高等数学等价替换公式

合集下载

lncosx等价无穷小替换公式

lncosx等价无穷小替换公式

lncosx等价无穷小替换公式
在高等数学中,我们经常会涉及到极限和无穷小的概念。

其中,lncosx等价无穷小替换公式是一条非常重要的公式。

具体而言,当$xto0$时,我们有以下等价无穷小替换公式:
$$ln(1+cos x)sim cos x sim 1-frac{x^2}{2}$$
其中,符号“$sim$”表示两个函数在$xto0$时等价,即它们的极限比值等于1。

该公式的证明可以通过泰勒公式展开和极限运算得到。

这个公式有很多应用,例如在求解一些极限问题时,可以利用它将一个较为复杂的函数转化为一个简单的等价无穷小式子,从而更方便地求解。

总之,lncosx等价无穷小替换公式是高等数学中非常实用的一个公式,值得我们深入学习和掌握。

- 1 -。

高等数学等价无穷小替换公式

高等数学等价无穷小替换公式

高等数学等价无穷小替换公式
高等数学中,等价无穷小是指两个无穷小在某一极限下的比值趋近于1。

等价无穷小替换公式是指在极限运算中,可以用一个等价无穷小代替另一个等价无穷小,而不改变极限的值。

以下是一些常见的高等数学等价无穷小替换公式:
1. 当x趋近于0时,sin(x)和x等价。

即:sin(x) ~ x。

2. 当x趋近于0时,tan(x)和x等价。

即:tan(x) ~ x。

3. 当x趋近于0时,1-cos(x)和x等价。

即:1-cos(x) ~ x。

4. 当x趋近于0时,e^x-1和x等价。

即:e^x-1 ~ x。

5. 当x趋近于0时,ln(1+x)和x等价。

即:ln(1+x) ~ x。

6. 当x趋近于0时,arcsin(x)和x等价。

即:arcsin(x) ~ x。

7. 当x趋近于0时,arctan(x)和x等价。

即:arctan(x) ~ x。

8. 当x趋近于0时,(1+x)^a-1和ax等价。

即:(1+x)^a-1 ~ ax。

9. 当x趋近于0时,(1+x)^n-1和nx等价。

即:(1+x)^n-1 ~ nx。

以上就是高等数学中常用的等价无穷小替换公式,掌握这些公式对于解题和理解极限概念都非常有帮助。

- 1 -。

高等数学等价替换公式

高等数学等价替换公式

[评析]:楼主被网上误导了!
x 与 ln(1+x) 是同价无穷小
x^2 与 x*ln(1+ ln(1+x)〕也是同价无穷小。
[评析]:完全正确!
4、“而如果分子或分母上的无穷小不是由一个因式(如单单一个SIN X,或tan X)构成的,而是由多个因式通过相乘除或相加减构成的,如 ln(1+x)* x 和ln(1+x)+ x 。那么可以找一个与ln(1+x)* x 或 ln(1+x)+ x 的等价无穷小量来替换他。
[评析] 完全正确!
2、“等价无穷小在是乘除时可以替换,加减时不可替换”。
[评析] 不完全对!
如果只是无穷小之间的加加减减时,结果一定还是无穷小,完全可以替代。
如果加减时,还涉及到其他运算,则不能一概而论。
只要是等价无穷小,都可以替换。
3、“在计算等价无穷小之比的极限时,理论上要替换,是要替换掉分子上的无穷小(整个式子),或者分母上的无穷小(整个式子),这时其实是将整个分子或分母当作一个无穷小”。
因为ln(1+x)*X 这个无穷小是由两个因式 想乘而成的,所以替换掉其中一个ln(1+x)为 x,之后形成的x^2 就是ln(1+x)* x的 等价无穷小,所以可以替换。而ln(1+x)+ x ,因为其是由两个因式相加而形成的无穷小量,所以如果替换掉ln(1+x)为X,而形成的2X不是ln(1+x)+ x的等价无穷小,所以也就不能替换”。

高等数学等价交换分式

高等数学等价交换分式

高等数学等价交换分式
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。

等价无穷小也是同阶无穷小。

从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

常用等价无穷小公式是什么
常用等价无穷小公式=1-cosx。

等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。

无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

当x趋近于0时:
e^x-1~x;
ln(x+1)~x;
1-cosx~(x^2)/2;
(1+bx)^a-1~abx。

最新高等数学等价替换公式

最新高等数学等价替换公式

高等数学等价替换公式当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)*(x^2)~secx-1(a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~xln(1+x)~x(1+Bx)^a-1~aBx[(1+x)^1/n]-1~(1/n)*xloga(1+x)~x/lna(1+x)^a-1~ax(a≠0)值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)XXX工程项目部质量月活动总结根据公司《关于开展2011年质量月活动的通知》,积极响应以“建设质量强国共创美好生活”为主题的质量月活动,公用工程项目部组织开展了一系列“抓质量,促和谐”活动,在项目部领导的高度重视、精心组织、严格要求下,质量管理水平取得了显著的提高,现将活动有关情况总结如下:项目部领导十分重视本次质量月活动,9月2日,在公用工程项目部现场会议室召集项目部管理人员和施工队伍主要负责人召开了质量月活动动员大会,制定了本次质量月活动的目标、计划以及任务部署,并提出了四点要求:一是进一步提高员工的质量意识,时刻牢记施工人员和管理人员的质量责任;二是深化我们的质量安全文化,确立良好的工作方法,减少质量问题,尤其是低级错误、重复质量问题,防止重大质量事故的发生;三是通过“质量月”活动的有效开展,促进项目部“大干70天”生产目标的完成;四是借“质量月”活动开展的契机,有效地把活动主题贯穿于我们的施工生产之中,技术不断创新、管理不断完善、工程质量不断提高。

1、活动主题:恪守质量诚信,践行社会责任。

2、活动目标:大力实施质量兴企战略,全力打造“中化二建集团”品牌,为社会奉献“质量一流,用户满意”的优质产品。

等价无穷小替换公式加减使用条件

等价无穷小替换公式加减使用条件

等价无穷小替换公式加减使用条件1.当常数a为有限值时,有以下等价无穷小替换公式:-a*ε≈0(其中ε为无穷小量)-ε/a≈0(其中ε为无穷小量)2.当函数f(x)为有界函数时,有以下等价无穷小替换公式:-f(x)*ε≈0(其中ε为无穷小量)3.当函数f(x)在其中一点x=a处连续且不为零时,有以下等价无穷小替换公式:-f(x)≈f(a)(当x趋近于a时)-ε/f(x)≈0(当x趋近于a时)在加减运算中使用等价无穷小替换公式的条件如下:1.替换公式的使用要满足数学定义的条件。

例如,进行除法运算时,被除数不能为零。

2.进行替换时,需要将等价无穷小放在有界函数或常数的前面进行替换。

即等价无穷小应该在乘法或除法运算中作为因子,而不是作为被乘数或被除数。

3.在进行替换时,需要注意确保替换后的函数与原函数在极限点处的极限值是相等的。

如果替换后的函数与原函数的极限值不相等,可能导致计算结果的误差。

举例说明,在计算极限的过程中使用等价无穷小替换公式:例题1:计算极限lim(x->0) (3x - sinx) / x由于sin(x)是一个连续函数且lim(x->0) sinx = 0,因此可以使用等价无穷小替换公式将sinx替换为0。

即lim(x->0) (3x - sinx) / x ≈ lim(x->0) (3x - 0) / x =lim(x->0) 3 = 3例题2:计算极限lim(x->0) (sinx - 2x) / (1 - cosx)由于lim(x->0) sinx = 0且lim(x->0) 1 - cosx = 0,所以可以使用等价无穷小替换公式将sinx替换为0,cosx替换为1即lim(x->0) (sinx - 2x) / (1 - cosx) ≈ lim(x->0) (0 - 0) / (1 - 1) = 0在以上例题中,都是通过使用等价无穷小替换公式简化计算过程,但在应用中需要注意使用等价无穷小替换公式的条件,确保计算结果的准确性。

高等数学等价无穷小替换公式

高等数学等价无穷小替换公式

高等数学等价无穷小替换公式
在高等数学中,我们常常会遇到无穷小量。

无穷小量指的是在某个极限下,趋于零的量。

虽然无穷小量在数学中有很多应用,但是它在计算中也会带来一定的麻烦。

因此,我们需要一些替换公式来简化计算。

等价无穷小替换公式是指在某个极限下,用一个更简单的无穷小量来代替原来的无穷小量,从而简化计算。

以下是一些常见的等价无穷小替换公式:
1. 当 $xto 0$ 时,$sin(x)sim x$,$tan(x)sim x$,$arcsin(x)sim x$,$arctan(x)sim x$。

2. 当 $xtoinfty$ 时,$e^{-x}sim 0$,$ln(1+x)sim x$,$1-e^{-x}sim x$。

3. 当 $xto a$ 时,$e^x-1sim x$,
$ln(x+1)-ln(x)simfrac{1}{x}$。

使用等价无穷小替换公式可以简化复杂的计算,但是需要注意的是,这些公式只适用于特定的极限情况下。

在使用时需要结合具体的问题进行判断,避免出现错误。

- 1 -。

高等数学等价替换公式泰勒公式

高等数学等价替换公式泰勒公式

-------------------------------------------------------------------------------应用高等数学等价替换公式1、无穷小量:设0)x (g lim )x (f lim 0x x x x ==→→*1)若0)x (g )x (f limx x =→,f (x )是g (x )的 高阶 无穷小*2)若∞=→)x (g )x (f limx x ,f (x )是g (x )的 低阶 无穷小*3)若c )x (g )x (f limx x =→,f (x )是g (x )的 同阶 无穷小*4)若1)x (g )x (f limx x =→,f (x )是g (x )的 等价 无穷小*5)若0)x (g )x (f limkx x 0=→,f (x )是g (x )的 k 阶 无穷小 2、等价替换:若x →x 0,f (x )~ f 1(x ),g (x )~ g 1(x ) 则=→)x (g )x (f limx x )x (g )x (f lim 11x x 0→ 6、常用等价形式:当f (x )→0时*1)sinf (x )~ f (x ) *2)arc sinf (x )~ f (x ) *3)tanf (x )~ f (x ) *4)arc tanf (x )~ f (x ) *5)In (1+f (x ))~ f (x ) *6)e f (x )-1~ f (x )-------------------------------------------------------------------------------*7)1-cosf (x )~ 2)x (f 2*8)(1+f (x ))α-1~ αf (x )二、函数的连续: 1、间断点:*1)第一类间断点:f -(x 0)、f +(x 0)均 存在的 间断点 ⑴跳跃间断点: f -(x 0)≠f +(x 0) ⑵可去间断点: f -(x 0)=f +(x 0) *2)第二类间断点:f -(x 0)、f +(x 0)至少有一个 不存在的 间断点 ⑴无穷间断点: f -(x 0)、f +(x 0)中至少有一个为 ∞ ⑵振荡间断点: f -(x 0)、f +(x 0)中至少有一个 振荡不存在 三、导数:1、定义:)x (f '= x△)x (f -)x △x (f lim 000x △+→2、导数的常见形式: *1) 00x x 0x -x )x (f -)x (f lim)x (f 0→='*2) h )x (f -)h x (f lim)x (f 000h +='→*3) h)h x (f -)x (f lim)x (f 000h -='→3、切线方程:若曲线y=f (x )在点P (x 0,f (x 0)), 则 y-y 0=)x (f 0'(x-x 0) 注:*1)如果)x (f 0'=∞,则 x=x 0 *2)如果)x (f 0'=0,则 y=y 0 4、法线方程:若直线过点P (x 0,f (x 0)), 则 y-y 0=)x (f 10'-(x-x 0)-------------------------------------------------------------------------------5、基本公式:*1)=')C ( 0 *2)1-a a ax )x (=' *3)Ina a )a (x x =' *4)x x e )e (=' *5)xIna 1)x log (a =' *6)x 1 )Inx (='*7)cosx )sinx (=' *8)sinx - )cosx (=' *9)x sec )tanx (2=' *10)x csc - )cotx (2=' *11)tanx secx )secx (⋅=' *12)cotx cscx - )cscx (⋅=' *13)2x -11 )sinx arc (=' *14)2x -11-)cosx arc (='*15)2x 11)tanx arc (+=' *16)2x11- )cotx arc (+=' 6、四则运算:νμ和都有导数*1)νμνμ'±'='± )( *2)μμ'='c )c (-------------------------------------------------------------------------------*3)νμνμνμ'+'='⋅ )( *4))0( )(2≠'-'='νννμνμνμ 推论:*1)μμ'='c )c ( *2)w w w w '+'+'='μννμνμμν )( *3)s w s w ws ws ws '+'+'+'='μνμννμνμμν )( 7、反函数求导法则:设y=f (x )与x=ϕ(y )(ϕ'(y )≠0)则)y (1 )x (f ϕ'=' 或xy '= y x 1' 8、n 次导的常见公式:*1))n ()sinx (= )2nx (sin π+*2))2n x (cos )cosx ()n (π+=*3)()()n [In 1x ]+= n1-n )x 1(!)1-n ()1-(+ 9、参数方程求导:设函数)t (y ),t (x ),且b t a ()t (y )t (x ψϕψϕ==≤≤⎩⎨⎧==都可导,其中x=)t (ϕ'≠0,则函数的导数)t ()t (dtdx dt dydx dy ϕψ''== 10、复合函数求导:若y=f (u ),u=ϕ(x ),且f (u )及ϕ(x )都可导,则复合函数y=f[ϕ(x )]的导数)x ()x (f dxdyϕ'⋅'=-------------------------------------------------------------------------------11、隐函数求导:*1)方程F (x ,y )=0两边求导,解出y 或dx dy'*2)公式法:由F (x ,y )=0,则yxF F dx dy''-=*3)利用微分形式的不变性,方程两边求微分,然后解出dxdy注:y 是x 的函数 12、对数求导:将函数关系式两边取自然对数(成为隐函数形式),化简,然后两边两边求导,最后两边乘以y (x )注:适用于多个因式的乘、除、乘幂构成或幂指函数(y=u (x )v (x )) 13、高阶导数:*1)二阶导数:x △)x (f -)x △x (f lim)x (f 0x △'+'=''→ *2)三阶导数:x △)x (f -)x △x (f lim)x (f 0x △''+''='''→*4)n 阶导数:x△)x (f -)x △x (f lim)x (f)1-n ()1-n (0x △)1-n (+=→ 14、中值定理:*1)拉格朗日定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,则在(a ,b )内至少存在一点ξ,使得a-b )a (f -)b (f)(f ='ξ推论1:如果函数f (x )在区间(a ,b )内任意一点的导数)x (f '都等于零,你们函数f (x )在(a ,b )内是一个常数推论2:如果函数f (x )与g (x )在区间(a ,b )内每一点的导数)x (f '与)x (g '都相等,则这两个函数在区间(a ,b )内至多相差一个常数,即:f (x )= g (x )+C ,x ∈(a ,b )*2)罗尔定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,且f (a )=f (b ),则在(a ,b )内至少存在一点ξ,使得=')(f ξ 0 *3)柯西定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可-------------------------------------------------------------------------------导,且0)x (g ≠',则在(a ,b )内至少存在一点ξ,使得)a (g -)b (g )a (f -)b (f = )(g )(fξξ''&15、洛必达法则:*1)0型:设函数f (x )、g (x )满足: ⑴==→→)x (g lim )x (f lim 0x x x x 0⑵在点x 0的某去心邻域内)x (g )与x (f '' 都存在 ,且≠')x (g 0 ⑶)x (g )x (f limx x ''→ 存在或为无穷 有:)x (g )x (f lim 0x x →= )x (g )x (f lim0x x ''→*2)∞∞型: 设函数f (x )、g (x )满足: ⑴∞==→→ )x (g lim )x (f lim 0x x x x⑵在点x 0=的某去心邻域内)x (g )与x (f '' 都存在 ,且≠')x (g 0 ⑶)x (g )x (f limx x ''→ 存在或为无穷 有:)x (g )x (f limx x →= )x (g )x (f lim0x x ''→*3)其他未定型:⑴0·∞型:f (x )·g(x )转化成)x (f 1)x (g 或 )x (g 1)x (f ,一般将In 、arc 留在分子上⑵∞-∞型:通过通分、分子有理化、倒数代换或代数、三角恒等变形化为0型-------------------------------------------------------------------------------或∞∞型 ⑶0、0、1∞∞∞型:f (x )g (x )= e g (x )Inf (x ) = )x (g 1)x (Inf e16、函数单调性判定:设函数y=f (x )在开区间(a ,b )内可导*1)如果函数y=f (x )在(a ,b )内,0)x (f >',则函数y=f (x )在(a ,b )内单调递 增 ;*2)如果函数y=f (x )在(a ,b )内,0)x (f <',则函数y=f (x )在(a ,b )内单调递 减 ; 17、函数的极值:*1)如果函数y=f (x )在点x 0及其左右近旁有定义,且对于x 0近旁的任何一点x (x ≠x 0)的函数值f (x )均有:⑴f (x )<f (x 0),则f (x 0)称为函数y=f (x )的 极大值 ,点x 0称为函数y=f (x )的 极大值点⑵f (x )>f (x 0),则f (x 0)称为函数y=f (x )的 极小值 ,点x 0称为函数y=f (x )的 极小值点 *2)驻点:=')x (f 0 0 的点 *3)极值第一充分条件:设点x 0是f (x )可能的极值点(0)x (f 0='或)x (f 0'不存在)⑴当0 )x (f )时,x ,-x (x 00>'∈δ;0 )x (f )时,x ,x (x 00<'+∈δ,则x 0为极大值点⑵当0 )x (f )时,x ,-x (x 00<'∈δ;0 )x (f )时,x ,x (x 00>'+∈δ,则x 0为极小值点⑶当⋃∈)x ,-x (x 00δ)x ,x (00δ+,)x (f ' 同号 ,则x 0不是极值点*4)极值的第二充分条件:设y=f (x )在点x 0处有一、二阶导数,且)x (f 0'= 0⑴如果)x (f 0'' > 0,则函数y=f (x )在点x 0处取得最小值f (x 0) ⑵如果)x (f 0'' < 0,则函数y=f (x )在点x 0处取得最大值f (x 0) 18、曲线凹凸性:*1)若对于x ∈(a ,b )时,0)x (f >'',则曲线在(a ,b )上为 凹 ,用符-------------------------------------------------------------------------------号“ ⋂ ” 表示*2)若对于x ∈(a ,b )时,0)x (f <'',则曲线在(a ,b )上为 凸 ,用符号“ ⋃ ” 表示 6、曲线拐点:设f (x )在x 0的某个邻域内二阶可导,且='')x (f 0 0 ,若x 0两侧)x (f 0'' 改变 符号,则 (x 0,f (x 0)) 为曲线的拐点 19、曲线的渐近线:*1)水平渐近线:如果函数y=f (x )的定义域是无穷区间,且b )x (f lim x =∞→,则y= b*2)垂直渐近线:如果函数y=f (x )在x=x 0处间断,且∞=→)x (f lim 0x x ,则x=x 0*3)斜渐近线:如果函数y=f (x )定义在无穷区间,且a x)x (f limx =∞→,b ax]-)x ([f lim x =∞→,则y= ax+b20、经济学与导数:*1)利润:L (Q )= R (Q )-C(Q) *2)边际利润:)Q (C -)Q (R Q)(L ''=' *3)函数弹性:)x (f )x (f xEx Ey '=*4)需求弹性(供给函数):)p (Q )Q(p p)p (0000'=η 注:⑴当|η| < 1时,为低弹性,此时需求变动幅度 小于 价格变动幅度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。

【教学内容】1、无穷小与无穷大;2、无穷小的比较;3、几个常用的等价无穷小 等价无穷小替换;4、求极限的方法。

【重点难点】重点是掌握无穷小的性质与比较 用等价无穷小求极限。

难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。

最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。

【授课内容】一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。

下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈00x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。

例如, ,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x,01lim=∞→x x .1时的无穷小是当函数∞→∴x x,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n nn 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。

定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *lim 。

显然,∞→n 时, 、、、32n n n 都是无穷大量,【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。

无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如0lim =-∞→x x e , +∞=+∞→x x e lim ,所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。

2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大。

小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。

3.无穷小与函数极限的关系: 定理 1 0lim ()()(),x x xf x A f x A x α®=?+其中)(x α是自变量在同一变化过程0x x →(或∞→x )中的无穷小.证:(必要性)设0lim (),x x f x A ®=令()(),x f x A α=-则有0lim ()0,x x x α®=).()(x A x f α+=∴(充分性)设()(),f x A x α=+其中()x α是当0x x ®时的无穷小,则lim ()lim(())xx xx f x A x α=+ )(lim 0x A x x α→+= .A =【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)0()(),().f x x f x A x α»给出了函数在附近的近似表达式误差为 3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.是无穷小,时例如nn 1,,∞→ .11不是无穷小之和为个但n n 定理3 有界函数与无穷小的乘积是无穷小.如:01)1(lim =-∞→n nn ,01sin lim 0=→xx x ,0sin 1lim =∞→x x x 推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,2210,,,sin ,sinx x x x x x®当时都是无穷小,观察各极限: xx x 3lim 20→,0=;32要快得多比x x xxx sin lim0→,1=;sin 大致相同与x x2201sinlimx x x x →x x 1sin lim 0→=.不存在不可比. 极限不同, 反映了趋向于零的“快慢”程度不同. 1.定义: 设,αβ是自变量在同一变化过程中的两个无穷小,且0.α¹(1)lim0,,();o ββαβαα==如果就说是比高阶的无穷小记作 ;),0(lim )2(是同阶的无穷小与就说如果αβαβ≠=C Clim 1,~;ββααβα=特殊地如果则称与是等价的无穷小,记作(3)lim (0,0),.k C C k k ββαα=?如果就说是的阶的无穷小例1 .tan 4,0:3的四阶无穷小为时当证明x x x x →证:430tan 4lim x x x x →30)tan (lim 4xx x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2 .sin tan ,0的阶数关于求时当x x x x -→ 解30sin tan limx x x x -→ )cos 1tan (lim 20x x x x x -⋅=→,21=.sin tan 的三阶无穷小为x x x -∴2.常用等价无穷小:,0时当→x(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-x e ~x(7)x cos 1-~22x (8)1)1(-+μx ~x μ (9)1x a -~ln a x *用等价无穷小可给出函数的近似表达式:,1lim =αβ ,0lim =-∴αβα),(αβαo =-即).(αβαo +=于是有例如),(sin x o x x +=).(211cos 22x o x x +-= 3.等价无穷小替换定理:.lim lim ,lim ~,~αβαβαβββαα''=''''则存在且设 证:αβlim)lim(αααβββ'⋅''⋅'=αααβββ'⋅''⋅'=lim lim lim .lim αβ''=例3 (1).cos 12tan lim 20xx x -→求; (2)1cos 1lim 20--→x e x x 解: (1).2~2tan ,21~cos 1,02x x x x x -→时当 故原极限202(2)lim 12x x x ®== 8(2)原极限=2lim220x x x -→=21-例4 .2sin sin tan lim30xxx x -→求错解: .~sin ,~tan ,0x x x x x 时当→30)2(limx xx x -=→原式=0正解: ,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,21~3x 故原极限33012lim(2)x xx ®=.161= 【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。

例5 .3sin 1cos 5tan lim0xx x x +-→求 解: ),(5tan x o x x += ),(33sin x o x x +=).(21cos 122x o x x +=-原式22015()()2lim 3()x x o x x o x x o x ®+++=+xx o x x o x x x o x )(3)(21)(5lim20++++=→.35= 三、极限的简单计算1. 代入法:直接将0x x →的0x 代入所求极限的函数中去,若()0x f 存在,即为其极限,例如924231232lim3451=++++-→x x x x x x ;若()0x f 不存在,我们也能知道属于哪种未定式,便于我们选择不同的方法。

例如,39lim 23--→x x x 就代不进去了,但我们看出了这是一个型未定式,我们可以用以下的方法来求解。

2. 分解因式,消去零因子法例如,()63lim 39lim323=+=--→→x x x x x 。

3. 分子(分母)有理化法 例如,()()()()()()355125125123535lim51235lim222222++++-+++++-+=-+-+→→x x x x x xx x x x424lim 22--=→x x x()()()2222lim2--+=→x x x x 2= 又如,()011lim1lim22=++=-++∞→+∞→xx x x x x4. 化无穷大为无穷小法例如,2222173373lim lim 142422x x x x x x x x xx +-+-==-+-+,实际上就是分子分母同时除以2x 这个无穷大量。

由此不难得出⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--∞→mn m n m n ba b x b x b a x a x a n n n m m m x ,,,0lim 00110110又如,12111lim21lim=++=+++∞→+∞→xxx x x x ,(分子分母同除x )。

再如,1153152lim 5352lim -=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→n nn n n n n n ,(分子分母同除n 5)。

5. 利用无穷小量性质、等价无穷小量替换求极限例如,()0131arctan lim 2=+++∞→x x x x x ,(无穷小量乘以有界量)。

又如,.3214lim 21-+-→x x x x 求解:)32(lim 21-+→x x x ,0=商的法则不能用)14(lim 1-→x x 又,03≠=1432lim21--+∴→x x x x .03== 由无穷小与无穷大的关系,得.3214lim21∞=-+-→x x x x再如,等价无穷小量替换求极限的例子见本节例3—例5。

6. 利用两个重要极限求极限(例题参见§1.4例3—例5)7. 分段函数、复合函数求极限例如,).(lim ,0,10,1)(02x f x x x x x f x →⎩⎨⎧≥+<-=求设解: 两个单侧极限为是函数的分段点,0=x)1(lim )(lim 0x x f x x -=--→→,1=)1(lim )(lim 20+=++→→x x f x x ,1=左右极限存在且相等, .1)(lim 0=→x f x 故【启发与讨论】 思考题1:110,sin x yx x?当时是无界变量吗?是无穷大吗?解:),3,2,1,0(221)1(0 =+=k k x ππ取,22)(0ππ+=k x y .)(,0M x y k >充分大时当无界, ),3,2,1,0(21)2(0 ==k k x π取,,δ<k x k 充分大时当 ππk k x y k 2sin 2)(=但 .0M <=不是无穷大.结论:无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.思考题2:若0)(>x f ,且A x f x =+∞→)(lim ,问:能否保证有0>A 的结论?试举例说明.解:不能保证. 例xx f 1)(=,0>∀x 01)(>=xx f =+∞→)(lim x f x.01lim ==+∞→A xx 思考题3:任何两个无穷小量都可以比较吗?解:不能.例如当+∞→x 时,1)(x x f =x xx g sin )(=都是无穷小量但=+∞→)()(lim x f x g x x x sin lim +∞→不存在且不为无穷大,故当+∞→x 时)(x f 和)(x g 不能比较.【课堂练习】求下列函数的极限(1)xxe x x cos lim 0-→;解:原极限=1cos 1lim 1lim cos lim000=-+-=-→→→xxx e x x e x x x x x(2)求)1ln()cos 1(1cossin 3lim20x x x x x x +++→ 【分析】 “0”型,拆项。

相关文档
最新文档