椭圆的几何性质课件

合集下载

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)

椭圆的几何性质ppt课件

椭圆的几何性质ppt课件

的对称轴,坐标原点是对称中心. 椭圆的对称中
(3)顶点
在方程①中,令
= 0,得
轴有两个交点,可以记作
=−


1 (0,
− ),
交点,即
的顶点.
= ,可知椭圆
2 (0,
1, 2

=−
1(

− ,0),

). 因此,椭圆
= ,可知椭圆
2(
,0);令

= 0 ,得
轴也有两个交点,可以记
与它的对称轴共有 4 个
=− , = , =− , =
x
a 且 b
y
b ,这说明,椭圆
所围成的矩形内,如图所示.
(2)对称性
如果 ( , ) 是方程①的一组解,则不难看出,( − , ),( , − ),( − , − )
都是方程的解,这说明椭圆
因此,
轴、
心也称为椭圆的中心.
关于
轴是椭圆
轴、
轴、坐标原点对称,如图所示.
1 , 2 ,如图所示,这四个点都称为椭圆
注意到
1 2
椭圆的长轴,线段
=2 ,
1
而且椭圆的长轴长为 2
2
1 2
=2
,而且
>
> 0 ,所以线段
1 2
称为
称为椭圆的短轴. 显然,椭圆的两个焦点在它的长轴上,
,短轴长为 2 .
于是, ,
距为 2 ,则
分别是椭圆的半长轴长和半短轴长,如果设椭圆的焦
是椭圆的半焦距,由
轴上的椭圆是一致的,如图所示.
例 1 求下列方程表示的椭圆的长轴长、半短轴长、焦点坐标以及离心率:

椭圆ppt课件

椭圆ppt课件

02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例

椭圆的几何性质优秀课件公开课

椭圆的几何性质优秀课件公开课
切线斜率与法线斜率互为相反数的倒数。
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件
探究 离心率对椭圆形状的影响
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e

1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,

消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1

2
a
b
2
2
x
y
2 2 1

b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0

2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭

椭圆的几何性质 课件(52张)

椭圆的几何性质 课件(52张)
c 的等量关系.
[解] 设椭圆的方程为ax22+by22=1(a>b>0),焦点坐标为 F1(-c, 0),F2(c,0).
依题意设 A 点坐标为-c,ba2, 则 B 点坐标为-c,-ba2, ∴|AB|=2ab2.
由△ABF2 是正三角形得 2c= 23×2ab2, 即 3b2=2ac. 又∵b2=a2-c2,∴ 3a2- 3c2-2ac=0, 两边同除以 a2 得 3×ac2+2×ac- 3=0, 解得 e=ac= 33.
心率 e=ac=35,两个焦点分别是 F1(-3,0)和 F2(3,0),椭圆的四个 顶点是 A1(-5,0),A2(5,0),B1(0,-4)和 B2(0,4).
1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准 形式,再确定焦点的位置,进而确定椭圆的类型.
2.焦点位置不确定的要分类讨论,找准 a 与 b,正确利用 a2= b2+c2 求出焦点坐标,再写出顶点坐标.
NO.3 当堂达标·夯基础
1.椭圆x92+1y62 =1 的离心率(
)
A.
7 4
B.196
C.13
A [a2=16,b2=9,c2=7,
设 A 点坐标为(0,y0)(y0>0), 则 B 点坐标为-2c,y20, ∵B 点在椭圆上,∴4ca22+4yb202=1,
解得 y20=4b2-ba2c22, 由△AF1F2 为正三角形得 4b2-ba2c22=3c2, 即 c4-8a2c2+4a4=0, 两边同除以 a4 得 e4-8e2+4=0, 解得 e= 3-1.
∠F1F2P=120°,∴|PF2|=|F1F2|=2c,∠PF2B=60°.∵|OF2|=c,∴ 点 P 的坐标为(c+2ccos 60°,2csin 60°),即点 P(2c, 3c).∵点 P

椭圆的简单几何性质 课件

椭圆的简单几何性质 课件

整理得 kAB=xy22--xy11=-396xy22++xy11,
由于 P(4,2)是 AB 的中点,∴x1+x2=8,y1+y2=4,
于是 kAB=-396××84=-12, 于是直线 AB 的方程为 y-2=-12(x-4), 即 y=-12x+4.
小结 处理直线与椭圆相交的关系问题的通法是通过解直 线与椭圆构成的方程.利用根与系数的关系或中点坐标公 式解决,涉及弦的中点,还可使用点差法:设出弦的两端 点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的 关系.
椭圆的简单几何性质
1.点 P(x0,y0)与椭圆xa22+yb22=1 (a>b>0)的位置关系: 点 P 在椭圆上⇔____ax_202_+__by_202=__1____; 点 P 在椭圆内部⇔___ax_202+ ___by_202<_1____; 点 P 在椭圆外部⇔___ax_202_+__by_202_>_1___.
所以x1+2 x2=116+k2-4k82k=4,解得 k=-12,且满足 Δ>0. 这时直线的方程为 y-2=-12(x-4), 即 y=-12x+4.
方法二
设 A(x1,y1),B(x2,y2),则有3x6312x+622+y921y9=22=11,
两式相减得x22-36x21+y22-9 y21=0,
问题 3 如何求最大距离? 答案 由图可知,k=-25 时,直线 m 与椭圆的交点 到直线 l 的距离最大.
小结 本题通过对图形的观察分析,将求最小距离问题转 化为直线与椭圆的位置关系问题. 解此类问题的常规解法是直线方程与椭圆方程联立,消去 y 或 x 得到关于 x 或 y 的一元二次方程,则(1)直线与椭圆相 交⇔Δ>0;(2)直线与椭圆相切⇔Δ=0;(3)直线与椭圆相离 ⇔Δ<0,所以判定直线与椭圆的位置关系,方程及其判别式 是最基本的工具.

《椭圆的几何性质》课件

《椭圆的几何性质》课件

椭圆的焦点性质
1 焦距定理
椭圆上任意一点到两个焦点的距离之和等于长轴的长度。
2 焦点到直线的距离
椭圆上任意一点到直线的距离与其与两个焦点的距离相等。
3 焦点到任一点距离之和
焦点到椭圆上任意一点距离之和等于长轴的长度。
椭圆的切线
1
切点和法线垂直于切线。
2
切线的斜率和方程
总结
1 椭圆的定义及特点
椭圆是由两个焦点和常距 离点的连线构成的几何形 态。
2 椭圆的焦点、切线和
双曲线性质
椭圆具有焦点性质,切线 和双曲线也与椭圆有所关 联。
3 椭圆的应用和意义
椭圆在工程、艺术和日常 生活中扮演着重要的角色, 具有广泛的应用和意义。
切线的斜率可以通过椭圆的参数表示,方程可以通过切点和斜率求得。
3
切线和弦的交点和中垂线
切线和椭圆上任意一条弦的交点在椭圆的中垂线上。
椭圆的双曲线性质
椭圆与双曲线的区别
椭圆的焦点在内部,离心率小 于1;双曲线的焦点在外部,离 心率大于1。
双曲线的基本形态
双曲线具有两个分离的曲线臂, 曲线臂的形状类似于打开的喇 叭。
双曲线的焦点和离心 率
双曲线也有焦点和离心率的概 念,但与椭圆略有不同。
椭圆的应用
椭圆在工程中的应用
椭圆在艺术中的运用
椭圆形状可以应用于桥梁设计, 提供更好的结构支持和负载分散。
椭圆形状在艺术作品中常用于创 造平衡、和谐和美感的效果。
椭圆在日常生活中的例子
行星轨道、椭圆形家具等都是椭 圆在日常生活中的例子。
《椭圆的几何性质》PPT 课件
欢迎来到《椭圆的几何性质》PPT课件!在本课程中,我们将深入研究椭圆的 几何性质,涵盖定义、基本形态、焦点性质、切线、双曲线性质、应用等内 容。让我们一起开始这个精彩的学习之旅吧。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23:08:27

y2 2 b
= 1
42
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
43
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
44
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
45
y
· F
1
o
· F
2
x
x2 a2
23:08:27
= 1
50
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
51
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
52
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
53
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
y
4 3 B 2 2 1
A1
A2 x
A1
A2 x
-5 -4 -3 -2 -1 -1 -2 -3 -4
123 4 5
B1 椭圆的简单画法: 23:08:28 矩形 椭圆四个顶点
-5 -4 -3 -2 -1 -1 1 2 3 4 5 -2 -3 B1 -4
连线成图
64
四、椭圆的离心率
[1]离心率的取值范围:
81 9
2 ,
为18,短轴长为6,离心率为
2 2 , 3
(0, 6 2),顶点坐标(0,〒9),(〒3,0 焦点坐标为 23:08:28 71 ).
例2. 椭圆的一个焦点和短轴的两端点 构成一个正三角形,则该椭圆的离心 率是
3 2
.
23:08:28
72
强化训练
1 ,
椭圆
x y 的 1 ( a b 0 ) 2 2 a b
2
x
x2 a2
23:08:27

y2 2 b
= 1
34
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
35
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
36
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
37
y
· F
1
o
· F
2
x
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
30
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
31
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
32
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
33
y
· F
1
o
· F
2 2 2
1
3.椭圆中a,b,c的关系是:
23:08:27
c a b
x2 y2 问题1:观察椭圆 2 2 1(a b 0) 的形状, a b
你能从图上看出横坐标x,纵坐标y的范围吗? 它具有怎样的对称性? y 椭圆上哪些点比较特殊? B2
A1
F1
a
b
a F2
o c
B1
A2
一、椭圆的范围
54
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
55
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
56
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
57
x y 2 1(a b 0) 2 a b
2
2
关于y轴对称
c 离心率: 椭圆的焦距与长轴长的比:e a 叫做椭圆的离心率。 y
因为 a > c > 0,所以0 <e <1
离心率 反映椭 圆的圆 扁程度
[2]离心率对椭圆形状的影响:
b就越小,此时椭圆就越扁。
o
x
1)e 越接近 1,c 就越接近 a,请问:此时椭圆的变化情况? 2)e 越接近 0,c 就越接近 0,请问:此时椭圆又是如何变化的? b就越大,此时椭圆就越趋近于圆。
它的长轴长是: 焦距是
10 。短轴长是:
离心率等于:
3 5
8
。 。
6

焦点坐标是: (3, 0)
(5, 0) (0, 4) 。顶点坐标是:
外切矩形的面积等于:
80

y o
70
分析:椭圆方程转化为标准方程为:
2 2 x y 16 x 2 25 y 2 400 1 25 16
a=5 b=4 c=3
5 5
2
2
左、右顶点分别是A,B,左、右焦点分别是F1,F2.若 成等比数列,则此椭圆的离心率为 ____. AF1 ,F1F2 ,FB 1
23:08:28 73
2.已知焦点在x轴上的椭圆 m x 2 5 y 2 5 m 的离心率是
B2 (0,b) A1
x y 2 1( a b 0) 2 a b
2
2
b
a F2
(-a,0) F1
o c
B1 (0,-b)
A2(a,0)
2 2 2 a =b +c
23:08:28 61
椭圆与它的对称轴的四个 交点——椭圆的顶点. 椭圆顶点坐标为: A1(-a,0),A2(a,0),
x y (a>b>0) 2 =1 2 a b
x
23:08:28
强化训练
1.求下列各椭圆的长轴长和短轴长,离心率,焦点坐 标,顶点坐标. 2 2 (1)x 4y 16. (2)9x 2 y 2 81. x2 y 2 (1)已知方程化为标准方程为 + = 1, 【解析】 16 4 故可得长轴长为8,短轴长为4,离心率为 3
焦点坐标为( 2 3 , 0) ,顶点坐标(〒 4,0),(0,〒2). 2 2 (2)已知方程化为标准方程为 y x 1, 故可得长轴长
x2 a2
23:08:27

y2 2 b
= 1
38
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
39
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
40
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
41
y
· F
1
o
· F
2
x
x2 a2
2 2
二、椭圆的对称性
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
6
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
7
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
= 1
8
y
· F
1
o
· F
2
x
x2 a2
23:08:27

y2 2 b
23:08:28 59
练习2.
下列方程所表示的曲线 中,关于原点对称的是 (D)
A. x 2 y C. x 4 y 5 x
2 2
2
B. y 4 x 0 D. 9 x y 4
2 2
2
三、椭圆的顶点与长短轴
令 y=0,得 x=?说明椭圆与 x轴的交点? 令 x=0,得 y=?说明椭圆与 y轴的交点?y
相关文档
最新文档