解三角形单元测试题(附答案)
2020届 人教A版__解三角形-单元测试

解三角形一、单选题1.在ABC ∆中,B=30︒,C=45︒, c=1,则最短边长为( )A C .12D【答案】B【解析】由题意,易知B C A <<,所以b 最小.由正弦定理,得sin sin c B b C == 2.已知ABC ∆中,2=a ,3=b , 60=B ,那么=∠A ( )A . 45B . 90C . 135或 45D . 150或 30 【答案】A 【解析】试题分析:利用正弦定理,B bA a sin sin =得:22360sin 2sin sin 0===bB a A ,由于b a <,则B A <,于是045=A ,选A. 考点:利用正、余弦定理解三角形.【易错点评】利用正弦定理求三角形的内角,当求出b a <22sin =A 时,容易得出045=A 或 135,这时务必要研究角A 的范围,由于,则B A <,说明角A 为锐角,所以045=A .3.已知ABC ∆满足a b >,则下列结论错误的是( )A .AB > B .sin sin A B >C .cos cos A B <D .sin2sin2A B > 【答案】D【解析】由大边对大角,可知A B >,所以A 正确; 由正弦定理可知, sin sin A B >,所以B 正确;由A B >,且cos y x =在()0,π单调递减,可知cos cos A B <,所以C 正确; 当90,30A B ==时, a b >,但sin2sin2A B <,所以D 错误。
故选D 。
点睛:本题考查三角函数与解三角形的应用。
本题中涉及到大边对大角的应用,正弦定理的应用,三角函数单调性的应用等,需要学生对三角模块的综合掌握,同时结合特殊值法去找反例,提高解题效率。
4.在∆ABC 中,,30,,1=∠==A x b a 则使∆ABC 有两解的x 的范围是( )A 、)332,1( B 、),1(+∞ C 、)2,332( D 、)2,1( 【答案】D 【解析】试题分析:结合图形可知,三角形有两解的条件为,sin b x a b A a =><,所以01,sin 301b x x =><,12x <<,故选D 。
三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
高一数学解三角形单元测试及答案

高一数学解三角形单元测试及答案解三角形本章测试本次测试共有12道选择题,每题5分,总分60分。
在每道题中,只有一个选项是正确的,请将正确选项填涂在答题卡上。
1.在三角形ABC中,已知a=2,b=2,B=π/6,则A=()A。
3π/4 B。
π/3 C。
4π/3 D。
π/42.在三角形ABC中,已知a²=b²+c²+bc,则角A为()A。
30° B。
45° C。
120° D。
150°3.已知三角形ABC中,A:B:C=11:4,则a:b:c的比值为()A。
1:1:3 B。
2:2:3 C。
1:1:2 D。
1:1:44.在三角形ABC中,a、b、c分别为三个内角A、B、C的对边,若a=2,b=1,B=29°,则此三角形的解为()A。
无解 B。
有一解 C。
有两解 D。
有无数解5.在三角形ABC中,∠C=90°,0<A<45°,则下列各式中,正确的是()A。
sinA>XXX>XXX<XXX<sinB6.一艘船自西向东航行,上午10时到达灯塔的南偏西75°、距塔68海里的M处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为()A。
176/22海里/时 B。
346海里/时 C。
22海里/时 D。
342/22海里/时7.已知三角形ABC的面积为S,三个内角A、B、C的对边分别为a、b、c,若4S=a²-(b-c)²,bc=4,则S=()A。
2 B。
4 C。
3 D。
15/28.已知三角形ABC的内角A、B、C所对的边分别为a、b、c,若cosC=1/4,4bcosA+acosB=3,则三角形ABC外接圆的半径为()A。
2/3 B。
2√2 C。
4 D。
69.在三角形ABC中,已知asinA/bsinB=(a²+c²-b²)/(b²+c²-a²),则三角形ABC的形状为()A。
2020届 人教A版解三角形-单元测试

则 c = 7 3.
故选 D.
【点睛】
本题考查余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
8.在 ABC 中,已知 AB= 2 AC,∠B=30°,则∠A= ( )
A.45°
B.15°
C.45°或 135°
D.15°或 105°
【答案】D
【解析】
试题分析:由正弦定理可解得 sinC,结合范围 C∈(0,180°),可得 C,利用三角形
A.30 2海里
B.30 3海里
C.45 3海里
D.45 2海里
【答案】B
【解析】略
3.在△
ABC
中,角
A,B,C
的对边分别为
a,b,c,已知
a
=
5,π
3
<
C
<
π,若 b
2 a−b
=
sin 2C ,
sin A−sin 2C
则 c 等于
A. 5 B. 3 C.3 D.5 【答案】D
【解析】
【分析】
由π < C < π,故利用正弦定理将条件 b = sin 2C 中边化成角,然后变形可得 sinB = sin2C,
试 题 分 析 :∵ 在 △ABC 中 , a 2,A 45 , 且 此 三 角形 有 两 解 , ∴ 由 正 弦 定 理 a b 2 2 ,∴ b 2 2 sin A ,B C 180 45 135 ,由 B 有两个值,
sin A sin B 得到这两个值互补,若 B 45 ,则和 B 互补的角大于等于135 ,这样 A B 180 ,
∵AD1∥BC1,∴∠AD1P 为 D1P 与 BC1 所在的直线所成的角,在ΔAD1P 中,
2020届人教A版__解三角形-单元测试

解三角形一、单选题1.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形( ) A .锐角三角形 B .钝角三角形 C .不等腰的直角三角形 D .等腰直角三角形 【答案】B 【解析】 试题分析:由题32cos sin =+αα, 则:()2225sin cos ,sin cos 0318αααα⎛⎫+==-< ⎪⎝⎭因为: sin 0,cos 0αα><,则三角形为钝角三角形。
考点:三角函数的变形及三角形形状的判断. 2.【答案】A【解析】本题考查向量的数量积及其最佳值问题如图示以为A 原点,以CA 和CB 所在直线为x 轴和y 轴建立直角坐标系,则()()()0,0,0,3,4,0A B C -,则()4,3CB = .设(),M x y 则()4,CM x y =+,由//CM CB 得443y x +=,即334y x =+,则()3,34x M x +,所以()()33,3,4,344x x AM x CM x =+=++;又AM CM ⊥,则0AM CM ⋅=,则()()()2223331617,34,34390444252x x x x x x x x x +⋅++=+++=++= 所以2251361440x x ++=解得3625x =-或4x =-(舍)所以()3648,2525M =-,所以()3648,2525AM =-设()()3,3,404a N a a +-≤≤,则()3,34a AN a =+,则()()()3648336348144,,33252542542525a a a AM AN a ⋅=-⋅+=-++⨯=即40a -≤≤时取最大值14425AM AN ⋅=故正确答案为A 3.在,则边的边长为( )A .B .3C .D .7【答案】A 【解析】试题分析:由题意得,三角形的面积,解得,在中,由余弦定理得,所以.考点:余弦定理及三角形的面积公式的应用.4.已知ABC ∆中,AB=AC=5,BC=6,则ABC ∆的面积为A .12B .15C .20D .25 【答案】A 【解析】试题分析:因为,ABC ∆中,AB=AC=5,BC=6,所以,BC4=,三角形的面积为12,选A 。
2021-2022学年新教材高中数学 第9章 解三角形单元测试(含解析)新人教B版必修第四册

第九章第二部分阶段测试第九章单元测试间:90分钟 分数:150分、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.).在△ABC 中,若a =52b ,A =2B ,则cos B 等于( ) .53B.54C.55D.56.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( ).-32B .-23C.23D.32.△ABC 中,B =π3,且a +c =332,b =3,则△ABC 的面积为( ) .5316B.34C.7312D .23 .已知锐角三角形的三边长分别为3,4,a ,则a 的取值范围是( ).(1,5) B .(1,7) C .(7,5) D .(7,7).在△ABC 中,a =1,B =45°,△ABC 的面积为2,则三角形外接圆的半径为( ).23B .42C.522D .32.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( ).3π4 B.π3C.π4D.π6.如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( ) .1762海里/时B .346海里/时 .1722海里/时D .342海里/时 .在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( ).34B.43C .-34D .-43、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.) .在△ABC 中,根据下列条件解三角形,其中有两解的是( ).b =10,A =45°,C =70°B.b =45,c =48,B =60°C.a =14,b =16,A =45°D.a =7,b =5,A =80°0.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( ).2sin B =sin A B .2cos B =cos A C .a =2b D .B =2A1.在△ABC 中,已知(a +b ):(c +a ):(b +c )=6:5:4,给出下列结论中正确结论是( ).由已知条件,这个三角形被唯一确定B .△ABC 一定是钝角三角形.sin A :sin B :sin C =7:5:3D .若b +c =8,则△ABC 的面积是15322.已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,下列四个命题中正确的是( ) .若tan A +tan B +tan C >0,则△ABC 是锐角三角形.若a cos A =b cos B ,则△ABC 是等腰三角形.若b cos C +c cos B =b ,则△ABC 是等腰三角形.若a cos A =b cos B =c cos C,则△ABC 是等边三角形 、填空题(本题共4小题,每小题5分,共20分.)3.在等腰三角形ABC 中,已知sin A :sin B =1:2,底边BC =10,则△ABC 的周长是________.4.某人在C 点测得塔在南偏西80°方向,且塔顶A 的仰角为45°,此人沿南偏东40°方向前进10m 到B 点,测得塔顶A 的仰角为30°,则塔高为________m.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则1a +1c=________. 6.在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________.、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)7.(10分)在△ABC 中,a =7,b =8,cos B =-17.1)求∠A;2)求AC边上的高.8.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且a2+c2=b2+2ac.1)求角B的大小;2)求2cos A+cos C的最大值.9.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,且b sin A=3a cos B.1)求B的大小;2)若b=3,sin C=2sin A,求a,c的值.20.(12分)已知△ABC的角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).1)若m ∥n ,求证:△ABC 为等腰三角形;2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积. 21.(12分)如图,已知A ,B ,C 是一条直路上的三点,AB 与BC 各等于1km ,从三点分别遥望塔M ,在A 处看见塔在北偏东45°方向,在B 处看见塔在正东方向,在C 处看见塔在南偏东60°方向,求塔到直路ABC 的最短距离.2.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos2A +32=2cos A . 1)求角A 的大小;2)若a =1,求△ABC 的周长l 的取值范围.第九章单元测试.答案:B析:由正弦定理,得a b =sin Asin B ,a =52b 可化为sin A sin B =52.A =2B ,∴sin 2B sin B =52,∴cos B =54..答案:D析:在△ABC 中,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =9+4-102×3×2=14,∴AB →·AC →=|AB →||AC →|cos ∠BAC =3×2×14=32..答案:A析:∵B =π3∴由余弦定理得cos B =a 2+c 2-b 22ac =12,(a +c )2-2ac -b 22ac =12.a +c =332,b =3,∴274-2ac -3=ac .∴ac =54. S △ABC =12ac sin B =12×54×32=5316..答案:C析:∵三角形为锐角三角形,∴⎩⎪⎨⎪⎧ 32+a 2>16,32+42>a 2,解得7<a 2<25,a >0,∴7<a <5,∴a 的取值范围是(7,5)..答案:C析:由三角形的面积公式,得2=12ac sin B =12c ×22, c =4 2.又b 2=a 2+c 2-2ac cos B =1+32-2×1×42×22=25,∴b =5,又∵b sin B=2R . R =b 2sin B =52×22=522. .答案:C析:由余弦定理可得a 2=b 2+c 2-2bc cos A ,因为b =c ,以a 2=b 2+b 2-2b ×b cos A =2b 2(1-cos A ).已知a 2=2b 2(1-sin A ),以sin A =cos A ,为A ∈(0,π),所以A =π4. .答案:A析:由题意知PM =68海里,∠MPN =120°,∠N =45°.由正弦定理,知PM sin 45°=MN sin 120°,∴MN =68×32×2=346(海里). 速度为3464=1762(海里/时). .答案:D析:由2S =(a +b )2-c 2,得2S =a 2+b 2+2ab -c 2,2×12ab sin C =a 2+b 2+2ab -c 2, 以ab sin C -2ab =a 2+b 2-c 2.余弦定理可知 os C =a 2+b 2-c 22ab =ab sin C -2ab 2ab =sin C 2-1, 以cos C +1=sin C 2, 2cos 2C 2=sin C 2cos C 2,所以tan C 2=2. 以tan C = 2 tan C 21-tan 2C 2=2×21-22=-43. .答案:BC析:选项B 满足c sin 60°<b <c ,选项C 满足b sin 45°<a <b ,所以B 、C 有两解.对于选项A ,可求得B =180°-A -C =65°,三角形有一解.对于选项D ,由sin B =b sin A a,且b <a ,可得B 为锐角,只有一解,三角形只有一解.0.答案:AC析:因为sin(A +C )+2sin B cos C =2sin A cos C +cos A sin C ,所以2sin B cos C =sin A cos C ,又0<C <π2,得2sin B =sin A ,从而由正弦定理得2b =a . 1.答案:BC析:∵(a +b ):(c +a ):(b +c )=6:5:4,设a +b =6k ,c +a =5k ,b +c =4k ,(k >0),a =72k ,b =52k ,c =32k ,∴a :b :c =7:5:3, sin A :sin B :sin C =7:5:3,选项C 正确.于三角形ABC 的边长不确定,所以三角形不确定,选项A 错误.于cos A =b 2+c 2-a 22bc =254k 2+94k 2-494k 22×52×32k 2=-12<0所以A 是钝角,即△ABC 是钝角三角形,选项B 正确.b +c =8,则52k +32k =4k =8,∴k =2,∴b =5,c =3,A =120°, △ABC 的面积S =12bc sin A =12×5×3×32=1534.选项D 错误. 2.答案:ACD析:∵tan A +tan B =tan(A +B )(1-tan A tan B ),tan A +tan B +tan C =tan(A +B )(1-tan A tan B )+tan C =tan A tan B tan C >0, A ,B ,C 是△ABC 的内角,∴角A ,B ,C 都是锐角,选项A 正确.a cos A =b cos B ,则sin A cos A =sin B cos B ,2sin A cos A =2sin B cos B ,∴sin 2A =sin 2B ,A =B ,或A +B =90°,即△ABC 是等腰三角形或直角三角形,选项B 错误.b cos C +c cos B =b ,sin B cos C +sin C cos B =sin(B +C )=sin A =sin B ,A =B ,∴△ABC 是等腰三角形,选项C 正确.a cos A =b cos B =ccos C ,则sin A cos A =sin B cos B =sin C cos C, tan A =tan B =tan C ,∴A =B =C ,△ABC 是等边三角形,选项D 正确.3.答案:50析:由正弦定理,得BC :AC =sin A :sin B =1:2,底边BC =10,∴AC =20,∴AB =AC =20,△ABC 的周长是10+20+20=50. 4.答案:10析:设塔底为A ′,AA ′=h m ,则借助于实物模拟图(如图所示)可以求得A ′C =h m ,A ′B =3h m ,在△A ′BC 中,A ′C =h m ,BC =10 m ,A ′B =3h m ,∠A ′CB =120°,∴(3h )2=h 2+100-2h ×10×cos 120°,即h 2-5h -50=0,解得h =10(h =-5舍).5.答案:1析:依题意有S △ABC =S △BCD +S △ABD ,12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°, c =a +c ,∴1a +1c=1. 6.答案:1225 析:如图所示,设CD =x ,∠DBC =α,则AD =5-x ,∠ABD =π2-α,在△BDC 中,由正弦定理得3sin π4=x sin α=32⇒sin α=x 32.在△ABD 中,由正弦定理得5-x sin(π2-α)=4sin 3π4=42⇒cos α=5-x 42.由sin 2α+cos 2α=x 218+(5-x )232=1解得x 1=-35(舍去),x 2=215,在△BDC 中,由正弦定理,得BD =BC ·sin∠C sin ∠BDC =3×4522=1225. 7.解析:(1)在△ABC 中,因为cos B =-17, 以sin B =1-cos 2B =437. 正弦定理得sin A =a sin B b =32.题设知π2<∠B <π,所以0<∠A <π2. 以∠A =π3. 2)在△ABC 中,为sin C =sin(A +B )=sin A cos B +cos A sin B =3314, 以AC 边上的高为a sin C =7×3314=332. 8.解析: (1)由余弦定理及a 2+c 2=b 2+2ac 得cos B =a 2+c 2-b 22ac =22. 0<B <π,∴B =π4. 2)由(1)知,A +C =π-B =3π4,∴2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A 2cos A -22cos A +22sin A =22cos A +22sin A sin ⎝ ⎛⎭⎪⎫A +π4.又0<A <3π4,∴π4<A +π4<π,∴A +π4=π2时,即A =π4时,sin ⎝⎛⎭⎪⎫A +π4取得最大值1,2cos A +cos C 的最大值为1.9.解析:(1)∵b sin A =3a cos B ,∴由正弦定理得,sin B sin A =3sin A cos B ,∵A 为△ABC 的内角,∴sin A >0,∴tan B =3,∵0<B <π,∴B =π3. 2)∵sin C =2sin A ,∴c =2a .(1)知B =π3,∵b 2=a 2+c 2-2ac cos B ,a 2+(2a )2-2a ×2a ×12=9,∴a =3,c =2 3.0.解析:(1)证明:∵m ∥n ,∴a sin A =b sin B ,正弦定理,得a 2=b 2,∴a =b .∴△ABC 为等腰三角形.2)由题意知m ·p =0,即a (b -2)+b (a -2)=0.a +b =ab .余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab ,(ab )2-3ab -4=0.ab =4(ab =-1舍去),S △ABC =12ab sin C =12×4×sin π3= 3.1.解析:由题意得∠CMB =30°,∠AMB =45°,AB =BC =1,∴S △MAB =S △MBC ,12MA ×MB ×sin 45°=12MC ×MB ×sin 30°,MC =2MA ,在△MAC 中,由余弦定理,得C 2=MA 2+MC 2-2MA ×MC ×cos 75°,MA 2=43-22cos 75°,M 到AB 的距离为h ,则由△MAC 的面积得MA ×MC ×sin 75°=12AC ×h ,h =2MA 22×sin 75°=22×43-22cos 75°×sin 75°7+5313(km).塔到直路ABC 的最短距离为7+5313 km.2.解析:(1)根据二倍角公式及题意得2cos 2A +12=2cos A ,4cos 2A -4cos A +1=0,∴(2cos A -1)2=0,cos A =12.∵0<A <π,∴A =π3.2)根据正弦定理,a sin A =b sin B =csin C ,b =23sin B ,c =23sin C .l =1+b +c =1+23(sin B +sin C ),∵A =π3,∴B +C =2π3,l =1+23⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B1+2sin ⎝ ⎛⎭⎪⎫B +π6,0<B <2π3∴π6<B +π6<5π6,12<sin ⎝ ⎛⎭⎪⎫B +π6≤1,l ∈(2,3].。
2020届人教A版-解三角形__单元测试

解三角形一、单选题1.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R = ( ) A .2 B.C. D.【答案】D 【解析】如图:AD 是直径,则045D C ∠=∠=在直角三角形ABD 中,42sin sin 45AB R AD D ====R =故选D2.在ΔABC 中,角A ,B ,C 所对边分别是a ,b ,c ,若b =√11,c =3,且sinC =3√1111,满足题意的ΔABC 有( )A .0个B .一个C .2个D .不能确定 【答案】B【解析】b =√11,c =3,b >c ,C 为锐角,且sinC =3√1111, bsinC =√11×3√1111=3=c ,满足题意的ΔABC 有一个,选B.3.在ΔABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知a =1,b =√3,A =30∘,则c 边的长为( )BCA .2B .1C .1或2D .√3或2 【答案】C【解析】试题分析:;已知两边和其中一边的对角,可由正弦定理得到角B 的大小,再根据三角形的三角关系,得到三角形的形状,进而求得边长. 详解:根据正弦定理得到asinA =bsinB ⇒sinB =√32,故角B 为60∘或120∘,当角B 为60∘时角C 等于直角,三角形满足勾股定理,得到边c 等于2;当角B 等于120∘,角C 也等于30∘,此时三角形是等腰三角形,得到边c 等于1. 故答案为:C.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)a 2=b 2+c 2−2bc cos A ;(2)cos A =b 2+c 2−a 22bc,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30o ,45o ,60o 等特殊角的三角函数值,以便在解题中直接应用. 4.已知ΔABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a =2bcosC ,且b−ac−a =sinA+sinC sinB,则这个三角形的形状是( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】分析:先由正弦定理进行角化边得到a 2+b 2-c 2=ab 再由余弦定理可得C 值,结合a =2bcosC 即可得出结论.详解:由正弦定理化简(a-c )(sinA+sinC )=(a-b )sinB ,得:(a-c )(a+c )=b (a-b ), 整理得:a 2-c 2=ab-b 2,即a 2+b 2-c 2=ab ,由余弦定理得cosC =a 2+b 2−c 22ab=12⇒C =π3,再由a =2bcosC ,可得a=b ,结合C=60°,故三角形的形状为等边三角形,选A. 点睛:考查正余弦定理的运用,对b−ac−a =sinA+sinC sinB角化边得到a 2+b 2-c 2=ab 再由余弦定理得出C 值是解题关键,属于中档题.5.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 等于( ) A .19 B .−19 C .18 D .−18 【答案】B 【解析】 【分析】利用余弦定理求得cosB ,再利用数量积公式,即可求出结果. 【详解】∵三边长AB=7,BC=5,AC=6,∴cosB=AB2+BC2−AC22AB⋅BC =72+52−622×7×5=1935AB⋅BC=AB⋅BCcos(π−B)=7×5×(−1935)=−19.故选B.【点睛】本题考查平面向量数量积的运算,考查余弦定理,解题关键是明确数量积中两个向量的夹角与三角形内角的关系.6.在ΔABC中,tanA是以−4为第3项,4为第7项的等差数列的公差,tanB是以13为第3项,9为第6项的等比数列的公比,则该三角形形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】A【解析】【分析】首先由等差数列的通项公式和等比数列的通项公式,结合已知可得tanA=2,tanB=3,然后利用两角和的正切公式可求出tan(A+B)=−1,从而求出∠C,再结合题意确定A、B的范围,从而确定△ABC的形状.【详解】解:由题意可得,tanA=4−(−4)7−3=2,(tanB)3=913=27,所以tanB=3故tan(A+B)=2+31−2×3=−1,∵0<A+B<π,∴A+B=3π4,∴∠C=π4;又∵tanA>0,tanB>0,0<A<π,0<B<π,∴0<A<π2,0<B<π2,故△ABC为锐角三角形.故选:A.【点睛】本题主要考查了等差数列和等比数列的通项公式,两角和的正切公式,考查计算能力及分析能力,属于中档题。
必修5解三角形第一单元测试题 (含答案)

数学必修5解三角形单元测试题(时间120分钟,满分150分)一、选择题:(每小题5分,共计60分)1.在△ABC 中,若BA sin sin >,则A 与B 的大小关系为( ) A. B A > B. B A < C. A ≥B D. A 、B 的大小关系不能确定 2. 在△ABC 中,b=3,c=3,B=300,则a 等于( )A .3B .123C .3或23D .2 3. 不解三角形,下列判断中正确的是( )A .a=2,b=4,A=300有两解B .a=30,b=25,A=1500有一解C .a=6,b=9,A=450有两解D .a=9,c=10,B=600无解4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为( )A .41-B .41 C .32-D .32 5. 在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于( )A .33B .3392C .338D .2396.(2013年高考湖南卷)在锐角中ABC ∆,角,A B 所对的边长分别为,a b 若2sin 3,a B b A =则角等于( ) A.12π B.6π C.4π D.3π 7.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()8,10 C . ()10,8D .()10,88.在△ABC 中,若cCb B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形9. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60°或120° B.60° C. 45° D.120° 10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° C.0°<A <90° D.30°<A <60°11. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .15C . 142D .15212.(2013年高考陕西卷)设△ABC 的内角A , B , C 所对的边分别为a , b , c ,若cos cos sin b C c B a A +=, 则△ABC 的形状为( )(A) 锐角三角形 (B)直角三角形 (C)钝角三角形 (D) 不确定 二、填空题(每小题5分,满分20分)13.(2013新课标Ⅱ)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=______. 14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的 周长是 .15. 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的 度数等于________.16. 已知△ABC 的三边分别是a 、b 、c ,且面积4222c b a S -+=,则角C=_______.三、解答题(70分)17. (本题满分10分)已知a =33,c =2,B =150°,求边b 的长及三角形面积.18. (本题满分12分)在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.19. (本题满分12分)在△ABC 中,证明:2222112cos 2cos ba b B a A -=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形单元测试题
班级: ____ 姓名 成绩:_____________
一、选择题:
1、在△ABC 中,a =3,b =7,c =2,那么B 等于(
)
A . 30°
B .45°
C .60°
D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )
A .310+
B .(
)
1310
-
C .13+
D .310
3、在△ABC 中,a =32,b =22,B =45°,则A 等于(
)
A .30°
B .60°
C .30°或120°
D . 30°或150°
4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )
A .无解
B .一解
C . 二解
D .不能确定 5、在△ABC 中,已知bc c b a ++=2
2
2
,则角A 为(
)
A .
3
π B .
6π C .32π D . 3
π或32π
6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是(
)
A .()10,8
B .
(
)
10,8
C .
(
)
10,8
D .
()8,10
8、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( )
A .2>x
B .2<x
C .33
42<<x D . 33
42≤<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个
数是 ( )
A .0个
B .1个
C .2个
D .3个
11、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )
10000米, )
则三角形的外接圆半径为 .
的最大内角的度数是 5的情况下,求
18、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322
=+-x x 的两个根,且()1cos 2=+B A 。
求:(1)角C 的度数; (2)AB 的长度。
19、在△ABC 中,证明:2
2221
12cos 2cos b a b B a A -
=-。
20、在△ABC 中,10=+b a ,cosC 是方程02322
=--x x 的一个根,求△ABC 周长的最小值。
21、在△ABC 中,若()B A C B A cos cos sin sin sin +=+.
(1)判断△ABC 的形状;
(2)在上述△ABC 中,若角C 的对边1=c ,求该三角形内切圆半径的取值范围。
解三角形单元测试 (D 卷)答案
一、选择题
二、填空题
13、2:3:1 14、61236-,24612- 15、1 16、120°
三、解答题
17、解:由正弦定理得BC BC A AB C 10
sin sin =
= (1)当BC =20时,sinC =2
1
;AB BC > C A >∴ 30=∴C °
(2)当BC =
33
20
时, sinC =23; AB BC AB <<︒•45sin C ∴ 有两解 ︒=∴60C 或120°
(3)当BC =5时,sinC =2>1; C ∴不存在
18、解:(1)()[]()2
1
cos cos cos -=+-=+-=B A B A C π ∴C =120°
(2)由题设:
⎩⎨
⎧=+=3
22
b a ab
︒-+=•-+=∴120cos 2cos 22
2
2
2
2
ab b a C BC AC BC AC AB
()()
102322
2
22=-=-+=++=ab b a ab b a
10=∴AB
19、证明:
⎪⎪⎭
⎫ ⎝⎛---=---=-222222222222sin sin 21
1sin 21sin 212cos 2cos b B a A b a b B a A b B a A 由正弦定理得:2
222sin sin b B
a A = 2
2221
12cos 2cos b
a b B a A -=-∴
20、解:02322
=--x x 2
1
,221-
==∴x x 又C cos 是方程02322
=--x x 的一个根 2
1cos -=∴C 由余弦定理可得:()ab b a ab b a c -+=⎪⎭
⎫ ⎝⎛-
•-+=2
2
22212 则:()()755101002
2
+-=--=a a a c
当5=a 时,c 最小且3575==c 此时3510+=++c b a
∴△ABC 周长的最小值为3510+ 21、解:(1)由()B A C B A cos cos sin sin sin +=+ 可得12
sin
22
=C
0cos =∴C 即C =90° ∴△ABC 是以C 为直角顶点得直角三角形
(2)内切圆半径 ()c b a r -+=
21
()1sin sin 2
1
-+=B A
21
2214sin 22-≤
-⎪⎭
⎫ ⎝⎛+=
πA ∴内切圆半径的取值范围是⎪⎪⎭
⎫
⎝⎛-212,0。