51单片机物体厚度测量

合集下载

基于51单片机的超声波测距

基于51单片机的超声波测距

本系统由51单片机及相关外围电路构成,系统由单片机系统、发射电路与接收放大电路和显示电路几部分组成。

测距范围:25CM到250CM之间。

误差:1%。

距离显示:用三位LED 数码管进行显示(单位是CM)。

该接收电路结构简单,性能较好。

硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波接收电路三部分。

单片机采用AT89C2051。

采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。

单片机用P3.5端口输出超声波换能器所需的40kHz的方波信号,P3.6端口监测超声波接收电路输出的返回信号。

显示电路采用简单实用的3位共阳LED数码管,段码输出端口为单片机的P1口,位码输出端口分别为单片机的P3.2、P3.1、P3.0口,数码管位驱运用PNP三极管S9012三极管驱动。

超声波发射、接收电路如图。

超声波发射部份由电阻R2及超声波发送头T40板成;接收电路由BG1、BG2X组成的两组三级管放大电路组成;检波电路、比较整形电路由C7、D1、D2及BG3组成。

40kHz的方波由A T 8 9 C 2 0 5 1单片机的P 3 .5驱动超声波发射头发射超声波,经反射后由超声波接收头接收到40kHz的正弦波,由于声波在空气中传播时衰减,所以接收到的波形幅值较低,经接收电路放大,整形,最后输出一负跳变,输入单片机的P3脚。

该测距电路的40kHz方波信号由单片机A T 8 9 C 2 0 5 1 的P 3 .5发出。

方波的周期为1/40ms,即25µs,半周期为12.5µs。

每隔半周期时间,让方波输出脚的电平取反,便可产生40kHz 方波。

由于单片机系统的晶振为12M晶振,因而单片机的时间分辨率是1µs,所以只能产生半周期为12µs或13µs的方波信号,频率分别为41.67kHz和38.46kHz。

本系统在编程时选用了后者,让单片机产生约38.46kHz的方波。

基于单片机控制的智能超声波测厚系统的设计

基于单片机控制的智能超声波测厚系统的设计

介质与被测物体的介质不同。因此,当激励脉冲传
mm,步进时间为 1.2 µs。
在上述基础上,进行深层次的开发。要求如
下:(1)当被测厚度大于 100 mm 时,要求通过
“扩展延迟”,保证覆盖整个测量范围,从而实现
宽范围的高精度测量。(2)实现自动测厚、测速
的功能。
2 实验原理及方案
2.1 超声波测厚原理 当振动频率为 20 kHz 以上的超声波在均匀介
Abstract — This paper designs a set of experimental circuit of intelligent ultrasonic thickness measurement system based on single chip computer control. It analyses the basic principle of ultrasonic thickness measurement, demonstrates the design scheme of the system, and then gives the test requirements and methods of the experiment. Experiments show that through this experiment, we can fully grasp the principle of single chip computer and its application expertise, and solve the practical problems in the process of modern scientific research and development. Index Terms — MCU control, ultrasonic, thickness measurement, velocity measurement.

51单片机实现超声波测距报警系统

51单片机实现超声波测距报警系统

51单片机实现超声波测距报警系统超声波测距报警系统是一种基于51单片机的硬件电路和软件程序开发的测距设备。

本文将从设备原理和设计、电路连接和程序开发等方面进行详细介绍。

一、设备原理和设计超声波测距报警系统的原理是利用超声波传感器测量并计算被测物体与传感器的距离,并通过单片机采集和处理超声波信号,根据测量结果触发报警和显示等功能。

1.超声波传感器:超声波传感器是用来发射和接收超声波信号的装置,一般由发射器和接收器组成。

发射器发射超声波信号,接收器接收被测物体反射的超声波信号。

2.单片机:本系统采用51单片机作为控制核心,负责采集和处理超声波信号,控制报警和显示等功能。

3.报警器:当距离小于设定阈值时,触发报警器发出声音或闪光等警告信号。

4.显示屏:用来显示测量结果,一般为数码管或液晶显示屏。

5.电源和电路:提供系统所需的电源和信号连接电路。

二、电路连接超声波测距报警系统的电路连接主要包括超声波传感器、单片机、报警器、显示屏以及电源等模块。

1.超声波传感器连接:将超声波传感器的发射端和接收端分别连接到单片机的引脚上,发射端连接到P1口,接收端连接到P2口。

2.报警器连接:将报警器连接到单片机的一个IO口,通过控制该IO 口的高低电平来触发报警。

3.显示屏连接:将显示屏连接到单片机的相应IO口,通过向显示屏发送数据来显示测量结果。

4.电源连接:将电源连接到单片机以及其他模块的供电端,确保系统正常工作。

三、程序开发1.初始化设置:包括引脚和端口的初始化设置,包括超声波传感器引脚和单片机的IO口设置。

2.测量距离:通过单片机控制超声波传感器发射超声波信号,并通过接收器接收反射的超声波信号,计算出被测物体与传感器的距离。

3.报警触发:根据设定的阈值,当测量到的距离小于阈值时,通过控制报警器发出声音或闪光等警告信号。

4.显示结果:通过控制显示屏将测量结果显示出来。

5.循环检测:通过循环检测的方式,不断进行测量并处理数据,实时更新测量结果和触发报警。

基于51单片机的超声波测距模块

基于51单片机的超声波测距模块

基于51单片机的超声波测距模块By 黄阿阿阿厉第1章HC-SR04超声波测距模块说明1.1 产品特点HC-SR04超声波测距模块能提供2~400cm的非接触式距离感测功能,测量精度可以达到3mm;该模块包括超声波发射器、接收器与控制电路。

1.2 产品介绍HC-SR04模块实物如图1.1所示,引脚如图所示,从上到下分别为VCC,Trig,Echo和GND。

VCC,GND连接电源,Echo和Trig连接51单片机的引脚。

图1.1 HC-SR04模块实物图HC-SR04超声波电气参数如表1.1所示。

表1.1 HC-SRO4电气参数HC-SRO4超声波模块的时序图如图1.2所示。

图1.2 HC-SRO4的时序图HC-SR04的实物规格如图1.3所示。

图1.3 模块尺寸1.3 注意事项HC-SR04超声波模块不宜带电连接,若要带电连接,则先让模块的GND端先连接,否则会影响模块的正常工作。

使用该模块测距时,被测物体的面积不少于0.5平方米平面。

且平面要求尽量平整,否则会影响测量的结果。

1.4 模块分析根据时序图可以知道,只需通过单片机向模块的Trig端提供一个10us以上的脉冲出发信号,该模块内部将会发出8个40KHz的脉冲,并开始检测回波。

一旦检测到有回波信号则输出回响信号。

回响信号的脉冲宽度与所测的距离成正比。

通过检测开始发射信号到收到回响信号的时间间隔,就可以计算得到距离。

根据时序图,这样的方式可能会存在误差,即误差是声音在空气的传播速度并不固定,虽然有一个标准的声速值V=340m/s,但是实际的声速并不固定,所以计算出来的数值在不同的地区会存在差异。

因为资料不足,这里我有一个猜测。

Echo输出电平置零的时刻应该是模块不再接受到回波信号的那一刻,这样,官方提供的计算方法才能说得通。

第2章程序和说明2.1 硬件平台说明本次测试使用的硬件平台,是手创科技提供的51单片机开发板,使用的单片机型号是STC89C52RC。

基于单片机的便携式厚度测量仪的系统设计说明

基于单片机的便携式厚度测量仪的系统设计说明
基于单片机的便携式厚度测量仪的系统设计
摘要
在石油化工领域中,油汽的运输与储存过程中,运输管道和储油罐会因为各种原因受到腐蚀的影响,管道壁和油罐壁的厚度会因此减小,当腐蚀程度严重时,会导致油汽的泄漏,甚至引起爆炸,造成人员伤亡,所以,需要定期对使用设备进行检测、记录和分析。而在所有检测的指标中,厚度值则是能够反映其腐蚀程度和安全性能的重要指标。
在科技水平日益发达的今天,厚度也成为了各个领域检测产品质量的重要指标,例如,石油化工领域中,在石油的储存和运输中,对储油容器和运输管道的厚度都有严格的要求,需要定期对其厚度进行检测;建筑业中,钢板的厚度不仅对整个工程的成本就较大影响,还直接决定了房屋的安全性能;对于船体制造行业,由于海水的腐蚀特性,也需要对船体厚度进行精确测量,保证航行稳定与安全。由此可以看出,对于材料厚度的精确测量的要与日俱增,同时,如何快速、便捷、准确的测量厚度,也成为的各个领域所面临的共同问题。本次课题所研究的便携式厚度测量仪就是根据当前社会对不同材料进行快速、便捷、准确测量要求而研制的。
(4)同位素测厚技术
由宝钢的玲的材料可知,同位素测厚技术的原理同X射线测厚技术相类似,都属于射线式测厚技术,利用的是同位素射线穿过被测物体后,其强度发生衰减,衰减程度与被测工件厚度相关的原理研制而成的[8][9]。根据所使用放射源的区别,又可以分为β射线测厚仪和γ射线测厚仪。β射线测厚仪常用在造纸、橡胶、塑料等工业生产中及控制金属镀层的厚度。γ射线测厚仪一般应用于板、管、膜等产品在线测厚控制,γ射线与其他射线相比,有更强的穿透力,且相对稳定[10][11]。
3.2.1 STC89C5215
3.2.2 STC89C52引脚说明16
3.2.3 STC89C52的最小系统17
3.3 发射电路18

51单片机的轮式测距仪设计原理

51单片机的轮式测距仪设计原理

51单片机的轮式测距仪设计原理
51单片机的轮式测距仪设计原理主要基于超声波测距技术。

这种测距仪使
用40kHz的超声波发射器向目标物体发送超声波,并使用接收器接收反射
回来的回波。

通过测量发送和接收回波的时间差,可以计算出目标物体与测距仪之间的距离。

在硬件设计方面,51单片机是核心控制器,负责控制超声波发射器的工作
和接收回波信号。

超声波发射器可以采用40kHz的压电陶瓷或超声波换能器。

接收器通常使用灵敏度较高的超声波探头或麦克风。

在软件设计方面,51单片机通过编程控制超声波发射器的脉冲宽度和频率,以及接收器的数据采集和处理。

程序中需要实现计时器中断、回波处理和距离计算等算法。

通过定时器中断产生40kHz的方波信号,控制超声波发射
器的脉冲宽度和重复频率。

同时,程序中还需要实现回波处理算法,包括信号放大、滤波、检测和阈值比较等步骤,以提取出有效的回波信号。

最后,程序根据计时器和回波处理结果计算出目标物体与测距仪之间的距离,并通过显示模块或串口通信模块将结果输出给用户。

总之,51单片机的轮式测距仪设计原理是基于超声波测距技术,通过单片
机控制超声波发射器和接收器的工作,实现距离的测量和输出。

这种测距仪
具有精度高、测量范围广、抗干扰能力强等优点,广泛应用于机器人、无人机、智能家居等领域。

51单片机开发板-超声波测距-数码管显示

51单片机开发板-超声波测距-数码管显示

计算机技术系项目工作报告课程名称单片机开发板设计与制作实训班级学号姓名项目名称超声波测距,数码管显示实训日期/时间2015.6.23-2015.7.5 地点指导教师同组成员仪器设备(参考资料)计算机、Keil uVision2、Proteus ISIS 电烙铁、开发板、HC-SR04超声波模块实训内容(任务安排)1焊接开发板2自选课题3开发与调试4项目汇报与总结一、项目名称与要求项目名称:超声波测距,数码管显示功能描述:采用HC-SR04超声波模块,STC89C52单片机以及数码管显示设计的一种超声波测距显示器,可以实现测量物体到仪器距离以及显示等功能,可以测量范围为2cm –450cm ,精确度为1cm。

是一种结构简单、性能稳定、使用方便、价格低廉的超声波距离测量器,具有一定的实用价值。

二、项目设计思路1、硬件资源单片机开发板(携带数码管);HC-SR04超声波模块;STC89C52芯片;2、软件设计思路软件设计采用C语言编程,运用模块化程序设计思想,对不同功能模块的程序进行分别编程,以便移植或调用,这样使软件层次结构清晰,有利于软件的调试修改。

软件设计思路是:系统初始化、发射脉冲串、计时、接收输入脉冲,接收串口输入速度值、计算距离、显示距离值、重复。

超声波测距算法设计如下:超声波发生器T在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就会被超声波接收器R接收到。

这样,只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器于反射物体的距离。

该距离的计算公式如下:d=s/2(v×t)/2其中:d为被测物于测距器的距离;s为声波的来回路程;v为声速;t为声波来回所用的时间。

超声波测距原理图如下:3、项目涉及的知识点说明HC-SR04超声波模块简介:实物图:正面:背面:HC-SR04 超声波测距模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 1cm;模块包括超声波发射器、接收器与控制电路。

(整理)用51单片机设计超声波测距系统的设计原理及电路附源程序

(整理)用51单片机设计超声波测距系统的设计原理及电路附源程序

基于51单片机的超声波测距仪说明书引言超声波测距仪,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。

利用超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制。

一、性能要求该超声波测距仪,要求测量范围在0.08-3.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。

二、工作原理及方案论证超声波传感器及其测距原理超声波是指频率高于20KHz的机械波。

用超声波传感器产生超声波和接收超声波,习惯上称为超声波换能器或超声波探头。

超声波传感器有发送器和接收器.超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(timeofflight)。

首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离。

根据要求并综合各方面因素,采用AT89C52单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距仪的系统框图如下图所示:图1 超声波测距仪系统设计框图三、系统硬件部分硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。

1.单片机系统及显示电路单片机采用AT89C52来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。

单片机通过P1.1引脚发射脉冲控制超声波的发送,然后单片机不停的检测外中断0口INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。

计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管驱动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档