铝电解电容的寿命

合集下载

铝电解电容寿命计算

铝电解电容寿命计算

铝电解电容寿命计算
一、老化速率的估算:
1.上电老化法:
将电容器以额定电压上电,根据老化加速现象,可以通过一定时间的
上电老化来模拟长时间的使用情况,然后通过测量电容值和电阻值的变化
来估算老化速率。

2.高温老化法:
将电容器置于高温环境下,在一定时间内观察电容值和电阻值的变化
情况,通过测量结果推算老化速率。

二、寿命预测的评估:
寿命预测是指根据老化速率估算结果,结合已知的老化模型和工作条件,来评估电容的使用寿命。

寿命预测主要包括以下几个方面:
1.应力与老化模型分析:
分析电容在不同工作条件下所受的应力,包括电压应力、温度应力、
电流应力等,通过建立老化模型,估算电容的老化速率。

2.寿命试验与寿命模型:
进行一系列的寿命试验,通过测量电容值和电阻值的变化来评估电容
器的寿命。

同时,根据试验数据建立寿命模型,并根据模型进行寿命预测。

3.可靠性评估:
通过对电容器寿命的评估来评估电路的可靠性,从而预测系统的可靠性。

可靠性评估一般包括寿命试验、故障数据分析、可靠度预测等。

总结起来,铝电解电容寿命计算主要包括老化速率的估算和寿命预测的评估。

通过对电容的老化机制、应力分析和寿命模型的建立,可以对电容器的使用寿命进行估算和预测。

这对于电子设备的可靠性设计和电路寿命评估具有重要意义。

铝电解电容可靠性--寿命估算

铝电解电容可靠性--寿命估算

铝电解电容寿命的简单推算1) 不含有纹波电流工作状态的铝电解电容器的推算。

基本依据为“10℃法则”,即环境温度每上升10℃寿命减半,反之亦然。

这个10℃法则只在零纹波电流条件下适用,在铝点解电容流过比较大的纹波电流时不一定适用。

2) 公式推算。

在额定电压下,铝电解电容器的寿命可以由下式计算:)10(200TT L L -⨯= 式中,L 和0L 分别为实际环境温度T 时的寿命和额定最高温度0T 时的寿命。

上面的推算方法仅适用于存储状态和无纹波电流(很小纹波电流)的工作状态,对于明显含有纹波电流的场合上述方法不一定适用,这时候应该将纹波电流的效应考虑在应用条件中。

铝电解电容寿命估算 环境因子 包括环境温度,应用电压,纹波电流voltage tem p K K Lr Lx ⨯⨯=Lx 估算的寿命 Lr 寿命基数temp K 温度系数 voltage K 电压系数环境温度系数铝电解电容器是一种电化学元件,化学反应速度遵循Arrhenius 方程10)(0002r T T tem p L K L Lr -⨯=⨯= 10)(02r T T tem p K -=Lr 估算寿命0L 寿命基数 0T 最高额定温度 r T 实际环境温度电压系数voltage K =1纹波电流的影响DC AC W W W +=D C D C e AC I V R I W ⨯+⨯=2W 内部功率损耗AC W 电源纹波电流造成的功率损耗 DC W 直流电源造成的功率损耗 AC I 纹波电流e R 纹波频率下的ESRDC V DC 电压 DC I 漏电流如果DC 电压在额定电压下,漏电流远远小于纹波电流,纹波功率损耗远大于直流功率损耗。

功率损耗计算公式:e AC A R I W W ⨯==2电容温度提到到一定程度,内部产生的热量与热辐射平衡。

平衡的温度计算公式。

T A R I e AC ∆⨯⨯=⨯β2 所以AR I T eAC ⨯⨯=∆β2=β热辐射常数W⨯3-10℃2cm=A 表面面积)(2Cm 、对L D ⨯ψ电容)4()4/(L D D A +=πT ∆由于纹波电流导致的核心温度上升使用条件与铝电解电容寿命的关系在很多应用中 铝电解电容器中将流过纹波电流,甚至是非常高的纹波电流。

铝电解电容寿命

铝电解电容寿命

铝电解电容寿命
铝电解电容的寿命通常是以工作时间来衡量的,而不是以具体的年限。

铝电解电容的寿命取决于其使用环境、工作温度、工作电压、电容负载情况等因素。

一般而言,铝电解电容的寿命在几千至数万个工作小时之间。

高品质的铝电解电容可以达到更长的寿命,而低质量或过度负载的情况下则可能寿命较短。

另外,铝电解电容的寿命也与其使用情况和维护有关。

例如,如果电容器操作在额定电压和温度范围内,并且受到适当的保护和使用,那么它的寿命将更长。

总之,铝电解电容的寿命是多方面因素综合影响的结果,具体的寿命需要根据实际情况进行评估,无法给出具体的数字。

电解电容寿命计算公式 说明(1)

电解电容寿命计算公式 说明(1)
△T=(IX÷I0)2×△T0
代号
I0 IX
4、关于其他的寿命原因:
代号表示内容说明 最高使用温度下正常周波数的额定纹波电流(Arms)
实际使用中的纹波电流(Arms)
铝电解电容由于电解液通过封口部扩散到外部而导致磨耗故障,加速其现象的要因除上述周围温度与
纹波电流外有以下要因:
●过电压的情况
连续印加定格电压的过电压时,急速增大制品的漏电流量,这种漏电流引起发热产生气体,并导致内压
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
W=IR2×R+VIL
代号
代号表示内容说明
W
内部的消费电力
IR
直流电流
R
内部阻抗等效串联电阻 ESR
V
印加电压
IL
漏电流
漏电流 LC最高使用温度增加到20℃的 5-10倍程度,由于 I R远大于IL,可成立如下公式:
W=IR2×R
◆ 内部发热与放热达到平衡温度的条件公式如下:
IR2×R=βA△T
代号
T0 - TX 10
代号
代号表示内容说明
L0
最高温度条件下,印加定格电压或重迭额定纹波电流时的保证寿命(hrs)
LX
实际使用中的寿命(hrs)
T0
制品的最高使用温度(℃)
Tx
实际使用时的周围温度(℃)
B:温度加速系数 温度加速系数 B,如果是最高使用温度以下时,可以用 B≈2来计算,升温 10℃,约 2倍的加速率; 设定较低的使用时的周围温度 T X,能保证长期的寿命。 2、印加电压与寿命 使用在线路板上的 RADIAL型、SNAP-IN型铝电解电容,若在最高使用温度及额定工作电压以下的情况 使用时,印加电压的影响比周围温度及直流电流的影响小,对于铝电解电容来说,实际计算可以不考虑 降压使用对寿命计算之影响。 3、纹波电流重迭时的寿命 铝电解电容比其他类的电容损失角大,会因纹波电流而内部发出热量。由于施加的纹波电压发出的热量 会导致温度上升,对寿命有很大影响,印加电流电压时的发热情况如下公式来计算:

铝电解电容寿命试验规律

铝电解电容寿命试验规律

铝电解电容寿命试验规律
电容c的计算公式:c=εs/4πkd 。

其中,ε是一个常数,s为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。

在电容元件两端电压u的参考方向给定时,若
以q表示参考正电位极板上的电荷量,则电容元件的电荷量与电压之间满足q=cu。

定义式: c=q/u。

电容器的电势能计算公式:e=cu^2/2=qu/2=q^2/2c。

多电容器并联计算公式:c=c1+c2+c3+…+cn。

多电容器串联计算公式:1/c=1/c1+1/c2+…+1/cn。

三电容器串联:c=(c1*c2*c3)/(c1*c2+c2*c3+c1*c3)。

电容优点:
1、高稳定性
液态铝电解电容可以持续在高温环境中平衡工作,采用固态铝电解电容可以轻易提高
主板性能。

同时,由于其阔温度范围的平衡电阻,适合电源滤波。

它可以有效地提供更多
平衡丰沛的电源,在超频中尤为重要。

2、寿命长
固态铝电解电容具备极长的使用寿命(使用寿命少于50年)。

与液态铝电解电容较之,可以算是“长命百岁”了。

它不能被打穿,也不必害怕液态电解质干枯以及泄漏影响主板
稳定性。

由于没液态电解质诸多问题的所苦,固态铝电解电容并使主板更加平衡可信。

3、低esr和高额定纹波电流
esr(equivalentseriesresistance)指串联耦合电阻,就是电容非常关键的指标。

esr
越高,电容充放电的速度越慢,这个性能直接影响至微处理器供电电路的脱藕性能,在高
频电路中固态电解电容的高esr特性的优势更加显著。

铝电解电容器的寿命

铝电解电容器的寿命

铝电解电容器的寿命1、忽略纹波电流时的寿命推算一般而言,铝电解电容器的寿命与周围的环境温度有很大的关系,其寿命可以由以下公式计算。

其中,L:温度T时的寿命L0:温度T0时的寿命与温度比较,降压使用对电容器的寿命影响很小,可忽略不计。

2、考虑纹波电流时寿命的推算叠加纹波电流,由于内部等效串连电阻(ESR)引起发热,从而影响电容器的使用寿命,产生的热量可由下式计算P=I2R (2)I:纹波电流(Arms)R:等效串联电阻(Ω)由于发热引起的温升其中,△T: 电容器中心的温升(℃)I: 纹波电流 (Arms)R: ESR (Ω)A: 电容器的表面积(cm2)H: 散热系数( 1.5~2.0x10-3W/cm2x℃)上面公式(3)显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着△T值的大小,般情况下,△T<5℃。

下图表示纹波电流引起的温升的测量处测试结果:(1).考虑到环境温度和纹波电流时的寿命公式其中,Ld:直流工作电压下的使用寿命(K=2,纹波电流允许的范围内)(K=4,超过纹波电流范围时)T0:最高使用温度T :工作温度△T:中心温升(2)电容器工作在额定的纹波电流和上限温度时,电容器的寿命可通过转化(4)式得到,如下:其中,Lr:工作在额定纹波电流和最高工作温度下的寿命(h)△T0:最高工作温度下的电容器中心容许温升。

(3)考虑纹波电流,环境温度时可由(5)式得到下式:其中,I0:最高工作温度下的额定纹波电流(Arms)I:叠加的纹波电流(Arms)由于直接测量电容器的内部温升存在着困难,下表列出了表面温度和内部核心温度的换算关系。

图表1寿命的推算公式,原则上适用于周围环境温度为+40℃到最高工作温度范围内,但由于封口材料的老化等因素,实际的推算寿命时间一般最大为15年。

铝电解电容寿命计算方法

铝电解电容寿命计算方法

2013年11月日本贵弥功株式会社香港嘉美工有限公司UC343011铝电解电容器寿命计算说明资料【目次】1.关于铝电解电容器的经时恶化2.铝电解电容器寿命计算公式3.纹波电流发热取得办法4.周围温度取得办法5.纹波电流计算办法6.寿命计算例7.参考资料(关于补正系数)关于铝电解电容器的经时恶化2阳极箔阴极箔R AL KL A封口橡胶电解液在铝电解电容器的电气特性上起着至关重要的作用。

温度特性的概念静电容量变化率(%)温度E S R (Ω)温度特性图表流动容易高低电解液的状态UPUP流动不容易箔厚100μm箔断面图蚀刻部扩大照片电解纸扩大图像DownDown离子电解纸纤维4寿命(特性恶化)的概念静电容量变化率(%)初期电解液沸腾电解液减少时间加快电解液减少E S R (Ω)电解电容器的断面图耐久性图表UP素子封口橡胶Down6铝电解电容器寿命计算公式9L;复合条件的推定寿命纹波电流发热温度取得办法182225.4 1.35 1.4 1003.1周围温度取得办法24纹波电流计算办法(带Active-PFC电路)26取得示波器读出的电流RMS作为后续公式中的In计算使用,此处的In为混合频率信号,计算纹波电流发热部分时需要将混合频率结果为电源实测数据由该公式可计算出在高频部分的电流值I High,继而可以得到在低频时的电流值I Low =I high x K T(NCC调查结果如上表, K T=0.2~0.3,实际状况下K T会随着拓扑方式的不同而改变) *我们将继续研究PFC电路的纹波电流。

寿命计算例31参考资料关于补正系数34。

铝电解电容寿命的计算

铝电解电容寿命的计算

铝电解电容寿命的计算每个厂商都有自己的计算方法,但都遵循一定的原则:温度极大的影响铝电解电容内的电解液的扩散速度。

根据Arrhenius 的物理定律,温度每升高10 度,电解液的扩散速度加倍;换句话说,铝电解电容的寿命缩短一倍。

A physic law (According the Arrhenius law) teaches us that increasing the temperature 10 °C will double the diffusion of e lectrolyte.为了便于计算和理解,将其分成三部分:(1)基本寿命Lo :由外壳体积,热辐射性能,制造工艺等决定。

最大环境温度及最大纹波电流下的寿命就是基本寿命。

厂商都会提供或在产品说明书中注明。

(2)环境温度函数f(T) :电解液的扩散(3)纹波电流函数f(I) :ESR 引起的热损耗后两者导致铝电解电容核心温度上升,电解液的扩散速度加快。

根据Arrhenius 定律:L 与成反比,Tj : 电解电容的核心温度热阻定律:;Ta:电解电容周围的温度,即环境温度;Tc: 电解电容外壳的温度因为Ta 不易测出,但Tc 很好测量;可以根据Tc 算出Ta;环境温度函数f(T) :2.2 以下均为个人观点,不能100% 正确。

在厂商提供的数据中一般包含:后缀为0 ,则认为是厂商提供的极限值最高(环境)温度Ta 0 :一般选用105 度的电解电容最大环境温度下最大允许的纹波电流Ip 0 , 它的校正系数为 1 ;120Hz 或100kHz ,不同的厂家有不同的表示方法校正系数Correction coefficient :不同频率纹波电流之间的关系在Ta 0 和Ip 0 条件下所产生的温升:D Tj 0 ;本人认为是核心与外壳之间的温差,也可能是核心与Ta 0 之间的温差下表是Rubycon BXA 系列电容不同频率纹波电流之间的关系series frequency correction factor tableFrequency [ Hz ] 120 1k 10k 100k =<Correction coefficient 0.50 定义为C LF0.8 0.91.00 定义为C HF注意:有的厂家定义120Hz 时校正系数为 1 ,有的厂家定义100kHz 时校正系数为1 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝电解电容的寿命电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。

因此,了解如何计算铝电解电容的寿命很有必要。

下面将我的一些心得整理出来,供大家参考。

希望有助于提高国人的知识水平。

说白了很简单,只不过很多人找不到相关的资料而已。

同时也希望学校的教材中能够近早讲解相关知识。

我尽量少翻译,因为我的语言能力及相关的专业术语还不行。

仅供参考。

Chapter 1铝电解电容的特性1.1 Circuit model (等效模型)The following circuit models the al uminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性)C AC cR P ESR LD = Anode capacitance (阳极电容)= Cathode capacitance(阴极电容)= Parallel resistance, due to dielectric (并联电阻)= Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感= Over and reverse voltage 等效稳压管The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数)The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加)The inductance L is the equivalen t series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数)The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加)The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the cap acitor’s surge voltage rating causes high。

(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zener diode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V)1.2 Capacitance (电容的容量)The rated capacitance is the nominal capacitance and it is specified at 120 Hz and a temperature of 25°C. Capacitance is a measure of the energy storage capability of a capacitor at a given voltage.(额定容量:标称电压,120Hz, 25°C时测量)。

The capacitance decreases under load conditions and increases under no load conditions over time. Whenreverse voltage or excessive ripple current is applied, or when the capacitor is repeatedly charged and discharged, an aluminium oxide film is formed on the cathode foil. This film induces a sharp capacitance drop. Capacitance in aluminium electrolytic capacitors is also affected by frequency changes. For example, the capacitance falls as the frequency rises. Variation of magnitude depends on capacitor type. (电容上的纹波电流,频繁地充放电导致阴极箔氧化,容量急剧下降)1.3 Equivalent series resistance (ESR)等效串联电阻The equivalent Series Resistance (ESR) is the sum of all the internal resistances of a capacitor measured in Ohms. It includes:- Resistance due to aluminium oxide thickness源于氧化铝厚度的电阻- Resistance due to electrolyte / spacer combination源于电解液/垫片结电阻- Resistance due to materials (Foil length; Tabbing; Lead wires; Contact resistance)源于材料的电阻(箔片长度,T abbing ,导线,接触电阻)At low frequencies (10 – 100 Hz) the ESR is determined by the oxide thickness,electrolyte / spacer combination and the materials. Above the 100 Hz electrolyte / spacer combination and the materials predominate. 低频时(10-100HZ ),ESR 由氧化铝厚度,电解液/垫片结电阻,材料决定。

100HZ 以上,电解液/垫片结电阻,材料主宰ESRThe lower the ESR the higher the current carrying ability the capacitor will have. The amount of heat generated by ripple current depends upon the ESR of the capacitor. ESR 越小,电流承受能力越高,浪涌电流产生的热量取决于电容的ESRESR is both frequency and temperature dependent, increasing either will cause a reduction in ESR. The ESR is an important parameter in calculating life expectancy as the power dissipation (internally generated heat) is directly proportional to its value.The limit is generally established at 120 Hz and 20º C.ESR 具有频率和温度属性,增加频率或者属性会降低ESR ,ESR 是计算期望寿命时的重要参数之一,因为功耗(内部发热)与它的值直接成正比限度通常确定为120HZ 和20摄氏度(centigrade )The ESR of the electrolytic capacitor can cause another effect, especially above the 10 kHz where the ESR is the dominant contribution to the capacitors impedance.铝电解电容的ESR 会导致另外一个效应,特别当频率高于10Khz ESR 在电容的阻抗中占主导地位的时候 When a current charges / discharges the capacitor, the voltage across the capacitor will increase / decrease:dtdVCI = and causes a voltage drop over the ESR (流过电容的充放电电流因为ESR 而产生纹波电压) ESR I V ⋅=如果电容由低占空比,高频脉冲电流充电时, 比较典型的是fly-back 电源的输出滤波电容,ESR 引起的纹波电压是最重要的,导致必须选用合适ESR 的电容来满足要求。

相关文档
最新文档