《线性代数》每章近10年(1997-2006)的具体考题题型

合集下载

完整版)《线性代数》

完整版)《线性代数》

完整版)《线性代数》一、单项选择题1.设矩阵$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,则$A^{-1}$等于(B)A。

$\begin{bmatrix}1&2\\3&4\end{bmatrix}$B。

$\begin{bmatrix}-2&1\\1.5&-0.5\end{bmatrix}$C。

$\begin{bmatrix}-2&1.5\\1&-0.5\end{bmatrix}$D。

$\begin{bmatrix}-2&1\\1&0\end{bmatrix}$2.设$A$是方阵,如有矩阵关系式$AB=AC$,则必有(D)A。

$A=0$B。

$BC$时$A=0$C。

$A$时$B=C$D。

$|A|$时$B=C$3.设$Ax=b$是一非齐次线性方程组,$\eta_1$,$\eta_2$是其任意两个解,则下列结论错误的是(A)A。

$\eta_1+\eta_2$是$Ax=0$的一个解B。

$\eta_1+\eta_2$是$Ax=b$的一个解C。

$\eta_1-\eta_2$是$Ax=0$的一个解D。

$2\eta_1-\eta_2$是$Ax=b$的一个解4.设$\lambda$是矩阵$A$的特征方程的3重根,$A$的属于$\lambda$的线性无关的特征向量的个数为$k$,则必有(A)A。

$k\leq3$B。

$k<3$XXXD。

$k>3$5.下列矩阵中是正定矩阵的为(C)A。

$\begin{bmatrix}1&-2\\-2&4\end{bmatrix}$B。

$\begin{bmatrix}1&2\\2&4\end{bmatrix}$C。

$\begin{bmatrix}2&-1\\-1&2\end{bmatrix}$D。

$\begin{bmatrix}-1&2\\2&4\end{bmatrix}$6.下列矩阵中,(B)不是初等矩阵。

最全线性代数习题及参考答案

最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。

2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解线性代数是2024考研数学一科目中的一个重要内容,对于考生来说,掌握线性代数的知识点和解题技巧非常关键。

本文将对2024年考研数学一线性代数部分的历年考题进行详解,帮助考生更好地备考。

一、第一节:向量与矩阵1. 2010年考题考题描述:已知向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性无关,向量\[{\beta}_1, {\beta}_2, {\beta}_3\]可由向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性表示,且\[{\beta}_1 = 2{\alpha}_1 +3{\alpha}_2\],\[{\beta}_2 = 4{\alpha}_1 + 5{\alpha}_2 + {\alpha}_3\],\[{\beta}_3 = 7{\alpha}_1 + 10{\alpha}_2 + 2{\alpha}_3\],则向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为多少?解题思路:根据题意,我们可以建立如下矩阵:\[A =\begin{bmatrix}2 &3 & 0 \\4 &5 & 1 \\7 & 10 & 2 \\\end{bmatrix}\]然后通过对矩阵进行初等行变换,将其化为行最简形。

最后,行最简形的矩阵中非零行的个数即为矩阵的秩。

在本题中,通过计算可知行最简形为:\[\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix}\]因此,向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为3。

2. 2014年考题考题描述:设矩阵\[A =\begin{bmatrix}1 & 0 & 0 \\-2 & 1 & 0 \\3 & 0 & 1 \\\end{bmatrix}\],若矩阵\[B = (A - 2I)^2 - I\],其中\[I\)为单位矩阵,求矩阵\[B\)的秩。

(完整word版)线性代数经典试题4套及答案

(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

(完整)线性代数习题集(带答案)

(完整)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。

(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。

(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。

(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。

(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。

若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。

线性代数自考试题及答案

线性代数自考试题及答案

线性代数自考试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个不是方阵?A. [1, 2; 3, 4]B. [1, 2]C. [1, 2; 3, 4; 5, 6]D. [1, 2; 3, 4; 5, 6; 7, 8]答案:B2. 对于向量空间中的向量组,线性相关的定义是什么?A. 向量组中的任意向量都可以用其他向量表示B. 向量组中存在非零向量可以表示为零向量C. 向量组中的向量线性组合为零向量D. 向量组中所有向量都是零向量答案:A3. 矩阵的特征值是什么?A. 矩阵对角线上的元素B. 使得方程Ax = λx 成立的标量λC. 矩阵的行数D. 矩阵的列数答案:B4. 对于矩阵 A,下列哪个矩阵是 A 的伴随矩阵?A. A^TB. A^(-1)C. adj(A)D. det(A)答案:C5. 如果一个向量是另一个向量的标量倍,这两个向量是什么关系?A. 线性无关B. 线性相关C. 正交D. 单位向量答案:B二、填空题(每题3分,共15分)6. 矩阵的秩是指_________。

答案:矩阵中线性无关的行(或列)的最大数目7. 向量空间的基是指一组_________的向量,它们能生成整个向量空间。

答案:线性无关8. 对于任意矩阵 A,|A| 表示_________。

答案:矩阵 A 的行列式9. 如果矩阵 A 可逆,那么 A 的逆矩阵记作_________。

答案:A^(-1)10. 线性变换 T: R^n → R^m 的标准矩阵是指_________。

答案:线性变换 T 对标准基的坐标表示矩阵三、解答题(共75分)11. (15分)设 A 是一个3×3 的实对称矩阵,证明其特征值都是实数。

答案:略12. (20分)给定两个向量 v1 = [1, 2, 3]^T 和 v2 = [4, 5, 6]^T,求它们的叉积v3 = v1 × v2,并证明 v3 与 v1, v2 都正交。

考研数学真题近十年考题路线分析(高数部分)

考研数学真题近十年考题路线分析(高数部分)

考研数学真题近十年考题路线分析(高数部分)以下给出了《高等数学》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。

高等数学(①10年考题总数:117题②总分值:764分③占三部分题量之比重:53%④占三部分分值之比重:60%)第一章函数、极限、连续(①10年考题总数:15题②总分值:69分③占第一部分题量之比重:12%④占第一部分分值之比重:9%)题型 1 求1∞型极限(一(1),2003)题型 2 求0/0型极限(一(1),1998;一(1),2006)题型 3 求∞-∞型极限(一(1),1999)题型 4 求分段函数的极限(二(2),1999;三,2000)题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)题型 6 无穷小的比较或确定无穷小的阶(二(7),2004)题型7 数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006)题型8 求n项和的数列极限(七,1998)题型9 函数在某点连续性的判断(含分段函数)(二(2),1999)第二章一元函数微分学(①10年考题总数:26题②总分值:136分③占第一部分题量之比重:22%④占第一部分分值之比重:17%)题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006)题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005)题型 3 求函数或复合函数的导数(七(1),2002)题型 4 求反函数的导数(七(1),2003)题型 5 求隐函数的导数(一(2),2002)题型 6 函数极值点、拐点的判定或求解(二(7),2003)题型7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)题型8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)题型9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004)题型10 函数单调性的判断或讨论(八(1),2003;二(8),2004)题型11不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004)题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)题型13 方程根的判定或唯一性证明(三(18),2004)题型14 曲线的渐近线的求解或判定(一(1),2005)第三章一元函数积分学(①10年考题总数:12题②总分值:67分③占第一部分题量之比重:10%④占第一部分分值之比重:8%)题型 1 求不定积分或原函数(三,2001;一(2),2004)题型 2 函数与其原函数性质的比较(二(8),2005)题型 3 求函数的定积分(二(3),1997;一(1),2000;三(17),2005)题型4 求变上限积分的导数(一(2),1999;二(10),2004)题型 5 求广义积分(一(1),2002)题型6 定积分的应用(曲线的弧长,面积,旋转体的体积,变力做功等)(七,1999;三,2003;六,2003)第四章向量代数和空间解析几何(①10年考题总数:3题②总分值:15分③占第一部分题量之比重:2%④占第一部分分值之比重:1%)题型 1 求直线方程或直线方程中的参数(四(1),1997)题型2求点到平面的距离(一(4),2006)题型 3 求直线在平面上的投影直线方程(三,1998)题型4 求直线绕坐标轴的旋转曲面方程(三,1998)第五章多元函数微分学(①10年考题总数:19题②总分值:98分③占第一部分题量之比重:16%④占第一部分分值之比重:12%)题型1多元函数或多元复合函数的偏导的存在的判定或求解(二(1),1997;一(2),1998;四,2000;四,2001;二(9),2005;三(18(Ⅰ)),2006)题型 2 多元隐函数的导数或偏导的求解或判定(三,1999;三(19),2004;二(10),2005)题型 3 多元函数连续、可导与可微的关系(二(2),2001;二(1),2002)题型4 求曲面的切平面或法线方程(一(2),2000;一(2),2003)题型5 多元函数极值的判定或求解(八(2),2002;二(3),2003;三(19),2004;二(10),2006)题型 6 求函数的方向导数或梯度或相关问题(八(1),2002;一(3),2005)题型7 已知一二元函数的梯度,求二元函数表达式(四,1998)第六章多元函数积分学(①10年考题总数:27题②总分值:170分③占第一部分题量之比重:23%④占第一部分分值之比重:22%)题型 1 求二重积分(五,2002;三(15),2005;三(15),2006)题型 2 交换二重积分的积分次序(一(3),2001;二(10),2004;二(8),2006)题型 3 求三重积分(三(1),1997)题型 4 求对弧长的曲线积分(一(3),1998)题型5求对坐标的曲线积分(三(2),1997;六,1998;四,1999;五,2000;六,2001;六(2),2002;一(3),2004;三(19),2006)题型 6 求对面积的曲面积分(八,1999)题型7 求对坐标的曲面积分(三(17),2004;一(4),2005;一(3),2006)题型8 曲面积分的比较(二(2),2000)题型9 与曲线积分相关的判定或证明(六(1),2002;五,2003;三(19(Ⅰ)),2005)题型10 已知曲线积分的值,求曲线积分中被积函数中的未知函数的表达式(六,2000;三(19(Ⅱ)),2005题型11 求函数的梯度、散度或旋度(一(2),2001)题型12 重积分的物理应用题(转动惯量,重心等)(八,2000)第七章无穷级数(①10年考题总数:20题②总分值:129分③占第一部分题量之比重:17%④占第一部分分值之比重:16%)题型1无穷级数敛散性的判定(六,1997;八,1998;九(2),1999;二(3),2000;二(2),2002;二(9),2004;三(18),2004;二(9),2006)题型 2 求无穷级数的和(九(1),1999;五,2001;七(2),2002;四,2003;三(16),2005)题型3求函数的幂级数展开或收敛域或判断其在端点的敛散性(一(2),1997;七,2000;五,2001;四,2003;三(16),2005;三(17),2006)题型 4 求函数的傅里叶系数或函数在某点的展开的傅里叶级数的值(二(3),1999;一(3);2003)第八章常微分方程(①10年考题总数:15题②总分值:80分③占第一部分题量之比重:1%④占第一部分分值之比重:10%)题型1求一阶线性微分方程的通解或特解(六,2000;一(2),2005;一(2),2006;三(18(Ⅱ)),2006)题型 2 二阶可降阶微分方程的求解(一(3),2000;一(3),2002)题型 3 求二阶齐次或非齐次线性微分方程的通解或特解(一(3),1999)题型 4 已知二阶线性齐次或非齐次微分方程的通解或特解,反求微分方程(一(1),2001)题型 5 求欧拉方程的通解或特解(一(4),2004)题型 6 常微分方程的物理应用(三(3),1997;五,1998;八,2001;三(16),2004)题型7 通过求导建立微分方程求解函数表达式或曲线方程(四(2),1997;五,1999)考研数学真题近十年考题路线分析(线代部分)以下给出了《线性代数》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。

线代第一章测试题及答案

线代第一章测试题及答案

线代第一章测试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是线性代数的研究对象?A. 向量空间B. 线性方程组C. 矩阵D. 微分方程答案:D2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行(或列)的最大数目D. 矩阵的元素个数答案:C3. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵答案:B4. 向量空间的基是指:A. 空间中的任意一组向量B. 空间中的一组线性无关的向量C. 空间中的一组线性相关的向量D. 空间中的一组正交向量答案:B二、填空题(每题5分,共20分)1. 矩阵的元素个数称为矩阵的______。

答案:阶数2. 如果一个矩阵的行向量组线性无关,则该矩阵是______矩阵。

答案:满秩3. 向量空间中,一组向量如果满足线性组合的系数全为零,则称这组向量是______的。

答案:线性无关4. 一个n阶方阵的行列式等于______。

答案:0三、简答题(每题10分,共20分)1. 请简述什么是线性方程组的解。

答案:线性方程组的解是指满足方程组中所有方程的未知数的取值。

2. 请解释什么是矩阵的转置。

答案:矩阵的转置是指将矩阵的行向量变成列向量,列向量变成行向量,即交换矩阵的行和列。

四、计算题(每题15分,共40分)1. 计算矩阵A的行列式,其中A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]。

答案:\[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 已知矩阵B = \[\begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求B的逆矩阵。

答案:\[ B^{-1} = \frac{1}{(2)(2) - (1)(4)} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 \\-2 & 1 \end{bmatrix} \]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数
(①10年考题总数:51题②总分值:256分③占三部分题量之比重:23%④占三部分分值之比重:20%)
第一章行列式
(①10年考题总数:5题②总分值:18分③占第二部分题量之比重:9%④占第二部分分值之比重:7%)
题型 1 求矩阵的行列式(十(2),2001;一(5),2004;一(5),2005;一(5),2006)
题型2 判断矩阵的行列式是否为零(二(4),1999)
第二章矩阵
(①10年考题总数:8题②总分值:35分③占第二部分题量之比重:15%④占第二部分分值之比重:13%)
题型 1 判断矩阵是否可逆或求逆矩阵(八,1997)
题型 2 解矩阵方程或求矩阵中的参数(一(4),1997;十,2000;一(4),2001)
题型3 求矩阵的n次幂(十一(3),2000)
题型4 初等矩阵与初等变换的关系的判定(二(11),2004;二(12),2006)
题型5 矩阵关系的判定(二(12),2005)
第三章向量
(①10年考题总数:9题②总分值:33分③占第二部分题量之比重:17%④占第二部分分值之比重:12%)
题型 1 向量组线性相关性的判定或证明(十一,1998;二(4),2000;十一(2),2000;二(4),2003;二(12),2004;二(11),2005;二(11),2006)
题型 2 根据向量的线性相关性判断空间位置关系或逆问题(二(4),1997;二(4),2002)
第四章线性方程组
(共考过约11题,约 67分)
题型 1 齐次线性方程组基础解系的求解或判定(七(1),1997;九,2001)
题型 2 求线性方程组的通解(十二,1998;九,2002;三(20(Ⅲ)),2005)
题型 3 讨论含参数的线性方程组的解的情况,如果方程组有解时求出通解(三(20),2004;三(21),2005)
题型 4 根据含参数的方程组的解的情况,反求参数或其他(一(4),2000;三(20),2006)
题型 5 两个线性方程组的解的情况和它们的系数矩阵的关系的判定(一(5),2003)
题型 6 直线的方程和位置关系的判定(十,2003)
第五章矩阵的特征值和特征向量
(①10年考题总数:13题②总分值:76分③占第二部分题量之比重:25%④占第二部分分值之比重:29%)
题型 1 求矩阵的特征值或特征向量(一(4),1999;十一(2),2000;九,2003;三(21(Ⅰ)),2006)
题型 2 已知含参数矩阵的特征向量或特征值或特征方程的情况,求参数(七(2),1997;三(21),2004)
题型 3 已知伴随矩阵的特征值或特征向量,求矩阵的特征值或参数或逆问题(一(4),1998;十,1999)
题型 4 将矩阵对角化或判断矩阵是否可对角化(七(2),1997;三(21),2004;三(21(Ⅱ)),2006)
题型 5 矩阵相似的判定或证明或求一个矩阵的相似矩阵(二(4),2001;十(1),2001)
题型 6 矩阵相似和特征多项式的关系的证明或判定(十,2002)
第六章二次型
(①10年考题总数:5题②总分值:27分③占第二部分题量之比重:9%④占第二部分分值之比重:10%)
题型 1 化实二次型为标准二次型或求相应的正交变换(三(20(Ⅱ)),2005)
题型 2 已知一含参数的二次型化为标准形的正交变换,反求参数或正交矩阵(十,1998;一(4),2002)
题型 3 已知二次型的秩,求二次型中的参数和二次型所对应矩阵的表达式(三(20(Ⅰ)),2005)
题型 4 矩阵关系合同的判定或证明(二(4),2001)
题型 5 矩阵正定的证明(十一,1999)。

相关文档
最新文档