)f '=( ) A .1− B .12− C .12D .17.在长方体1111ABCD A B C D −中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒ C .1AC CB = D .1B D 与平面11BB C C 所成的角为45︒既然已经出发,就一定能到达!8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A B C D 9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )A B . C D .410.椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ的斜率之积为14,则C 的离心率为( )A .2 B .2 C .12 D .1311.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .513,36⎡⎫⎪⎢⎣⎭ B .519,36⎡⎫⎪⎢⎣⎭ C .138,63⎛⎤ ⎥⎝⎦ D .1319,66⎛⎤⎥⎝⎦12.已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>二、填空题:本题共4小题,每小题5分,共20分。

2016全国高考数学卷理科1压轴题第21题分析

2016全国高考数学卷理科1压轴题第21题分析

(2016全国卷1理21题)已知函数2)1()2()(-+-=x a e x x f x 有两个零点。

(1)求a 的取值范围。

(2)设21,x x 是)(x f 的两个零点,证明:.221<+x x考点分析:零、方程根、图象交点问题的相互转化。

不等式的单调性转化。

如何用导数求最值。

难度系数:0.1解:(1):零点2)1()2(0)(--=-⇔=⇒x e x a x f x 有两个零点。

221)1()2(,--=-=x e x y a y x两条曲线有两个交点。

接下来画图即可。

首先验证1=x 不是其零点。

因为接下来讨论过程中1=x 不在定义中。

32432)1()54()1()2)(1(2)1(-+-=-----='x x x e x e x x e x y x x x 所以2y 在)1,(-∞递减,),1(+∞递增,大致图象为:所以只有当0>a 时图象21,y y 才有两个交点。

即函数)(x f 有两个零点。

(2):)2)(1()(a e x x f x +-=',由于0>a 所以)(x f 在)1,(-∞上单调递减。

设21x x <。

由(1)知),1(),1,(21+∞∈-∞∈x x ,所以)1,(22-∞∈-x 。

所以)2()(022212121x f x f x x x x ->=⇔-<⇔<+由于0)1()2()(22222=-+-=x a e x x f x 所以22)2()2(2222x x e x ex x f ---=-- 下面构造函数1,)2()(2>---=-x e x xe x g x x).)(1()(2x x e e x x g --='-所以当1>x 时)(0)(x g x g ⇒<'在),1(+∞递减。

所以0)1()(=<g x g 。

所以0)2(2<-x f 恒成立。

2021年全国统一高考数学试卷(理科)(甲卷)(学生版+解析版)

2021年全国统一高考数学试卷(理科)(甲卷)(学生版+解析版)

2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M ={x |0<x <4},N ={x |13≤x ≤5},则M ∩N =( )A .{x |0<x ≤13}B .{x |13≤x <4}C .{x |4≤x <5}D .{x |0<x ≤5}2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.(5分)已知(1﹣i )2z =3+2i ,则z =( ) A .﹣1−32iB .﹣1+32iC .−32+iD .−32−i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.65.(5分)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .√72B .√132C .√7D .√136.(5分)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ﹣EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .7.(5分)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ',B ',C '满足∠A 'C 'B '=45°,∠A 'B 'C '=60°.由C 点测得B 点的仰角为15°,BB '与CC '的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A 'B 'C '的高度差AA '﹣CC '约为( )(√3≈1.732)A .346B .373C .446D .4739.(5分)若α∈(0,π2),tan2α=cosα2−sinα,则tan α=( )A .√1515B .√55C .√53D .√15310.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .4511.(5分)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√3412.(5分)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52二、填空题:本题共4小题,每小题5分,共20分。

2023新高考数学1卷21题

2023新高考数学1卷21题

2023新高考数学Ⅰ卷第21题21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【参考答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭ (3)52()11853n n E Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 【基本思路】 (1)根据全概率公式即可求出;(2)设()i i P A p =,由题意可得10.40.2i i p p +=+,根据数列知识,构造等比数列即可解出;(3)先求出两点分布的期望,再根据题中的结论以及等比数列的求和公式即可求出.【详细解析】⑴记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B , 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+ ()0.510.60.50.80.6=⨯-+⨯=.⑵设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+, 构造等比数列{}i p λ+, 设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭, 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列, 即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. ⑶因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅, 所以当*N n ∈时,()122115251263185315n n n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-L , 故52()11853n n E Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.。

2020年全国II卷理科数学高考试卷(含答案)

2020年全国II卷理科数学高考试卷(含答案)

下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块。

下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块。

已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 A. 5 B. 255C. 355D.456.数列()n a 中,12a =,m n m n a a a +=,若1551210...22k k k a a a ++++++=-,则k =A. 2B. 3C. 4D. 57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点。

若△ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+--,则()f xA.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增 D.是奇函数,且在1(,)2-∞-单调递减10. 已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上。

若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32C. 1D.11. 若2233,x y x y ---<-则A. 1(1)0n y x -+>B. 1(1)0n y x -+<C. ln 0x y ->D. 10n x y -<12. 01-周期序列在通信技术中有着重要应用,若序列12...n a a a 满足 {}10,1(1,2,...)a i ∈=,且存在正整数m ,使得i i (1,2,...)m a a i +==成立,则称其为01-周期序列,并满足i i (1,2,...)m a a i +==的最小正整数m 为这个序列的周期,对于周期为m 的0-1序列12,,...n a a a , 11()(1,2,...1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1的序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A. 11010...B. 11011...C. 10001...D. 11001...二、填空题:本题共4小题,每小题5分,共20分。

2023新高考一卷数学21题

2023新高考一卷数学21题

2023新高考一卷数学21题随着教育体制的不断更新和改革,2023年的新高考制度将正式实施。

其中,数学是高考科目中的重要一环。

本文将围绕2023新高考数学科目的一卷试卷中的第21题展开详细阐述和解答。

通过对该题的分析和解答过程,我们将帮助学生逐步思考、理解,并掌握解题的技巧和方法。

21. 若正数a、b、c满足条件abc=1,证明a^3 + b^3 + c^3 ≥a^2 + b^2 + c^2。

一、题目理解和思路确定1.1 首先,我们要理解题目的意思。

题目给出了一个条件:正数a、b、c满足abc=1。

我们需要证明不等式a^3 + b^3 + c^3 ≥ a^2 +b^2 + c^2成立。

1.2 接下来,我们可以通过尝试具体的数值来验证不等式是否成立,例如取a=1,b=2,c=0.5。

将这些数带入不等式中,验证其是否满足。

二、正面证明法2.1 我们可以采用正面证明法来证明该不等式。

即,从已知条件和基本的数学性质出发,逐步推导得出结论。

2.2 首先,根据条件abc=1,我们可以得到ab=1/c,ac=1/b,bc=1/a这三个等式。

2.3 接着,我们将不等式右侧的每项展开:a^2 + b^2 + c^2 = (ab)^2 + (ac)^2 + (bc)^2。

2.4 将第2步中的三个等式带入上述展开的式子中,得到a^2 +b^2 + c^2 = (1/c)^2 + (1/b)^2 + (1/a)^2。

2.5 进一步化简上述式子,得到a^2 + b^2 + c^2 = 1/c^2 +1/b^2 + 1/a^2。

2.6 同理,我们将不等式左侧的每一项展开,并代入第2步中得到的三个等式:a^3 + b^3 + c^3 = (abc)(a+b+c)。

2.7 根据条件abc=1,我们可以将上述式子化简为a^3 + b^3 +c^3 = a+b+c。

2.8 现在我们将不等式a^3 + b^3 + c^3 ≥ a^2 + b^2 + c^2重新表述为a+b+c ≥ 1/c^2 + 1/b^2 + 1/a^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学卷 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

1.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .-1 2.设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件3.设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128 4.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( )A .3B .0C .-1D .-2 5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A .16625 B .96625 C .192625 D .2566256.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为( )A .3 B .552 C .5 D .57.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48 8.若实数x 、y 满足{100x y x -+≤>,则y x的取值范围是( )A .(0,1)B .(0,1)C .(1,+∞)D .[1,+∞]9.函数f (x )=cos x (x )(x ∈R )的图象按向量(m ,0)平移后,得到函数y =-f ′(x )的图象,则m 的值可以为( )A .2π B .π C .-π D .-2π10.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B ,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π11.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(]1,3C .(3,+∞)D .[)3,+∞12.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

(13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________。

(用数字作答) 14.若直线3x +4y +m =0与圆{1cos 2sin x y θθ=+=-+(θ为参数)没有公共点,则实数m 的取值范围是 。

15,则其外接球的表面积是 。

16.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b ,ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b =+∈Q 也是数域。

有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域. 其中正确的命题的序号是 。

(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角。

(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x =+∈R 的值域。

18.(本小题满分12分)如图,在四棱锥P -ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点。

(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD若存在,求出AQQD的值;若不存在,请说明理由。

19.(本小题满分12分)已知函数321()23f x x x =+-。

(Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3。

若点211(,2)n n n a a a ++-(n ∈N*)在函数'()y f x =的图象上,求证:点(n ,S n )也在'()y f x =的图象上;(Ⅱ)求函数f (x )在区间(a -1,a )内的极值。

20.(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。

现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12。

假设各次考试成绩合格与否均互不影响。

(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ。

21.(本小题满分12分)如图、椭圆22221x y a b+=(a >b >0)的一个焦点是F (1,0),O 为坐标原点。

(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点。

若直线l 绕点F 任意转动,恒有222OA OB AB +p ,求a 的取值范围。

22.(本小题满分14分)已知函数()ln(1)f x x x =+-。

(Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[0,)(*)n n N ∈上的最小值为n b ,令ln(1)n n a n b =+-。

(i )如果对一切n<恒成立,求实数c 的取值范围; (ii)求证:13132112242421n na a a a a a a a a a a a -+++<L L L 。

高考理科数学卷答案1.B 2.A 3.C 4.B 5.B 6.D 7.A 8.C 9.A 10.D 11.B 12.D 13.31 14.(-∞,0)∪(10,+∞) 15.9π 16.③④17.解:(Ⅰ)由题意得cos 1m n A A ⋅=-=,2sin()16A π-=,1sin()62A π-=。

由A 为锐角得66A ππ-=,3A π=。

(Ⅱ)由(Ⅰ)知1cos 2A =,所以2213()cos 22sin 12sin 2sin 2(sin )22f x x x x x x =+=-+=--+。

因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,()f x 有最大值32。

sin x =-1时,()f x 有最小值-3,所以所求函数()f x 的值域是33,2⎡⎤-⎢⎥⎣⎦。

18.解法一:(Ⅰ)证明:在△P AD 中P A =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面P AD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD 。

(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形,所以OB ∥DC 。

由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角,所以∠PBO 是异面直线PB 与CD 所成的角。

因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB ,在Rt △POA 中,因为AP ,AO =1,所以OP =1,在Rt △PBO 中,tan ∠PBO =2PO BO ==,arctan 2PBO ∠=。

所以异面直线PB 与CD 所成的角是arctan2。

(Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为2。

设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB ,在Rt △POC 中,PC ==PC =CD =DP ,2342PCD S ∆=⋅=,由P DQC Q PCD V V --=得11132322t ⨯⨯=⨯,解得322x =<,所以存在点Q 满足题意,此时13AQ QD =。

解法二:(Ⅰ)同解法一。

(Ⅱ)以O 为坐标原点,OC uuu r 、OD uuu r 、OP uu u r的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1),所以(11,0)CD =-,uu u r ,111)PB =--(,,u u r 。

cos ,||||3PB CD PB CD PB CD ⋅〈〉===。

所以异面直线PB 与CD 所成的角是(Ⅲ)假设存在点Q ,使得它到平面PCD由(Ⅱ)知(1,0,1)CP =-uu r ,(1,1,0)CD =-u u u r。

设平面PCD 的法向量为n =(x 0,y 0,z 0),则0,0,n CP n CD ⎧⋅=⎪⎨⋅=⎪⎩uu r uu u r所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==, 取x 0=1,得平面PCD 的一个法向量为n =(1,1,1)。

设(0,,0)(11)Q y y -≤≤,(1,,0)CQ y =-uu u r,由||||CQ ⋅=n n2=, 解得12y =-或52y =(舍去),此时12AQ =,32QD =,所以存在点Q 满足题意,此时13AQ QD =。

19.(Ⅰ)证明:因为321()23f x x x =+-,所以2'()2f x x x =+, 由点211(,2)(N*)n n n a a a n ++-∈在函数()y f x =的图象上,得221122n n n n a a a a ++-=+,即11()(2)0n n n n a a a a -+---=,又0(N*)n a n >∈,所以12n n a a +-=,又因为3n a =, 所以数列||n a 是以3为首项,公差为2的等差数列, 所以2(1)32=22n n n S n n n -=+⨯+,又因为2'()2f n n n =+,所以()n S f n '=, 故点(,)n n S 也在函数()y f x =的图象上。

相关文档
最新文档