成都市七年级下数学试卷含答案

合集下载

成都市七年级下册数学期末试卷(含答案)

成都市七年级下册数学期末试卷(含答案)

成都市七年级下册数学期末试卷(含答案)一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 4.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D . 6.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 7.下列方程中,是二元一次方程的是( ) A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 8.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6B .3C .2D .10 9.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6± 10.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题11.多项式2412xy xyz +的公因式是______.12.计算:312-⎛⎫ ⎪⎝⎭= . 13.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.14.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________. 15.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.16.若2a x =,5b x =,那么2a b x +的值是_______ ;17.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.18.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____. 19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.解方程组:41325x y x y +=⎧⎨-=⎩. 23.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;24.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.25.已知a 6=2b =84,且a <0,求|a ﹣b|的值.26.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小.27.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:2|2|m --【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误;故选C.2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.4.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.5.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.A解析:A将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.8.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.9.B解析:B【解析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】解:∵x2-ax+36是一个完全平方式,∴a=±12,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.二、填空题11.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.13.4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc 8a2b2c2的各项公因式是4a2bc .故答案为:4a2bc解析:4a 2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc+8a2b2c2的各项公因式是4a2bc.故答案为:4a2bc.【点睛】本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式.14.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.15.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.16.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.17.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩.此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.18.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 三、解答题21.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.22.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.23.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.24.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD =12∠ABD =40°,进而得出答案.【详解】解:∵AC //BD ,∠BAC =100°,∴∠ABD =180°﹣∠BAC =180°-100°=80°,∵BC 平分∠ABD ,∴∠CBD =12∠ABD =40°, ∵DE ⊥BC ,∴∠BED =90°,∴∠EDB =90°﹣∠CBD =90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD 的度数是解题关键. 25.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.26.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案; (2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.27.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.28.(1)213m -<< (2)m -【分析】 (1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m=+⎧⎨=-⎩ 因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。

(北师大版)成都市七年级数学下册第一单元《整式的乘除》检测题(含答案解析)

(北师大版)成都市七年级数学下册第一单元《整式的乘除》检测题(含答案解析)

一、选择题1.下列计算正确的是( ) A .326a a a ⋅= B .()()2122a a a +-=-C .()333ab a b =D .623a a a ÷=2.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .103.在括号内填上适当的单项式,使()2144y -+成为完全平方式应填( )A .12yB .24C .24y ±D .124.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④ B .②④ C .①③ D .①④ 5.已知a+2b-2=0,则2a ×4b ( ) A .4B .8C .24D .326.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅=7.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个8.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=9.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3210.已知51x =,51y =,则代数式222x xy y ++的值为( ).A .20B .10C .45D .2511.下列各式计算正确的是( ) A .5210a a a =B .()428=a a C .()236a ba b =D .358a a a +=12.下列计算中,错误的有( )①222(2)4x y x y +=+;②222()2x y x xy y --=-+;③2211224x x x ⎛⎫-=-+ ⎪⎝⎭;④22(3)(3)9b a b a a b ---=- A .1个B .2个C .3个D .4个二、填空题13.如图1,在一个大正方形纸板中剪下边长为acm 和边长为bcm 的两个正方形,剩余长方形①和长方形②的面积和为8cm 2.若将剩余的长方形①和②平移进边长为acm 的正方形中(如图2),此时该正方形未被覆盖的面积为6cm 2,则原大正方形的面积为_____.14.计算:20(2)3--⋅=______.15.已知2m a =,5n a =,则2m n a -=___________. 16.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________17.计算20202019133⎛⎫⨯ ⎪⎝⎭的结果是_18.若9×32m ×33m =322,则m 的值为_____.19.己知()()26M x x =--,()()53N x x =--,则M 与N 的大小关系是____. 20.设23P x xy =-,239Q xy y =-,若P Q =,则xy的值为__________. 三、解答题21.图1是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于 .(2)观察图2你能写出下列三个代数式(m +n )2,(m ﹣n )2,mn 之间的等量关系 .(3)运用你所得到的公式,计算若mn =﹣2,m ﹣n =4,求: ①(m +n )2的值. ②m 4+n 4的值.(4)用完全平方公式和非负数的性质求代数式x 2+2x +y 2﹣4y +7的最小值. 22.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.23.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值. 25.计算 (1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭.26.计算(1)()()16231417-+--+-(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭ (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦(4)()()()2221a a a -++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;2.A解析:A 【分析】利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差,再由S 2-S 1=3b ,AD=10,列出方程求得AB 便可. 【详解】解:S 1=(AB-a )•a+(CD-b )(AD-a )=(AB-a )•a+(AB-b )(AD-a ), S 2=AB (AD-a )+(a-b )(AB-a ),∴S 2-S 1=AB (AD-a )+(a-b )(AB-a )-(AB-a )•a -(AB-b )(AD-a ) =(AD-a )(AB-AB+b )+(AB-a )(a-b-a ) =b•AD -ab-b•AB+ab =b (AD-AB ), ∵S 2-S 1=3b ,AD=10, ∴b (10-AB )=3b , ∴AB=7. 故选:A . 【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.3.C解析:C 【分析】利用完全平方公式的结构特征判断即可; 【详解】()()()2222412=24144-±+±-±+y y y y ;故答案选C . 【点睛】本题主要考查了完全平方公式,准确判断是解题的关键.4.C解析:C 【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误. 【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm , ∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5), ∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确; ④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2, 当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误. 综上所述,正确的说法有①③. 故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.5.A解析:A 【分析】把a+2b-2=0变形为a+2b=2,再将2a ×4b 变形为22a b +,然后整体代入求值即可. 【详解】 解:∵a+2b-2=0, ∴a+2b=2, ∴2a ×4b =222=2=4a b + 故选:A . 【点睛】此题主要考查了同底数幂的逆运算,熟练掌握运算法则是解答此题的关键.6.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.7.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.8.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.9.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.10.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】∵1x =,1y =,∴x+y= ∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.11.B解析:B 【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断. 【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意; B 、(a 2)4=a 8,此选项计算正确,符合题意; C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意; D 、a 3与a 5不能合并,此选项计算错误,故不符合题意. 故选:B . 【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.C【分析】直接利用完全平方公式和平方差公式分别计算,判断各式得出答案即可.【详解】解:①(2x+y )2=4x 2+4xy+y 2,错误;②2222()()2x y x y x xy y --=+=++,错误; ③221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ④()()()()2233339b a b a a b a b a b ---=-+--=-,正确; 故选:C .【点睛】此题主要考查了完全平方公式和平方差公式,正确掌握公式的基本形式是解题关键.二、填空题13.22cm2【分析】由题意根据图1可知2ab =8cm2根据图2可知(a ﹣b )2=6cm2依此求出(a+b )2的值即可求解【详解】解:根据图1可知2ab =8cm2根据图2可知(a ﹣b )2=6cm2则(a解析:22cm 2.【分析】由题意根据图1可知2ab =8cm 2,根据图2可知(a ﹣b )2=6cm 2,依此求出(a +b )2的值即可求解.【详解】解:根据图1可知2ab =8cm 2,根据图2可知(a ﹣b )2=6cm 2,则(a +b )2=(a ﹣b )2+4ab =6+2×8=22(cm 2).故原大正方形的面积为22cm 2.故答案为:22cm 2.【点睛】本题考查的图形面积与完全平方公式的关系,掌握利用完全平方公式的变形求解图形面积是解题的关键.14.【分析】根据0指数和负指数的意义计算即可【详解】解:故答案为:【点睛】本题考查了0指数和负指数的运算解题关键是熟悉0指数和负指数的意义 解析:14【分析】根据0指数和负指数的意义计算即可.解:22011(2)31(2)4--⋅=⨯=-, 故答案为:14. 【点睛】 本题考查了0指数和负指数的运算,解题关键是熟悉0指数和负指数的意义.15.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 16.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.17.【分析】逆用同底数幂乘法公式把化为再根据积的乘方运算即可【详解】解:故答案为:【点睛】本题考查了同底数幂的乘法积的乘方等知识能逆用同底数幂的乘法公式是解题关键 解析:13【分析】 逆用同底数幂乘法公式把202013⎛⎫ ⎪⎝⎭化为20191133⎛⎫⨯ ⎪⎝⎭,再根据积的乘方运算即可. 【详解】 解:20202019201920192019201911111113=3=3=1=3333333⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:13【点睛】 本题考查了同底数幂的乘法,积的乘方等知识,能逆用同底数幂的乘法公式是解题关键. 18.4【分析】先变形9=32再利用同底数幂的乘法运算法则运算然后指数相等列等式求解即可【详解】∵9×32m×33m=32×32m×33m =32+2m+3m=322∴2+2m+3m=22即5m=20解得:解析:4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【详解】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.【点睛】本题考查了同底数幂的乘法、等式的性质,灵活运用同底数幂的乘法运算法则是解答的关键.19.【分析】利用作差法再根据整式的混合运算法则运算即可作出判断【详解】∵=﹣==﹣3﹤0∴故答案为:【点睛】本题考查整式的混合运算熟练掌握整式的混合运算法则运用作差法比较大小是解答的关键解析:M N <【分析】利用作差法,再根据整式的混合运算法则运算即可作出判断.【详解】∵M N -=()()26x x --﹣()()53x x --=2226123515x x x x x x --+-++-=﹣3﹤0,∴M N <,故答案为:M N <.【点睛】本题考查整式的混合运算,熟练掌握整式的混合运算法则,运用作差法比较大小是解答的关键.20.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.三、解答题21.(1)m ﹣n ;(2)(m ﹣n )2=(m +n )2﹣4mn ;(3)①8;②136(4)2【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答即可;(2)根据大正方形的面积减去四个长方形的面积等于阴影部分小正方形的面积解答即可; (3)把数据代入(3)的数量关系计算即可得解;(4)根据完全平方公式配方,再根据非负数的性质即可得解.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m ﹣n ;故答案为:m ﹣n ;(2)根据正方形的面积公式,阴影部分的面积为(m ﹣n )2,还可以表示为(m +n )2﹣4mn ,∴(m ﹣n )2=(m +n )2﹣4mn ,故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)①∵mn =﹣2,m ﹣n =4,∴(m +n )2=(m ﹣n )2+4mn =42+4×(﹣2)=16﹣8=8,②m 2+n 2=(m ﹣n)2+2mn=42+2×(﹣2)=16﹣4=12,∴m 4+n 4=(m 2+n 2)2﹣2 m 2·n 2=122﹣2×(﹣2)2=136;(4)x 2+2x +y 2﹣4y +7,=x 2+2x +1+y 2﹣4y +4+2,=(x +1)2+(y ﹣2)2+2,∵(x +1)2≥0,(y ﹣2)2≥0,∴(x +1)2+(y ﹣2)2≥0,∴当x =﹣1,y =2时,代数式x 2+2x +y 2﹣4y +7的最小值是2.【点睛】本题考查了完全平方公式的几何意义、平方数的非负性,准确识图,能用两种不同的方式表示阴影的面积,灵活运用完全平方公式解决问题是解答的关键.22.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.23.(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.24.(1)24xy ,2;(2)6;(3)83x =,最小值为2020【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷ =115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+=2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +--=222xy x y +;(4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅=67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则. 26.(1)4;(2)1;(3)2-610x xy +;(4)32284a a a +--.【分析】(1)先写成省略括号和的形式,再同号相加计算,最后异号相加计算即可;(2)先算乘方,乘方同时除变乘,去绝对值,再算乘法,最后加减法计算即可; (3)先去小括号,再去中括号,合并同类项即可;(4)先利用平方差公式计算,再利用多项式乘以多项式法则乘开即可.【详解】(1)()()16231417-+--+-,=1623+1417-+-,=()23+1417+16-,=3733-,=4;(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭,=4259+4952-⨯⨯+, =4+14-+,=1; (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦,=222622156xy x x xy x xy -+--+-⎡⎤⎣⎦, =222622156xy x x xy x xy -+-+-+,=2-610x xy +;(4)()()()2221a a a -++,=()()2421a a -+, =32284a a a +--.【点睛】本题考查有理数的混合运算与整式的加减乘混合远算,掌握有理数的混合运算法则,整式加减乘的运算法则,以及乘法公式是解题关键.。

2022年四川省成都市锦江区七年级下学期期末数学试卷(含答案)

2022年四川省成都市锦江区七年级下学期期末数学试卷(含答案)

2022年四川省成都市锦江区七下期末数学试卷1.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.2.在圆的周长C=2πR中,常量与变量分别是( )A.2是常量,C,π,R是变量B.2π是常量,C,R是变量C.C,2是常量,R是变量D.2是常量,C,R是变量3.下列计算正确的是( )A.x2+x2=x4B.(x−y)2=x2−y2C.(x2y)3=x6y D.(−x)2⋅x3=x54.空气的密度是0.001293g/cm3,将数据0.001293用科学记数法表示为( )A.0.1293×10−3B.0.1293×10−6C.1.293×10−3D.1.293×10−65.三角形两边长为2,5,则第三边的长不能是( )A.4B.5C.6D.76.如果x m=2,x n=14,那么x m+n的值为( )A.2B.8C.12D.2147.如图,直线AB∥CD,AP平分∠BAC,CP⊥AP于点P,若∠1=50∘,则∠2的度数为( )A.30∘B.40∘C.50∘D.60∘8.小明从家出发,徒步到书店购买文具,购好文具后骑共享单车原路返回,设他从家出发后所用的时间为t(分),离家的路程为S(米).则S与t之间的关系大致可以用图象表示为( ) A.B.C.D.9.如图,△ABC中,∠ACB=90∘,AD平分∠CAB,DE垂直平分AB,交AB于点E.若AC=m,BC=n,则△BDE的周长为( )A.m+n B.2m+2n C.m+2n D.2m+n10.如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的项点确定一点C,连接AC和BC,使△ABC是等腰三角形,则方格图中满足条件的点C的个数是( )A.4B.5C.6D.711.计算:−2a2b3⋅(−3a)=.12.一个不透明的盒子中装有4张卡片,这4张卡片的正面分别画有等腰三角形、线段、圆和三角形,这些卡片除图形外都相同,将卡片搅匀.从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是.13.如图,在长方形ABCD中,AB=8cm,BC=10cm,点P从点B出发,以1cm/秒的速度向点C运动,同时点Q从点D出发,以1cm/秒的速度向点C运动,P,Q任意一点达到C点时,运动停止,在运动过程中,△PCQ的面积S(cm2)与运动时间t(秒)之间的关系为.14.定义一种新运算A⋇B=A2+AB.例如(−2)⋇5=(−2)2+(−2)×5=−6.按照这种运算规定,(x+2)⋇(2−x)=20.则x=.15.如图,在△ABC中,AB=AC,以点A为圆心,以适当长为半径画弧,交AB于点D交ACDE的长为半径画弧,两弧交于点F,连接AF并于点E,再分别以D,E为圆心,以大于12延长,交BC于点G.若△ABC的周长等于42,AC=16,则BG长为.16.计算.(1) (2022−π)0−∣−3∣+(−2)−2.(2) (a−1)2−(a+3)(a−3).17.化简求值:[(x2+y2)−(x−y)2+2y(x+y)]÷(−2y),其中∣2x−1∣+(y+3)2=0.18.补充完成下列推理过程:如图,在△ABC中,AB=AC,点D,E分别是BC,AC上的点,且BD=CE,连接AD,DE,若∠ADE=∠B.求证:AD=DE.证明:∵AB=AC,∴∠B=∠C(),∵∠ADC=∠B+∠(),且∠ADE=∠B,∴∠ADC=∠ADE+∠.又∵∠ADC=∠ADE+∠CDE,∴∠BAD=∠CDE,在△BAD和△CDE中,∠B=∠C,∠BAD=∠CDE,=,∴△BAD≌△CDE(),∴AD=DE().19.如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1) 画出△ABC关于直线MN的对称图形△AʹBʹCʹ;(2) 直接写出线段BBʹ的长度;(3) 直接写出△ABC的面积.20.2022年6月14日是第17个世界献血者日,今年的活动主题是“安全血液拯救生命”,使用的活动口号为“献血,让世界更健康”,意在关注个人献血为改善社区其他人的健康所做的贡献.为此,成都市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”,“B型”,“AB型”,“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数x2010y(1) 这次随机抽取的献血者人数为人,m=;(2) 求x,y的值;(3) 请你根据抽样结果回答:从献血者人群中任抽取一人.其血型是O型的概率是多少?若这次活动中有8000人义务献血,大约有多少人是O型血?21.如图,在△ABC中,AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1) 求证:AB=GF;(2) 若GD=10,AD=3,求DC的长度;(3) 在(2)的条件下,S△DCF=7,求△ABC的面积.22.在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1) 由图象可知,新设备因工人操作不当停止生产了天;(2) 求新、旧设备每天分别生产多少万个口罩?(3) 在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.23.如图1,两种长方形纸片的长分别为b和c,宽都为a,将它们拼成如图2所示的图形,其中四边形ABCD和四边形EFGH都为正方形,设空白部分的面积之和为S1,阴影部分的面积之和为S2.(1) 直接写出a,b,c的等量关系式;(2) 用含a,c的代数式表示图中阴影部分的面积S2;(3) 若S1−S2=6a2,求b与c的数量关系.24.在△ABC中,∠B=60∘,D是BC上一点,且AD=AC.(1) 如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2) 如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3) 如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.答案1. 【答案】A2. 【答案】B【解析】∵在圆的周长公式C=2πR中,C与R是改变的,π是不变的;∴变量是C,R,常量是2π.故选:B.3. 【答案】D【解析】x2+x2=2x2,A错误;(x−y)2=x2−2xy+y2,B错误;(x2y)3=x6y3,C错误;(−x)2⋅x3=x2⋅x3=x5,D正确;故选:D.4. 【答案】C5. 【答案】D【解析】设三角形的第三边为x,∵三角形两边长为2,5,∴根据三角形的三边关系得,5−2<x<5+2,∴3<x<7,∴第三边不能是7.6. 【答案】C【解析】如果x m=2,x n=14,那么x m+n=x m×x n=2×14=12.7. 【答案】B【解析】∵AB∥CD,∴∠BAC+∠ACD=180∘,∵AP平分∠BAC,∴∠BAC=2∠1=100∘,∴∠ACD=180∘−100∘=80∘,∵CP⊥AP,∴∠P=90∘,∴∠ACP=90∘−∠1=90∘−50∘=40∘,∴∠2=∠ACD=∠ACP=80∘−40∘=40∘.则∠2的度数为40∘.8. 【答案】A【解析】小明的整个行程共分三个阶段:①徒步从家到书店购买文具,s随时间t的增大而增大;②购文具逗留期间,s不变;③骑共享单车返回途中,速度比徒步速度大,比徒步时的直线更陡,离家距离为0;纵观各选项,只有A选项符合.9. 【答案】A【解析】∵DE垂直平分AB,∴AD=BD,∴∠B=∠DAE,∵在△ABC中,∠ACB=90∘,AD平分∠CAB,DE⊥AB,∴CD=DE,∠CAD=∠BAD,∴∠B=∠CAD=∠BAD,∵∠B+∠CAD+∠BAD=180∘−∠C=90∘,∴∠B=30∘,∴AB=2AC=2m,∴BE=AE=m,∵BE=m,BC=n,∴△BDE的周长为BE+DE+DB=BE+CD+BD=BC+BE=m+n.10. 【答案】C11. 【答案】6a3b312. 【答案】34【解析】∵等腰三角形、线段、圆是轴对称图形,三角形不是轴对称图形,∴从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是34.13. 【答案】S=12(10−t)(8−t)(0<t<8)【解析】∵四边形ABCD是矩形,∴AB=CD=8cm,BC=AD=10cm,∠C=90∘,由题意0<t<8,PC=(10−t)cm,CQ=(8−t)cm,∴S=12⋅PC⋅CQ=12(10−t)(8−t)(0<t<8).14. 【答案】3【解析】根据题意得(x+2)2+(x+2)(2−x)=20,∴x2+4x+4+4−x2=20,∴4x+8=20,4x=12,解得x=3.15. 【答案】5【解析】根据作图过程可知:AG平分∠BAC,∵AB=AC,∴AG是BC的垂直平分线,∴BG=CG,∵△ABC的周长等于42,AC=AB=16,∴BG+CG=10,∴BG=5.16. 【答案】(1)(2022−π)0−∣−3∣+(−2)−2 =1−3+14=−134.(2)(a−1)2−(a+3)(a−3) =a2−2a+1−(a2−9) =a2−2a+1−a2+9=−2a+10.17. 【答案】原式=(x2+y2−x2+2xy−y2+2xy+2y2)÷(−2y) =(4xy+2y2)÷(−2y)=−2x−y,∵∣2x−1∣+(y+3)2=0,∴2x−1=0,y+3=0,∴x=12,y=−3,∴原式=−2×12−(−3)=2.18. 【答案】等边对等角;BAD,三角形的外角性质;BAD;BE;CE;AAS;全等三角形的对应边相等【解析】∵AB=AC,∴∠B=∠C(等边对等角),∵∠ADC=∠B+∠BAD(三角形的外角性质),且∠ADE=∠B,∴∠ADC=∠ADE+∠BAD,又∵∠ADC=∠ADE+∠CDE,∴∠BAD=∠CDE,在△BAD和△CDE中.{∠B=∠C,∠BAD=∠CDE, BD=CE.∴△BAD≌△CDE(AAS)∴AD=DE(全等三角形的对应边相等).19. 【答案】(1) 如图:(2) 6;(3) 172.【解析】(3) S=4×5−12×4×1−12×4×1−12×5×3=172.20. 【答案】(1) 100;20(2) x=100×25%=25,y=100−25−20−10=45.(3) 血型是O型的概率是:45100=920,所以8000×920=3600(人).答:从献血者人群中任抽取一人.其血型是O型的概率是920,若这次活动中有8000人义务献血,大约有3600人是O型血.【解析】(1) ∵10÷10%=100,20÷100=20%,答:这次随机抽取的献血者人数为100人,m=20.21. 【答案】(1) 证明:∵GD∥BA,∴∠BAE=∠G,在△ABE和△GFE中,∵{∠BAE=∠G, AE=EG,∠AEB=∠GEF,∴△ABE≌△GFE(ASA),∴AB=GF.(2) ∵AB=AC,∴∠B=∠C,∵GD∥BA,∴∠B=∠DFC,∴∠C=∠DFC,∴DF=DC,设DC=x,则AB=AC=3+x,∵DG=10,∴FG+DF=AB+DC=10,即3+x+x=10,∴x=72,∴DC=72.(3) 连接AF,∵S△ADF:S△CDF=AD:DC,∵S△DCF=7,AD=3,CD=72,∴S△ADF:7=3:72,∴S△ADF=6,同理得:S△ADF:S△AFG=DF:FG,即6:S△AFG=72:13 2,∴S△AFG=787,由(1)知:△ABE≌△GFE,∴S△ABF=S△AFG=787,∴S△ABC=787+6+7=1697.22. 【答案】(1) 2(2) 新设备:4.8÷1=4.8(万个/天),乙设备:16.8÷7=2.4(万个/天),答:甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3) ① 2.4x=4.8,解得x=2;② 2.4x=4.8(x−2),解得x=4;答:在生产过程中,x为2或4时,新旧设备所生产的口罩数量相同.23. 【答案】(1) 由图知b=2a+c.(2) S2=b2−12ab×2−12a(a+c)×2−c2 =(2a+c)2−a(2a+c)−a(a+c)−c2=4a2+4ac+c2−2a2−ac−a2−ac−c2 =a2+2ac.(3) ∵S1−S2=6a2,∴12ab×2+12a(a+c)+c2−(a2+2ac)=6a2,∴a(2a+c)+a2+ac+c2−a2−2ac=6a2,∴c=2a,又∵b=2a+c,∴b=2c.24. 【答案】(1) ∵AC=AD,∴∠ADC=∠ACD,∴180∘−∠ADC=180∘−∠ACD,即∠ADB=∠ACE,在△ABD和△AEC中,{AD=AC,∠ADB=∠ACE, BD=CE,∴△ABD≌△AEC(SAS),∴AB=AE.(2) 延长CE到E,使CE=BD,由(1)知,AB=AE,∴∠E=∠B=60∘,∴∠EAB=180∘−∠E−∠B=60∘,∴△ABE是等边三角形,同理,△DBF是等边三角形,∴AB=BE.BF=BD=CE,∴AB−BF=BE−CE,即AF=BC.(3) 猜想:PC=2BD,理由如下:在CP上取点E,使CE=BD,连接AE,由(1)可知:AB=AE,∴∠AEB=∠B=60∘,∴∠AEP=180∘−∠AEB=120∘,∵DF=DB,∠DFB=∠B=60∘,∴∠PDF=∠DFB+∠B=120∘,∴∠AEP=∠PDF,又∵PA=PF,∴∠PAF=∠PFA,∵∠APE=180∘−∠B−∠PAF=120∘−∠PAF,∠PFD=180∘−∠DFB−∠PFA=120∘−∠PFA,∴∠APE=∠PFD,在△APE和△PFD中,{∠APE=∠PFD,∠AEP=∠PDF, PA=PF,∴△APE≌△PFD(AAS),∴PE=DF,又∵DF=DB,∴PE=DB,又∵PC=PE+CE,∴PC=2BD.。

2022-2023学年四川省成都市成华区七年级(下)期末数学试卷及答案解析

2022-2023学年四川省成都市成华区七年级(下)期末数学试卷及答案解析

2022-2023学年四川省成都市成华区七年级(下)期末数学试卷一.选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.(4分)下列四个运动会会徽中,是轴对称图形的是()A.B.C.D.2.(4分)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为()A.0.3×10﹣6B.3×10﹣6C.3×10﹣7D.3×1073.(4分)下列计算正确的是()A.b+b2=b3B.b6÷b3=b2C.(2b)3=6b3D.3b﹣2b=b 4.(4分)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm5.(4分)下列事件是必然事件的是()A.打开电视,正在播放神舟载人飞船发射B.掷一枚骰子,点数是3的面朝上C.两直线被第三条直线所截,同位角相等D.三角形内角和是180°6.(4分)如图,AD,BC相交于点O,且AO=DO,BO=CO,则△ABO≌△DCO,理由是()A.SSS B.SAS C.ASA D.AAS7.(4分)如图,直线m∥n,点C,A分别在m,n上,以点C为圆心,CA长为半径画弧,交m于点B,连接AB.若∠BCA=140°,则∠1的度数为()A.10°B.15°C.20°D.25°8.(4分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c二.填空题(本大题共5个小题,每小题4分,共20分)9.(4分)若24×22=2m,则m的值为.10.(4分)在一个不透明的口袋中装有红球和白球共16个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程.若共摸了100次球,发现有75次摸到红球,则可以估计口袋中红球的个数为.11.(4分)我们可以根据如图的程序计算因变量y的值.若输入的自变量x的值是2和﹣3时,输出的因变量y的值相等,则b的值为.12.(4分)如图,在△ABC中,分别以点A,B为圆心,大于AB的一半为半径作弧,两弧交于点E,F,直线EF交BC于点D,连接AD.若AC=3,BC=4,则△ACD的周长等于.13.(4分)如图,将长方形纸片ABCD沿直AC折叠,点B的对应点为点E,AE与CD交于点F.若∠FCE=42°,则∠CAB的度数是.三.解答题(本大题共5个小题,共48分)14.(8分)(1)计算:;(2)计算:[(x+y)2﹣(x﹣y)2]÷2xy15.(12分)(1)先化简,再求值:x(x+y)(x﹣y)﹣x(x2﹣y)﹣xy,其中x=﹣4,;(2)先化简,再求值:(a﹣b+3)(a+b﹣3)+(b+3)2,其中a=﹣3,.16.(8分)学校将举办主题为“爱成都•迎大运”知识竞赛活动,7.2班决定在甲乙两人中选择一人参加,并采用如下游戏确定参加人员.如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.甲乙两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的方法从下面三种中选一种:①猜“是奇数”或“是偶数”;②猜“是3的倍数”或“不是3的倍数”;③猜“是大于6的数”或“不是大于6的数”.如果由乙转动转盘,甲猜数,那么为了尽可能获胜,试说明甲应选择哪一种猜数方法?怎样猜?17.(10分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论.如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,以AB为直角边在AB的右作作等腰直角△ABD,其中AB=BD,∠ABD=90°,过点D作DE⊥CB,垂足为点E.(1)求证:DE=a,BE=b;(2)请你用两种不同的方法表示梯形ACED的面积,并证明:c2=a2+b2(3)若a+b=17,ab=60,求△ABC中AB边上的高h.18.(10分)如图1,在等腰直角△ABC中,∠ACB=90°,点D是线段AB上不与点A,B 重合的云点,连接CD并延长至点E,使DE=CD,过点E作EF⊥AB,垂足为点F.(1)当点D,F位于点A的异侧时,问线段AD,EF,DF之间有何数量关系?写出径的结论并证明;(2)当点D,F位于点A的同侧时,若AB=8,AD=4DF,请在备用图中画出图形,求AD的长.四.填空题(本大题共5个小题,每小题4分,共20分)19.(4分)计算:20232﹣2024×2022=.20.(4分)若等腰三角形的两边长分别是3cm和6cm,则这个等腰三角形的周长是______cm.21.(4分)如图是一束光线AB先后经平面镜OE,OF反射的示意图,若反射光线CD与入射光线AB平行,则∠O的度数是.22.(4分)甲、乙二人在学校百米跑道上练习竞走,两人分别从跑道两端开始往返练习.二人离甲出发端的距离s(米)与时间t(秒)的关系如图所示.若两人均匀速练习了20分钟(不计转向时间),则二人迎面相遇的次数为.23.(4分)如图,在△ABC中,AB=AC,∠BAC=84°,点M为AC上一动点,在BC上取点N,使CN=AM,连接AN,BM,当AN+BM的值最小时,∠ANC的度数为.五.解答题(本大题共3个小题,共30分)24.(8分)学校组织学生从学校出发,乘坐大巴车匀速前往卧龙大熊猫基地进行研学活动.大巴车出发0.5小时后,学校运送物资的轿车沿相同路线匀速前往.如图是大巴车行驶路程y1(千米)和轿车行驶路程y2(千米)随行驶时间x(小时)变化的图象.请结合图象信息,解答下列问题:(1)分别求出y1,y2与x之间的关系式;(2)问轿车追上大巴车时距离学校多远?25.(10分)如图,在四边形ABCD中,∠ADC=α,∠BCD=β,延长AB到点E,AF是∠DAB的平分线,BG是∠CBE的平分线.(1)如图1,当AF∥BG时,求证:α+β=180°(2)如图2,当α+β>180°时,直线AF交直线BG于点M,问∠AMB与α,β之间有何数量关系?写出你的结论并证明;(3)如果将(2)中的条件α+β>180°改为α+β<180°,那么∠AMB与α,β之间又有何数量关系?请直接写出结论,不用证明.26.(12分)如图1,等边△ABC的边长为4,点D是直线AB上异于A,B的一动点,连接CD,以CD为边长,在CD右侧作等边△CDE,连接BE.(1)求证:BE∥AC;(2)当点D在直线AB上运动时,①△BDE的周长是否存在最小值?若存在,求此时AD的长;若不存在,说明理由;②△BDE能否形成直角三角形?.若能,求此时AD的长;若不能,说明理由.2022-2023学年四川省成都市成华区七年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项B、C、D的图形不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】用科学记数法表示较小的数,一般形式为a×10﹣n(1≤|a|<10,n是正整数),由此即可得到答案.【解答】解:0.0000003=3×10﹣7.故选:C.【点评】本题考查科学记数法﹣表示较小的数,关键是掌握用科学记数法表示数的方法.3.【分析】按照整式幂的运算法则和合并同类项法则逐一计算进行即可得答案.【解答】解:∵b与b2不是同类项,∴选项A不符合题意;∵b6÷b3=b3,∴选项B不符合题意;∵(2b)3=8b3,∴选项C不符合题意;∵3b﹣2b=b,∴选项D符合题意,故选:D.【点评】此题考查了整式幂与合并同类项的相关运算能力,关键是能准确理解并运用相关计算法则.4.【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.【点评】此题考查了三角形的三边关系.注意已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.5.【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可.【解答】解:A.打开电视,正在播放神舟载人飞船发射,是随机事件,故A不符合题意;B.掷一枚骰子,点数是3的面朝上,是随机事件,故B不符合题意;C.两直线被第三条直线所截,同位角相等,是随机事件,故C不符合题意;D.三角形内角和是180°,是必然事件,故D符合题意;故选:D.【点评】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.6.【分析】由∠AOB=∠COD,OA=OD,OB=OC,可根据SAS证明△ABO≌△DCO,可得出答案.【解答】解:∵OA=OD,∠AOB=∠COD,OB=OC,∴△ABO≌△DCO(SAS).故选:B.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.7.【分析】由已知可得AC=BC,则∠CAB=∠ABC,由∠BCA=140°,∠BCA+∠CAB+∠CBA=180°,可得∠CAB=∠ABC=20°,再结合平行线的性质可求∠1=∠ABC=20°.【解答】解:由已知可得AC=BC,∴∠CAB=∠CBA,∵∠BCA=140°,∠BCA+∠CAB+∠ABC=180°,∴∠ABC=30°,∵m∥n,∴∠1=∠ABC=20°.故选:C.【点评】本题考查了平行线的性质、三角形内角和定理,能根据题意得出△ABC是等腰三角形是解题的关键.8.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二.填空题(本大题共5个小题,每小题4分,共20分)9.【分析】根据同底数幂的乘法计算即可.【解答】解:∵2m=24×22=24+2=26,∴m=6.故答案为:6.【点评】本题考查了同底数幂的乘法法则,熟练法则的互逆运算是本题的关键.10.【分析】用球的总个数乘以摸到红球的频率即可.【解答】解:估计这个口袋中红球的数量为16×=12(个).故答案为:12.【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.11.【分析】首先根据程序计算图得:当x=﹣3时,y=9,当x=2时y=4+b,据此可得8=4+b,由此可求出b的值.【解答】解:∵当x≤﹣3时,y=x2,∴当x=﹣3时,y=(﹣3)2=9,又∵当﹣3<x≤5时,y=2x+b,∴当x=2时,y=4+b,∵输入的自变量x的值是2和﹣3时,输出的因变量y的值相等,∴4+b=9,解得:b=5.故答案为:5.【点评】此题主要考查了求代数式的值,解答此题的关键是理解题意,读懂题目中给出的程序计算图.12.【分析】判断出DB=DA,可得结论.【解答】解:由作图可知DF垂直平分线段AB,∴DB=DA,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+CB=3+4=7.故答案为:7.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的周长等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.13.【分析】由翻折变换可得∠B=∠D=∠E=90°,∠DFA=∠EFC,可推出∠DAF=∠FCE=42°,∠BAC=∠EAC=∠EAB即可求出结果.【解答】解:∵将长方形纸片ABCD沿直AC折叠,∴∠DAB=∠B=∠D=∠E=90°,∴∠EFC+∠FCE=90°,∠DFA+∠DAF=90°,∵∠DFA=∠EFC,∴∠DAF=∠FCE=42°,∴∠EAB=∠DAB﹣∠DAF=90°﹣42°=48°,∵∠EAC=∠CAB,∴∠CAB=24°.故答案为:24°.【点评】本题考查长方形的性质,余角的性质、翻折变换等知识,熟练掌握余角的性质和折叠的性质是解题的关键.三.解答题(本大题共5个小题,共48分)14.【分析】(1)依据题意,由零指数幂及负整数指数幂的意义进行计算可以得解;(2)依据题意,由整式的除法法则进行计算可以得解.【解答】解:(1)原式=4﹣1﹣4=﹣1.(2)原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷2xy=4xy÷2xy=2.【点评】本题主要考查了零指数幂、负整数指数幂及整式的除法,解题时需要熟练掌握并理解.15.【分析】(1)前两项提取x后再利用平方差合并可得结果,代入求值即可;(2)变成平方差的模式进行化简,用完全平方公式展开后一项,合并化简代入计算即可.【解答】解:(1)x(x+y)(x﹣y)﹣x(x2﹣y)﹣xy=x(x2﹣y2﹣x2+y)﹣xy=x(y﹣y2)﹣xy=﹣xy2.当x=﹣4,y=﹣时,原式=﹣(﹣4)×=1;(2)(a﹣b+3)(a+b﹣3)+(b+3)2=a2﹣(b﹣3)2+(b+3)2=a2﹣(b2﹣6b+9)+b2+6b+9=a2+12b,当a=﹣3,时,原式=(﹣3)2+12×(﹣)=5.【点评】本题考查了整式的化简求值,乘法公式的灵活应用是解决这类题目的关键.16.【分析】分别求出各种情况下获胜的概率,比较得出答案.【解答】解:共有10种等可能出现的结果数,其中①“是奇数”或“是偶数“都是50%,②是3的倍数”的有3种,“不是3的倍数”的7种,因此“是3的倍数”可能性是30%,“不是3的倍数”的可能性是70%,③“是大于6的数”的有4种,“不是大于6的数”的有6种,因此“是大于6的数”可能性是40%,“不是大于6的数”的可能性是60%,因此,甲选择②,猜“不是3的倍数”,这样获胜的可能性为70%,获胜的可能性最大.【点评】本题考查是游戏的公平性,随机事件发生的概率,理解概率的意义,掌握概率的计算方法是正确解答的前提.17.【分析】(1)由三角形外角的性质得到∠DBE=∠CAB,由AAS即可证明△ACB≌△BED (AAS),得到DE=BC=a,BE=BC=b;(2)由梯形,三角形面积公式即可证明问题;(3)由勾股定理,完全平方公式,求出c的值,由三角形面积公式即可求出h的值.【解答】(1)证明:∵∠ABD+∠DBE=∠C+∠CAB,∠ABD=∠C=90°,∴∠DBE=∠CAB,∵AB=BD,∠C=∠E=90°,∴△ACB≌△BED(AAS),∴DE=BC=a,BE=BC=b;(2)证明:∵梯形ACED的面积=(AC+DE)•CE,梯形ACED的面积=△ABC的面积+△ABD的面积+△DBE的面积=BC•AC+AB•BD+BE•DE,∴(AC+DE)•CE=BC•AC+AB•BD+BE•DE,∴(b+a)(a+b)=ab+c2+ab,∴c2=a2+b2,(3)解:∵a+b=17,ab=60,∴(a+b)2=172,∴a2+b2=c2=169,∴c=13,∵△ABC的面积=ab=ch,∴13h=60,∴h=.【点评】本题考查全等三角形的判定和性质,勾股定理,三角形的面积,梯形,等腰直角三角形,关键是证明△ACB≌△BED(AAS);应用梯形,三角形面积公式来解决问题.18.【分析】(1)过点C作CG⊥AB于点G,如图1,根据垂直的定义得到∠CGD=∠EFD =90°,根据全等三角形的性质得到DG=DF,CG=EF,求得AD+DF=AD+DG=AG,根据等腰直角三角形的性质得到∠CAG=45°,于是得到结论;(2)过点C作CG⊥AB于点G,如图2,根据垂直的定义得到∠CGD=∠EFD=90°,根据全等三角形的性质得到DG=DF,求得∠CAG=45°,根据三角函数的定义得到AD+DF=AC;过点C作CG⊥AB于点G,如图3.根据全等三角形的性质得到DG =DF,于是得到结论.【解答】解:(1)AD+DF=EF,证明:过点C作CG⊥AB于点G,如图1.∵EF⊥AB,∴∠CGD=∠EFD=90°,在△CDG和△EDF中,,∴△CDG≌△EDF(AAS),∴DG=DF,CG=EF,∴AD+DF=AD+DG=AG,∵△ABC是等腰直角三角形,∠ACB=90°,∴∠CAG=45°,∴AG=CE,∴AG=EF,∴AD+DF=EF;(2)过点C作CG⊥AB于点G,如图2.∵EF⊥AB,∴∠CGD=∠EFD=90°,在△CDG和△EDF中,,∴△CDG≌△EDF(AAS),∴DG=DF,∴AD+DF=AD+DG=AG=8=4,∵AD=4DF,∴5DF=4,∴DF=,∴AD=;过点C作CG⊥AB于点G,如图3.∵EF⊥AB,∴∠CGD=∠EFD=90°,在△CDG和△EDF中,,∴△CDG≌△EDF(AAS),∴DG=DF,∴AD﹣DF=AD﹣DG=AG=AB=4,∵AD=4DF,∴3DF=4,∴DF=,∴AD=.综上所述,AD的长为或.【点评】本题是三角形的综合题,考查等腰直角三角形的性质,全等三角形的判定和性质,三角函数定义,作CG⊥AB构造全等三角形是解题的关键.四.填空题(本大题共5个小题,每小题4分,共20分)19.【分析】根据平方差公式将原式化为20232﹣(2023+1)(2023﹣1),进而得到20232﹣20232+1即可.【解答】解:原式=20232﹣(2023+1)(2023﹣1)=20232﹣20232+1=1,故答案为:1.【点评】本题考查平方差公式,掌握平方差公式的结构特征是正确解答的前提.20.【分析】等腰三角形两边的长为3cm和6cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:由等腰三角形的定义,分以下两种情况:(1)当边长为3cm的边为腰时,则这个等腰三角形的三边长分别为3cm,3cm,6cm,∵3+3=6,∴不满足三角形的三边关系定理,不能组成三角形;(2)当边长为6cm的边为腰时,则这个等腰三角形的三边长分别为3cm,6cm,6cm,满足三角形的三边关系定理,此时这个等腰三角形的周长为3+6+6=15(cm);综上,这个等腰三角形的周长为15cm,故答案为:15.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.21.【分析】过点B作BG⊥OE,过点C作CG⊥OF,CG与BG交于点G,由反射的知识可知∠CBG=∠ABG=,∠BCG=∠DCG=,由两直线平行,同旁内角互补可得∠ABC+∠BCD=180°,进而得到∠CBG+∠BCG=90°,由三角形内角和定理可得∠BGC=90°,最后利用四边形的内角和为360°即可求解.【解答】解:如图,过点B作BG⊥OE,过点C作CG⊥OF,CG与BG交于点G,由题意可知,∠CBG =∠ABG =,∠BCG =∠DCG =,∵AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠CBG +∠BCG =∠ABC +∠BCD =(∠ABC +∠BCD )==90°,∴∠BGC =90°,∵∠OBG =∠OCG =90°,∴∠O =360°﹣∠OBG ﹣∠OCG ﹣∠BGC =360°﹣90°﹣90°﹣90°=90°.故答案为:90°.【点评】本题主要考查平行线的性质、三角形内角和定理,利用入射角等于反射角和平行线的性质推理论证出∠CBG +∠BCG =90°是解题关键.22.【分析】先根据函数的图象求出甲乙二人速度,再求出20分钟甲乙二人所走路程之和,然后归纳总结出第n 次迎面相遇时,两人所走路程之和(200n ﹣100)米,据此列出关n 的方程,解方程求出n 的值,即可得答案.【解答】解:由函数的图象可知:甲的速度为:(米/秒),乙的速度为:100÷10=2(米/秒),20分钟甲所走的路程为:(米),20分钟乙所走的路程为:20×60×2=2400(米),∴20分钟甲乙所走的路程是和为:4000+2400=6400(米),∵甲乙分别从跑道两端开始,∴第一次迎面相遇时,两人所走的路程之和为:100米,第二次迎面相遇时,两人所走的路程之和为:100×2+100=300(米),第三次迎面相遇时,两人所走的路程之和为:200×2+100=500(米),第四次迎面相遇时,两人所走的路程之和为:300×2+100=700(米),……,以此类推,第四次迎面相遇时,两人所走的路程之和为:100(n ﹣1)×2+100=(200n ﹣100)米,令200n ﹣100=6400,解得:n=32.5∴甲乙二人迎面相遇的次数为32次.故答案为:32.【点评】本题主要考查了函数图象的应用,一元一次方程的应用等,解题的关键是根据函数的图象求出甲乙二人的速度,以及甲乙二人20分钟所走的路程和,难点是贵了总结出甲乙二人第n次迎面相遇时,两人所走路程之和(200n﹣100)米.23.【分析】作∠BCD=∠BAC,并使CD=AB,连接DN,△DCN≌△BAM,从而DN=BM,于是AN+BM=AN+DN≥AD,于是当点A、N、D共线时,AN+BM最小,△ABC,△ACD 均为等腰三角形,进一步得出结果.【解答】解:作∠BCD=∠BAC,并使CD=AB,连接DN,如图:在△ABM和△CDN中,,∴△ABC≌△CDN(SAS),∴BM=DN,∴AN+BM=AN+DN≥AD,∴当点A、N、D共线时,AN+BM最小;∵AB=AC=CD,∠BCD=∠BAC=84°,∴∠ACB==48°,∴∠ACD=∠ACB+∠BCD=132°,∠CAD==24°,∴∠AN′C=180°﹣∠CAD﹣∠ACB=108°.故答案为:108°.【点评】本题考查了等腰三角形性质,全等三角形的判定和性质等知识,解决问题的关键是作辅助线,构造全等三角形.五.解答题(本大题共3个小题,共30分)24.【分析】(1)由于y1关于x的函数图象过原点,为正比例函数,故设y1=k1x,将(3,120)代入,求出k1,再将k1的值代回y1=k1x即可;设y2=k2x+b,将(0.5,0)和(2,120)分别代入,解关于k2和b的一元一次方程组,再将k2和b的值代回y2=k2x+b即可;(2)当轿车追上大巴车时(两函数图象交点处),有二元一次方程组,解得的y值即为所求.【解答】解:(1)设y1=k1x.将(3,120)代入y1=k1x,得120=3k1,解得k1=40.∴y1=40x.设y2=k2x+b.将(0.5,0)和(2,120)分别代入y2=k2x+b,得,解得.∴y2=80x﹣40.(2)当轿车追上大巴车时,即两函数图象交点处,有,解得.∴此时距离学校为40千米.【点评】本题考查一次函数的应用,利用一次函数求解相遇问题,更简单、直观.25.【分析】(1)AF是∠DAB的平分线,BG是∠CBE的平分线,得∠BAD=2∠BAF,∠EBC=2∠EBG,由AF∥BG,得∠BAF=∠EBG,所以∠BAD=∠EBC,则AD∥BC,所以α+β=180°;(2)延长AD、BC交于点H,由∠EBM=∠EBC,∠BAM=∠BAD,得∠AMB=∠EBM﹣∠BAM=(∠EBC﹣∠BAD)=∠H,则2∠AMB=∠H=180°﹣(∠HDC+∠HCD)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;(3)延长DA、CB交于点L,由∠ABM=∠EBG=∠EBC=∠ABL,∠BAF=∠BAD,得∠AMB=∠BAF﹣∠ABM=(∠BAD﹣∠ABL)=∠L,则2∠AMB=∠L=180°﹣α﹣β.【解答】(1)证明:∵AF是∠DAB的平分线,BG是∠CBE的平分线,∴∠BAD=2∠BAF,∠EBC=2∠EBG,∴AF∥BG,∴∠BAF=∠EBG,∴2∠BAF=2∠EBG,∴∠BAD=∠EBC,∴AD∥BC,∴α+β=180°.(2)解:2∠AMB=α+β﹣180°,证明:如图2,延长AD、BC交于点H,∵∠EBM=∠EBC,∠BAM=∠BAD,∴∠AMB=∠EBM﹣∠BAM=(∠EBC﹣∠BAD)=∠H,∴2∠AMB=∠H,∵∠H=180°﹣(∠HDC+∠HCD)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°,∴2∠AMB=α+β﹣180°.(3)2∠AMB=180°﹣α﹣β,证明:如图3,α+β<180°,延长DA、CB交于点L,∵∠ABM=∠EBG,∠EBC=∠ABL,∴∠ABM=∠EBG=∠EBC=∠ABL,∵∠BAF=∠BAD,∴∠AMB=∠BAF﹣∠ABM=(∠BAD﹣∠ABL)=∠L,∴2∠AMB=∠L,∵∠L=180°﹣α﹣β,∴2∠AMB=180°﹣α﹣β.【点评】此题重点考查角平行线的性质、平分线的定义、三角形的内角和等于180°、三角形的一个外角等于与它不相邻的两个内角的和等知识,正确地作出所需要的辅助线是解题的关键.26.【分析】(1)证△ACD≌△BCE(SAS),推出∠A+∠ABE=180°即可;(2)①由(1)得△ACD≌△BCE(SAS),则BE=AD,因为BD+BE+DE=AB+DE,所以要使△BDE的周长最小,只要DE最小,当CD⊥AB时,CD的长最小,此时DE最小,由“三线合一”即可求出AD的长;②分两种情况:当∠BDE=90°时和当∠BED=90°时,分别作出图形,作CH⊥AB于点H,利用(1)的结果及勾股定理解答即可.【解答】(1)证明:∵△ABC、△CDE都是等边三角形,∴CA=CB=AB,∠A=∠ACB=∠ABC=60°,∠DCE=∠DCE=DEC=60°,CD=CE =DE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠CBE=∠A=60°,∴∠ABE=120°,∴∠A+∠ABE=180°,∴BE∥AB;(2)解:①△BDE的周长存在最小值,由(1)得△ACD≌△BCE(SAS),∴BE=AD,∴BD+BE+DE=AB+DE,要使△BDE的周长最小,则DE最小,∵CD=DE,∴当CD⊥AB时,CD的长最小,如图2,∵CA=CB=4,CD⊥AB,∴AD=AB=2;②当点D在直线AB上运动时,△BDE能形成直角三角形,分两种情况,当∠BDE=90°时,作CH⊥AB于点H,如图3,∵AB=AC=BC=4,∴AH=AB=2,∴CH=,∵∠BDE=90°,∠CDE=60°,∴∠ADC=30°,∴CD=2CH=4,∴HD=;∴AD=AH+HD=8;当∠BED=90°时,作CH⊥AB于点H,如图4,同理得AH=2,CH=,设AD=x,由(1)得△ACD≌△BCE(SAS),∴BE=AD=x,∵CD=DE,∴由勾股定理得,DH2+CH2=DB2﹣BE2,即,解得,x=4,∴AD=4,综上,当点D在直线AB上运动时,△BDE能形成直角三角形,AD的值为8或4.【点评】本题是三角形的综合,主要考查等边三角形的性质,全等三角形的判定与性质,直角三角形的性质,最短路线问题,勾股定理等知识,灵活运用全等三角形的判定与性质,勾股定理是解答本题的关键。

成都市第七中学初中数学七年级下期末经典练习题(含答案)

成都市第七中学初中数学七年级下期末经典练习题(含答案)

一、选择题1.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0C .-2D .-1 2.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)3.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50° 5.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .26.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多 7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣58.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)9.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有()A.1个B.2个C.3个D.4个10.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.811.不等式4-2x>0的解集在数轴上表示为()A.B.C.D.12.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1B.2C.3D.413.已知x、y满足方程组2827x yx y+=⎧⎨+=⎩,则x+y的值是()A.3B.5C.7D.914.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度15.关于x,y的方程组2,226x y ax y a+=⎧⎨+=-⎩的解满足0x y+=,则a的值为()A.8B.6C.4D.2二、填空题16.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).17.若方程33x x m +=-的解是正数,则m 的取值范围是______.18.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____.19.如图,边长为10cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A'B'C'D',则阴影部分面积为___________________.20.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.21.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.22.不等式3x 134+>x 3+2的解是__________. 23.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.24.如图,将周长为10的三角形ABC 沿BC 方向平移1个单位长度得到三角形DEF ,则四边形ABFD 的周长为__________.25.关于x的不等式111x-<-的非负整数解为________.三、解答题26.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.27.解方程组:(1)用代入法解342 25 x yx y+=⎧⎨-=⎩(2)用加减法解5225 3415 x yx y+=⎧⎨+=⎩28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO 的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.29.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.30.已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.C4.D5.A6.C7.A8.D9.B10.C11.D12.C13.B14.B15.D二、填空题16.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额17.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考18.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<419.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩20.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(21.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平22.x>-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-323.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab的值在将ab代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时24.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD的周长解:根据题意将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF可知AD=1BF=BC+ CF=BC+1DF=25.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.2.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.3.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.4.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.6.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.7.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 9.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.10.C解析:C【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.11.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.13.B解析:B【解析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.14.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度,故选B.15.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题16.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.17.m >-3【解析】【分析】首先解方程利用m 表示出x 的值然后根据x 是正数即可得到一个关于m 的不等式即可求得m 的范围【详解】2x=3+m 根据题意得:3+m >0解得:m>-3故答案是:m>-3【点睛】本题考解析:m >-3【解析】【分析】首先解方程,利用m 表示出x 的值,然后根据x 是正数即可得到一个关于m 的不等式,即可求得m 的范围.【详解】33x x m +=-2x=3+m ,根据题意得:3+m >0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①②由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得1+4a <2, 即4a <1, 解得,a<4.故答案是:a<4.19.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩 解析:248cm【解析】【分析】如图,A B ''交AD 于F ,其延长线交BC 于E ,利用平移的性质得到//A B AB '',//BC B C '',4B E '=,2AF =,再利用四边形ABEF 为矩形得到10EF AB ==,然后计算出FB '和DF 即可得到阴影部分面积.【详解】解:如图,A B ''交AD 于F ,其延长线交BC 于E ,边长为10cm 的正方形ABCD 先向上平移4cm 再向右平移2cm ,得到正方形A B C D '''',//A B AB ∴'',//BC B C '',4B E '=,2AF =,易得四边形ABEF 为矩形,10EF AB ∴==,6FB ∴'=,8DF =,∴阴影部分面积26848()cm =⨯=.故答案为:248cm .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20.a=-1或a=-7【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a 的值即可【详解】解:∵点P 到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.21.(﹣1﹣1)【解析】试题解析:点B 的横坐标为1-2=-1纵坐标为3-4=-1所以点B 的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B 的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B 的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.22.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】3134x +>3x +2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x >-3.23.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩ 【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.24.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD 的周长解:根据题意将周长为10个单位的△ABC 沿边BC 向右平移1个单位得到△DEF 可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD 的周长. 解:根据题意,将周长为10个单位的△ABC 沿边BC 向右平移1个单位得到△DEF , 可知AD =1,BF =BC +CF =BC +1,DF =AC ;又因为AB +BC +AC =10,所以,四边形ABFD 的周长=AD +AB +BF +DF =1+AB +BC +1+AC =12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段.25.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】 解:解不等式111x -<-得:111x <-,∵3911164=<<=,∴1113x <-<,∴1113x <-<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.三、解答题26.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.(1)21x y =⎧⎨=-⎩;(2)50x y =⎧⎨=⎩ 【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415? x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50x y =⎧⎨=⎩ 【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组. 28.(1) C (5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a ,b 即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a ﹣3)2+|b+4|=0,∴a ﹣3=0,b+4=0,∴a=3,b=﹣4,∴A (3,0),B (0,﹣4),∴OA=3,OB=4,∵S 四边形AOBC =16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.29.(1)B(﹣8,﹣8),D(2,4),120;(2)∠MPO=∠AMP+∠PON;∠MPO=∠AMP-∠PON;(3)存在,P点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A、C的坐标和长方形的性质易得B(﹣8,﹣8),D(2,4),然后根据长方形的面积公式即可计算长方形ABCD的面积;(2)分点P在线段AN上和点P在线段NB上两种情况进行讨论即可得;(3)由于AM=8,AP=12t,根据三角形面积公式可得S△AMP =t,再利用三角形AMP的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P的坐标.【详解】(1)∵点A、C坐标分别为(﹣8,4)、(2,﹣8),∴B(﹣8,﹣8),D(2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).【点睛】 本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键. 30.(1)-2<a≤3.(2)5;(3)a =-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a 的不等式组,求出不等式组的解集即可; (2)根据a 的范围去掉绝对值符号,即可得出答案;(3)求出a <-12,根据a 的范围即可得出答案. 【详解】 解:(1)713x y a x y a +=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。

2022-2023学年四川省成都四十三中七年级(下)期中数学试卷(含解析)

2022-2023学年四川省成都四十三中七年级(下)期中数学试卷(含解析)

2022-2023学年四川省成都四十三中七年级(下)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1.下列计算正确的是( )A.(a3)4=a7 B.a3•a2=a5 C.(2a2)3=6a6D.a6÷a3=a22.若∠α的补角是130°,则∠α是( )A.30°B.40°C.50°D.150°3.预防新型冠状病毒感染要用肥皂勤洗手,已知肥皂泡的厚度约为0.0000007m,将数据0.0000007用科学记数法表示为( )A.7×10﹣7B.7×107C.0.7×10﹣6D.0.7×1064.一个三角形两个内角的度数分别如下,这个三角形是等腰三角形的是( )A.40°,70°B.30°,90°C.60°,50°D.50°,20°5.计算下列各式,其结果为a2﹣1的是( )A.(a﹣1)2B.(﹣a﹣1)(a+1)C.(﹣a+1)(﹣a+1)D.(﹣a+1)(﹣a﹣1)6.如图,可以判定AB∥CD的条件是( )A.∠1=∠2B.∠3=∠4C.∠D=∠5D.∠BAD+∠B=180°7.若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为( )A.1B.﹣1C.2D.﹣28.小江同学热爱体育锻炼,每周六上午他都先从家跑步到离家较远的田园广场,在那里与同学打一段时间的羽毛球后再慢步回家.下面能反映小华同学离家的距离y与所用时间x之间函数图象的是( )A.B.C.D.二、填空题(本大题共5个小题,每小题4分,共20分)9.三角形的三边长分别是4、7、x,则x的取值范围是 .10.若x2+mx+16是完全平方式,则m= .11.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A ′、D′对应,若∠1=2∠2,则∠2的度数为 .12.若,则= .13.如图所示,在△ABC中,已知点D,E,F分别为BC,AD,BE的中点.且S△ABC=15cm2,则图中△CEF的面积= .三、解答题(本大题共5个小题,共48分)14.计算:;(2)(2x2)3+(﹣3x3)2﹣x2•x4;15.(1)先化简,再求值:[(x﹣2y)2﹣2y(2y﹣x)]÷2x,其中x=2,y=1.(2)解关于x的方程:(x+3)2﹣(x﹣1)(x+2)=6.16.如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.17.某城市自来水实行阶梯水价,收费标准如下表所示:月用水量不超过12m 3的部分超过12m 3的部分不超过18m 3的部分超过18m 3的部分收费标准(元/m 3)2 2.53(1)若月用水量为xm 3,水费为y 元,求y 与x 的关系式;(2)某用户4月份用水16m 3,求所交水费;(3)某用户5月份交水费45元,求所用水量.18.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且∠AGE +∠DHE =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:∠M =∠AGM +∠CHM ;(3)如图3,在(2)的条件下,射线GH 是∠BGM 的平分线,在MH 的延长线上取点N ,连接GN ,若∠N =∠AGM ,∠M =∠N +∠FGN ,求∠MHG 的度数.一、填空题(本大题共5个小题,每小题4分,共20分)19.若a +b =1,则a 2﹣b 2+2b 的值为 .20.若(x ﹣3)x =1,则x 的值为 .21.已知∠A 与∠B (0°<∠A <180°,0°<∠B <180°)的两边互相垂直,且2∠A ﹣∠B =30°,则∠A 的度数为  .22.如图,已知AB ∥CD ,∠A =36°,∠C =120°,则∠F ﹣∠E 的大小是  °.23.已知a n=(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出,b n的表达式b n = .(用含n的代数式表示)二、解答题(本大题共3个小题,共30分)24.(1)已知a+b=5,ab=2,求a2+b2﹣3ab的值;(2)已知等腰△ABC的三边长a,b,c均为整数,且满足a2+b2﹣4a﹣6b=﹣13,求△ABC 的周长.25.甲,乙两地相距480千米,货车和轿车先后从甲地出发驶向乙地,其中货车先出发0.5小时,如图,线段OA表示货车离甲地的距离y货(千米)与货车行驶时间x(小时)之间的图象关系,折线BCD表示轿车离甲地的距离y轿千米)与货车行驶时间x(小时)之间的图象关系,根据图象解答下列问题:(1)货车的速度= 千米/小时,当0.5<x<2.5,轿车的速度= 千米/小时;(2)当轿车追上货车时,求x的值;(3)在整个行驶过程中,当两辆车相距20千米时,求x的值.26.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了A,D两座可旋转探照灯.假定主道路是平行的,即PQ∥CN,A,B为PQ上两点,AD平分∠CAB交CN于点D,E为AD上一点,连接BE,AF平分∠BAD交BE于点F.(1)若∠C=20°,则∠EAP= ;(2)作AG交CD于点G,且满足∠1=∠ADC,当∠2+∠GAF=180°时,试说明:AC∥BE;(3)在(1)问的条件下,探照灯A、D照出的光线在铁路所在平面旋转,探照灯射出的光线AC以每秒5度的速度逆时针转动,探照灯D射出的光线DN以每秒15度的速度逆时针转动,DN转至射线DC后立即以相同速度回转,若它们同时开始转动,设转动时间为t秒,当DN回到出发时的位置时同时停止转动,则在转动过程中,当AC与DN互相平行或垂直时,请直接写出此时t的值.参考答案一、选择题(本大题共8个小题,每小题4分,共32分)1.下列计算正确的是( )A.(a3)4=a7 B.a3•a2=a5 C.(2a2)3=6a6D.a6÷a3=a2【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.解:A.(a3)4=a12,故本选项不符合题意;B.a3•a2=a5,正确;C.(2a2)3=8a6,故本选项不符合题意;D.a6÷a3=a3,故本选项不符合题意.故选:B.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.2.若∠α的补角是130°,则∠α是( )A.30°B.40°C.50°D.150°【分析】根据补角的定义:两角之和等于180°,那么这两个角互为补角,即可求出∠α.解:∵∠α的补角是130°,∴∠α=180°﹣130°=50°,故选:C.【点评】本题考查余角和补角,掌握补角的定义是解题的关键.3.预防新型冠状病毒感染要用肥皂勤洗手,已知肥皂泡的厚度约为0.0000007m,将数据0.0000007用科学记数法表示为( )A.7×10﹣7B.7×107C.0.7×10﹣6D.0.7×106【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000007=7×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.一个三角形两个内角的度数分别如下,这个三角形是等腰三角形的是( )A.40°,70°B.30°,90°C.60°,50°D.50°,20°【分析】先根据三角形内角和计算出第三个角的度数,然后根据等腰三角形的判定定理对各选项进行判断.解:A、第三个角为180°﹣40°﹣70°=70°,三角形中有两个角都等于70°,所以三角形为等腰三角形,所以A选项符合题意;B、第三个角为180°﹣30°﹣90°=60°,三角形中没有角相等,所以三角形不为等腰三角形,所以B选项不符合题意;C、第三个角为180°﹣60°﹣50°=70°,三角形中没有角相等,所以三角形不为等腰三角形,所以C选项不符合题意;D、第三个角为180°﹣50°﹣20°=110°,三角形中没有角相等,所以三角形不为等腰三角形,所以D选项不符合题意.故选:A.【点评】本题考查了三角形内角和定理:三角形内角和是180°.也考查了等腰三角形的判定.5.计算下列各式,其结果为a2﹣1的是( )A.(a﹣1)2B.(﹣a﹣1)(a+1)C.(﹣a+1)(﹣a+1)D.(﹣a+1)(﹣a﹣1)【分析】根据完全平方公式和平方差公式逐个判断即可.解:A.(a﹣1)2=a2﹣2a+1,故本选项不符合题意;B.(﹣a﹣1)(a+1)=﹣(a+1)2=﹣a2﹣2a﹣1,故本选项不符合题意;C.(﹣a+1)(﹣a+1)=(﹣a+1)2=a2﹣2a+1,故本选项不符合题意;D.(﹣a+1)(﹣a﹣1)=(﹣a)2﹣12=a2﹣1,故本选项符合题意;故选:D.【点评】本题考查了完全平方公式和平方差公式,能熟记公式是解此题的关键,注意:完全平方公式:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,平方差公式:(a+b)(a﹣b)=a2﹣b2.6.如图,可以判定AB∥CD的条件是( )A.∠1=∠2B.∠3=∠4C.∠D=∠5D.∠BAD+∠B=180°【分析】依据平行线的判定方法进行判断:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.解:A、由∠1=∠2,可得到AD∥BC,故此选项不合题意;B、由∠3=∠4,可得到AB∥CD,故此选项符合题意;C、由∠D=∠5,可得到AD∥BC,故此选项不合题意;D、由∠BAD+∠B=180°,可得到AD∥BC,故此选项不合题意;故选:B.【点评】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为( )A.1B.﹣1C.2D.﹣2【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.解:原式=﹣2x2+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点评】本题考查多项式乘多项式,解题的关键是熟练运用多项式乘多项式运算法则,本题属于基础题型.8.小江同学热爱体育锻炼,每周六上午他都先从家跑步到离家较远的田园广场,在那里与同学打一段时间的羽毛球后再慢步回家.下面能反映小华同学离家的距离y与所用时间x之间函数图象的是( )A.B.C.D.【分析】本题需先根据已知条件,确定出每一步的函数图形,再把图象结合起来即可求出结果.解:图象应分三个阶段,第一阶段:跑步到离家较远的田园广场,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿羽毛球,这一阶段离家的距离不随时间的变化而改变;第三阶段:慢步回家,这一阶段,离家的距离随时间的增大而减小,并且这段的速度小于第一阶段的速度.故选:D.【点评】本题主要考查函数图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9.三角形的三边长分别是4、7、x,则x的取值范围是 3<x<11 .【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得答案.解:根据三角形的三边关系可得:7﹣4<x<7+4,即3<x<11,故答案为:3<x<11.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.10.若x2+mx+16是完全平方式,则m= ±8 .【分析】利用完全平方公式的结构特征判断即可得到m的值.解:∵x2+mx+16是完全平方式,∴m=±8.故答案为:±8.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.11.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A ′、D′对应,若∠1=2∠2,则∠2的度数为 36° .【分析】先根据平行线的性质,由AB∥CD,得到∠1=∠AEF,再根据翻折的性质可得∠AEF=∠FEA′,由平角的性质可得∠AEF+∠FEA′+∠2=180°,即可得出答案.解:∵AB∥CD,∴∠1=∠AEF,又∵∠AEF=∠FEA′,∠1=2∠2,∴∠AEF+∠FEA′+∠2=180°,∴∠2=36°.故答案为:36°.【点评】本题主要考查了平行线的性质,熟练应用平行线的性质进行求解是解决本题的关键.12.若,则= 2 .【分析】灵活运用完全平方公式的变形,x2+y2=(x+y)2﹣2xy,直接代入计算即可.解:∵,∴=(x+)2﹣2=4﹣2=2.故应填:2.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式是解题的关键.13.如图所示,在△ABC中,已知点D,E,F分别为BC,AD,BE的中点.且S△ABC=15cm2,则图中△CEF的面积= cm2 .【分析】根据三角形中线的性质可求得S△ABC=2S△ABD=2S△ADC,S△ABD=2S△BDE,S△ADC =2S△CDE,S△EBC=2S△CEF,进而可求得S△ABC=4S△CEF,即可求解.解:∵点D,E,F分别为BC,AD,BE的中点,∴S△ABC=2S△ABD=2S△ADC,S△ABD=2S△BDE,S△ADC=2S△CDE,S△EBC=2S△CEF,∵S△ABC=S△ABD+S△ADC,S△ECB=S△BDE+S△CDE,∴S△ABC=2S△BCE,∴S△ABC=4S△CEF,∵S△ABC=15cm2,∴S△CEF=×15=(cm2),故答案为cm2.【点评】本题主要考查三角形的面积,三角形的中线的性质,灵活运用三角形中线的性质求解三角形的面积之间的关系是解题的关键.三、解答题(本大题共5个小题,共48分)14.计算:;(2)(2x2)3+(﹣3x3)2﹣x2•x4;【分析】(1)首先计算零指数幂、负整数指数幂、乘方和绝对值,然后从左向右依次计算,求出算式的值即可;(2)首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.解:=﹣1﹣8+1+4=﹣4.(2)(2x2)3+(﹣3x3)2﹣x2•x4=8x6+9x6﹣x6=17x6﹣x6=16x6.【点评】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,零指数幂、负整数指数幂的运算方法,以及有理数的混合运算,注意运算顺序.15.(1)先化简,再求值:[(x﹣2y)2﹣2y(2y﹣x)]÷2x,其中x=2,y=1.(2)解关于x的方程:(x+3)2﹣(x﹣1)(x+2)=6.【分析】(1)先算括号被的乘法,合并同类项,算除法,最后求出答案即可;(2)去括号,移项,合并同类项,系数化成1即可.解:(1)[(x﹣2y)2﹣2y(2y﹣x)]÷2x=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=(x2﹣2xy)÷2x=x﹣y,当x=2,y=1时,原式=﹣1=0;(2)(x+3)2﹣(x﹣1)(x+2)=6,去括号,得x2+6x+9﹣x2﹣2x+x+2=6,移项得:x2+6x﹣x2﹣2x+x=6﹣2﹣9,合并同类项,得5x=﹣5,系数化成1得:x=﹣1.【点评】本题考查了解一元一次方程和整式的混合运算与求值,能正确根据整式的运算法则进行化简是解(1)的关键,能正确根据等式的性质进行变形是解(2)的关键.16.如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.【分析】首先证明AD∥EF,再根据平行线的性质可得∠1=∠BAD,再由∠1=∠2,可得∠2=∠BAD,根据内错角相等,两直线平行可得DG∥BA.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴AB∥DG.【点评】此题主要考查了平行线的判定和性质,关键是掌握内错角相等,两直线平行;两直线平行,同位角相等.17.某城市自来水实行阶梯水价,收费标准如下表所示:超过18m3的部分月用水量不超过12m3的部分超过12m3的部分不超过18m3的部分收费标准(元/m3)2 2.53(1)若月用水量为xm3,水费为y元,求y与x的关系式;(2)某用户4月份用水16m3,求所交水费;(3)某用户5月份交水费45元,求所用水量.【分析】(1)依照题意,当x≤12时,y=ax,当12<x≤18时,y=6a+b(x﹣12),当x>18时,y=6a+b(x﹣12)+c(x18),分别把对应的x,y值代入求解可得解析式;(2)实质是求:当x=16时,在12<x≤18内,求y值;(3)由于45<2×12+2.5×(18﹣12)=54,故12<x≤18时,把y=45代入y=2.5x﹣6解方程即可.解:(1)依照题意,当x≤12时,y=ax,当12<x≤18时,y=6a+b(x﹣12),当x>18时,y=6a+b(x﹣12)+c(x﹣18),由已知得a=2,b=2.5,c=3,当x≤12时,y=2x,当12<x≤18时,y=12×2+2.5(x﹣12)=2.5x﹣6,当x>18时,y=24+2.5×6+3(x﹣18)=3x﹣15;(2)将x=16代入y=2.5x﹣15(12<x≤18),得y=2.5×16﹣6=34(元),答:某用户4月份用水16m3,所交水费为34元;(3)∵45>2×12+2.5×(18﹣12)=39,∴12<x≤18时,把y=45代入y=3x﹣15得:45=3x﹣15,解得:x=20(m3),答:某用户5月份交水费45元,所用水量为20m3.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确地列出解析式,再把对应值代入求解.18.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,进而可得结论.【解答】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【点评】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.一、填空题(本大题共5个小题,每小题4分,共20分)19.若a+b=1,则a2﹣b2+2b的值为 1 .【分析】把a2﹣b2+2b变形,将a+b=1代入即可得答案.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=1×(a﹣b)+2b=a﹣b+2b=a+b=1,故答案为:1.【点评】本题考查整式的变形及整体代入求值,解题的关键是用平方差公式变形.20.若(x﹣3)x=1,则x的值为 0或4或2 .【分析】直接利用x﹣3=1或x﹣3=﹣1或x=0分别分析得出答案.解:当x﹣3=1,解得:x=4,此时(x﹣3)x=1,当x﹣3=﹣1,解得:x=2,此时(x﹣3)x=1,当x=0,此时(x﹣3)x=1,综上所述:x的值为:0或4或2.故答案为:0或4或2.【点评】此题主要考查了零指数幂的性质,正确分类讨论是解题关键.21.已知∠A与∠B(0°<∠A<180°,0°<∠B<180°)的两边互相垂直,且2∠A﹣∠B=30°,则∠A的度数为 70° .【分析】垂直的定义和四边形内角和求出∠A度数.解:当∠A是锐角时,四边形内角和是180°∵∠A+∠B=180°且2∠A﹣∠B=30°∴∠A=70°当∠A是钝角时,与2∠A﹣∠B=30°矛盾,不成立.故答案为:70°.【点评】本题综合考查了垂直的定义,难点是分类求角的大小.22.如图,已知AB∥CD,∠A=36°,∠C=120°,则∠F﹣∠E的大小是 24 °.【分析】过点E作EG∥AB,过点F作FH∥AB,根据平行公理可得AB∥EG∥FH∥CD,再根据平行线的性质解答即可.解:如图,过点E作EG∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠A=∠1=36°,∠2=∠3,∠4=180°﹣∠C=180°﹣120°=60°∴∠EFC﹣∠AEF=∠3+∠4﹣∠1﹣∠2=∠4﹣∠1=60°﹣36°=24°.故答案为:24.【点评】本题考查了平行线的性质,平行公理,作辅助线构造内错角是解题的关键.23.已知a n=(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出,b n的表达式b n= .(用含n的代数式表示)【分析】根据题意按规律求解:b1=2(1﹣a1)=2×(1﹣)==,b2=2(1﹣a1)(1﹣a2)=×(1﹣)==,….所以可得:b n的表达式b n=.解:∵b1=2(1﹣a1)=2×(1﹣)==,b2=2(1﹣a1)(1﹣a2)=×(1﹣)==,…,∴b n=2(1﹣a1)(1﹣a2)…(1﹣a n)=.故答案为:.【点评】本题主要考查数字的变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、解答题(本大题共3个小题,共30分)24.(1)已知a+b=5,ab=2,求a2+b2﹣3ab的值;(2)已知等腰△ABC的三边长a,b,c均为整数,且满足a2+b2﹣4a﹣6b=﹣13,求△ABC 的周长.【分析】(1)利用配方法将a2+b2﹣3ab配方成(a+b)2﹣5ab,再将a+b=5,ab=2代入即可求解;(2)利用配方法将a2+b2﹣4a﹣6b=﹣13配方成(a﹣2)2+(b﹣3)2=0,根据非负数的性质得到a=2,b=3,根据△ABC为等腰三角形对c的值进行讨论,再分别算出△ABC 的周长即可.解:(1)a2+b2﹣3ab=(a2+2ab+b2)﹣5ab=(a+b)2﹣5ab,∵a+b=5,ab=2,∴原式=52﹣5×2=15;(2)∵a2+b2﹣4a﹣6b=﹣13,∴a2+b2﹣4a﹣6b+13=0,∴(a2﹣4a+4)+(b2﹣6b+9)=0,∴(a﹣2)2+(b﹣3)2=0,∴a=2,b=3,∵等腰△ABC的三边长a,b,c均为整数,∴c=2或c=3,∴a+b+c=2+3+2=7或a+b+c=2+3+3=8,∴△ABC的周长为7或8.【点评】本题主要考查配方法的应用、非负数的性质、等腰三角形的性质,熟练掌握完全平方公式是解题关键.25.甲,乙两地相距480千米,货车和轿车先后从甲地出发驶向乙地,其中货车先出发0.5小时,如图,线段OA表示货车离甲地的距离y货(千米)与货车行驶时间x(小时)之间的图象关系,折线BCD表示轿车离甲地的距离y轿千米)与货车行驶时间x(小时)之间的图象关系,根据图象解答下列问题:(1)货车的速度= 80 千米/小时,当0.5<x<2.5,轿车的速度= 60 千米/小时;(2)当轿车追上货车时,求x的值;(3)在整个行驶过程中,当两辆车相距20千米时,求x的值.【分析】(1)根据“速度=路程÷时间”列式计算即可;(2)先求出当2.5<x<5.5时,y轿,y货(千米)与货车行驶时间x(小时)之间的函数关系式,再令y货=y轿,解方程求出x的值即可;(3)分四种情形列出方程即可解决问题.解:(1)货车的速度为:480÷6=80(千米/小时),当0.5<x<2.5,轿车的速度为=60(千米/小时),故答案为:80,60;(2)由图可知,在2.5<x<5.5时两车相遇;当2.5<x<5.5时,设y轿=nx+m,根据题意,得,解得,所以y轿=120x﹣180(2.5<x<5.5),由题意知,y货=80x(0≤x≤6),∴令y货=y轿,得120x﹣180=80x,解得x=4.5,即x=4.5h时轿车追上货车;(3)∵货车的速度为80千米/小时,∴20÷80=(小时),∴当货车行驶小时时,两车相距20千米;当轿车在货车后20千米时,80x﹣(120x﹣180)=20,解得x=4;当轿车在货车前20千米时,(120x﹣180)﹣80x=20,解得x=5;当轿车到达终点,货车离终点20千米时,80x=480﹣20,解得x=.答:两车在行驶过程中,当两辆车相距20千米时,x=或4或5或.【点评】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.26.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了A,D两座可旋转探照灯.假定主道路是平行的,即PQ∥CN,A,B为PQ上两点,AD平分∠CAB交CN于点D,E为AD上一点,连接BE,AF平分∠BAD交BE于点F.(1)若∠C=20°,则∠EAP= 100° ;(2)作AG交CD于点G,且满足∠1=∠ADC,当∠2+∠GAF=180°时,试说明:AC∥BE;(3)在(1)问的条件下,探照灯A、D照出的光线在铁路所在平面旋转,探照灯射出的光线AC以每秒5度的速度逆时针转动,探照灯D射出的光线DN以每秒15度的速度逆时针转动,DN转至射线DC后立即以相同速度回转,若它们同时开始转动,设转动时间为t秒,当DN回到出发时的位置时同时停止转动,则在转动过程中,当AC与DN互相平行或垂直时,请直接写出此时t的值.【分析】(1)利用平行线的性质和角平分线的性质可解;(2)通过计算,利用内错角相等,两直线平行进行判定即可;(3)分五种情况画图,列出关于t的式子即可解答.解:(1)∵PQ∥CN,∴∠CAB+∠C=180°,∠PAC=20°.∵∠C=20°,∴∠CAB=160°.∵AD平分∠CAB,∴∠CAD=80°.∴∠EAP=∠DAC+∠PAC=100°.故答案为:100°.(2)∵PQ∥CN,∴∠ADC=∠BAD.∵∠1=∠ADC,∴∠1=∠BAD.∵AF平分∠BAD,∴∠BAD=2∠EAF.∴∠1=∠EAF.∴∠GAF=∠1+∠EAF=∠EAF.∵∠2+∠GAF=180°,∴∠2+2∠EAF=180°.∴∠2+∠BAD=180°.∵∠2+∠AEB=180°,∴∠BAD=∠AEB.∵∠BAD=∠CAD,∴∠CAD=∠AEB.∴AC∥BE.(3)360°÷15°=24(s).当AC∥DN时,则∠ACD=∠HDN,如图,∵PB∥CH,∴∠PAC=∠ACD.∴∠PAC=HDN.由题意,∠PAC=20+5t,∠HDN=15t∴20+5t=15t.∴t=2s.当AC⊥DN时,则∠CND=90°,如图,∵PA∥CD,∴∠ACD=∠PAC=20+5t.∵∠NDH=15t,∴∠NDC=180﹣15t.∴20+5t+180﹣15t.∴t=11s.当AC⊥DN时,则∠CND=90°,如图,∵PA∥CD,∴∠ACD=∠PAC=20+5t.∵∠NDC=15t﹣180,∴20+5t+15t﹣180=90.∴t=12.5s.当ND∥AC时,则∠NDC=∠ACH,如图,由题意,∠MDN=15t﹣180,∠PAC=20+5t.∴∠NDC=180°﹣∠MDN=360﹣15t.∵PA∥CD,∴∠ACH=∠PAC=20+5t.∴20+5t=360﹣15t.∴t=17s.当DN⊥AC时,∠DNC=90°,如图,∵∠NDC=360﹣15t.∴∠NDC+∠DCN=90°.∵∠NCD=180﹣(20+5t),∴360﹣15t+180﹣(20+5t)=90.∴t=21.5s.综上,t的值为2s或11s或12.5s或17s或21.5s.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,反之亦然.。

2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷(含答案)

2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷(含答案)

2023-2024学年四川省成都实验外国语学校七年级(下)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。

1.新能源汽车是我国经济发展的重要产业之一,下列新能源车标中,不是轴对称图形的是( )A. B. C. D.2.下列运算正确的是( )A. a2+a3=a5B. a2⋅a3=a6C. (−ab3)2=a2b6D. 2a6÷a3=2a23.“墙角数枝梅,凌寒独自开.遥知不是雪,为有暗香来.”出自宋代诗人王安石的《梅花》.梅花的花粉直径约为0.000036m,用科学记数法表示为3.6×10n m,则n的值为( )A. −4B. −5C. 4D. 54.关于全等图形的描述,下列说法正确的是( )A. 形状相同的图形B. 面积相等的图形C. 能够完全重合的图形D. 周长相等的图形5.已知直线a//b,将一块含30°角的直角三角板ABC按如图方式放置,点C落在直线b上.若∠1=48°,则∠2的度数为( )A. 42°B. 48°C. 52°D. 58°6.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A. 1,2,3B. 1,2,4C. 2,3,4D. 2,2,47.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A. ∠A=∠DB. AC=BDC. ∠ACB=∠DBCD. AB=DC8.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多六客,一房八客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有6人无房可住;如果一间客房住8人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A. {7x−6=y 8x−1=yB. {7x−6=y 8(x−1)=yC. {7x +6=y 8x−1=yD. {7x +6=y 8(x−1)=y 二、填空题:本题共10小题,每小题4分,共40分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

树德中学七年级(下)数学试卷(时间120分钟 满分150分) 命题人 宣以好A 卷(100分)一、选择题(每题3分,共36分).1.下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有( )A.4个B.5个C. 6个D.7个 2.在代数式bac a +21,53b ,π,2432--x x ,xy y x +,ab π,0,a b中, 下列结论正确..的是 ( ) A .有4个单项式,2个多项式 B .有4个单项式,3个多项式 C .有7个整式 D .有3个单项式,2个多项式3.下列四个算式:(1)a a a 32-=+-;(2)633x x x =+;(3)3553)()(m m m m =-⋅-÷-;(4)x x x x 22)24(2=÷+,其中错误..的个数为 ( ) A .1 B .2 C .3 D .44..等腰三角形一腰上的高与另一腰的夹角为20,则顶角的度数为( )A .70 B.55 C.110 D. 70或110 5..如图1,若∠AOB =180º,∠1是锐角,则∠1的余角是( )A .21∠2-∠1 B. 21(∠2-∠1) C. 21∠2-23∠1 D.31(∠2+∠1) 6.同时抛掷两枚质地均匀的正方体,正方体的六个面上分别刻有1到6的整数,下列事件是不可能...事件的是( ) A. 点数之和为13 B .点数之和小于3 C. 点数之和大于4且小于8 D. 点数之和为127.等腰三角形的三边均为整数,且周长为11,则底边是( ) A .1或3 B .3或5 C .1或3或5 D .1或3或5或78.王老师骑车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,王老师加快了速度,仍保持匀速前进,结果准时到达学校。

在下面的示意图中,能正确地表示自行车行进路程s (千米)与行进时间t (小时)的示意图的是( )9.下列说法中,正确..的是 ( ) A. 近似数5百与500的精确度是相同的.B .近似数5.05是精确到0.01的数,它有3个有效数字 C. .近似数55.0与55是一样的.D.近似数5.05是精确到百分位的数,它的有效数字是5和0.10. 如图2,PD ⊥AB 于D ,PE ⊥AC 于E ,且PD=PE ,则△APD 与△APE 全等的理由是 ( )A .SSSB .ASAC .SSAD .HL 11.在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形(2)有两个外角相等的等腰三角形是等边三角形(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形(4)三个外角都相等的三角形是等边三角形。

其中正确..的个数是 ( ) A .4个 B .3个 C .2个 D .1个12.若当1=x 时,代数式73++bx ax 的值为4,则当1-=x 时,代数式73++bx ax值为 ( )A.7B.12C.11D.10 二、填空题(每题4分,共20分).答案写在答卷上.......13.一个正方体的棱长为4×102毫米,用科学计数法表示:它的表面积=__________平方米.14. 如121--)(x 无意义,则=--21)(x _______. 15. 如图3,AB ∥CD,∠A=110°,∠FDA=50°,则∠CDE= 度. 16.小明照镜子的时候,发现T 恤上的英文单词在镜子中呈现“ ”的样子,请你判断这个英文单词是 。

17.下岗职工购进一批苹果,到集贸市场零售,已知卖出的苹果数量x (千克)与售价y (元)的关系如下表:则y 与x 之间的关系式...为_________________.雪佛兰 三菱 雪铁龙 丰田 图3FEDC BAA BECG F D)12 )图4102030405060708090100110102040503060速度(千米/时)时间/分三、解答题(44分)18.(6分)化简:2()[()4]a b c a b c a b ab+-++--+()19.(8分)先化简再求值:当x=2时,求代数式)2()]1(2)23([2xxxxx-÷---的值.20.(8分)如图4,AB∥CD,直线EF分别交AB、CD点E、F,EG平分∠AEF,(1)求证:△EGF是等腰三角形.(2)若∠1=40°,求∠2的度数. 21.(12分)如图5,小明的爸爸去参加一个聚会,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是什么?(3)小车在哪段时间保持匀速,达到多少?(4)用语言大致描述这辆汽车的行驶情况?22.(10分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,如图,三个汉字可以看成是轴对称图形。

(1)请再写出2个类似轴对称图形的汉字。

(2)小明和小红利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小明获胜,否则小红获胜,你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析并写出构成的汉字进行说明。

图5EABCDDCBEA图6DENMCABB 卷(50分)一、填空题(每题4分,共16分)1. 如图6所示,在△ABC 中,DM 、EN 分别垂直平分AB 和AC ,交BC 于D 、E ,若∠DAE=50°,则∠BAC= ,若△ADE 的周长为19cm ,则BC= cm .2.在班会活动中,同学们设计了一个玩飞镖的游戏,靶子设计如图7所示,从里到外三个圆的半径分别是2、3、4,假设每次掷飞镖都击中靶子,则击中阴影部分的概率为 . 3.如果等式232x x ++=()()211x B x C -+-+恒成立...,其中B,C 为常数,B+C=___ 4. ._____________162,0336323=++=++a a a a a a 求若二、解答题.5. (6分)已知y x ,满足y x x y --+-=45222,求代数式y x xy +的值。

6.作图题(每小题2分,共8分)如图8(1)和8(2),P 是直线m 一动点,A.B 两点在m 的同侧,且A 、B 所在直线与m 不平行。

(不写作法,请保留作图痕迹............。

) (1)当P 点运动到P 1位置时,距离A 点最近;运动到P 2位置时,距离B 点最近,在图.8(1)....中的直线m 上分别画出点P 1、P 2的位置。

(2)当P 点运动到P 3位置时,与A 点的距离和与B 点距离相等。

请在图8(1)中作出P 3 位置。

(3)在直线m 上是否存在这样一点P 4使得到A 点的距离与到B 点的距离之和最小。

若存在请在图.8(2)....中.作出这点。

若不存在请说明理由。

(4)在直线m 上是否存在这样一点P 5使得到B 点的距离与到A 点的距离之差最大。

若存在请在图.8(2)....中.作出这点。

若不存在请说明理由。

图8(1) 图8(2)7.(10分)如图9(1),已知:ΔABC 中,AB=AC ,∠BAC=90°,AE 是过A 的一条直线,且B 、C 在AE 的两侧,BD ⊥AE 于D ,CE ⊥AE 于E.(1)ΔABD 与ΔCAE 全等吗?BD 与AE 、AD 与CE 相等吗?为什么?(4分) (2)BD 、DE 、CE 之间有什么样的数.量.关系?(写出关系式即可)(2分) (3)若直线AE 绕A 点旋转,如图9(2),其它条件不变..,那么BD 与DE 、CE 的关系如何?说明理由。

(4分)图9(1)图9(2)mA BPmA BP8.(10分)如图10,已知:Rt△ABC 中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点 与斜边AB 的中点M 重合,当三角尺绕着点M 旋转时,两直角边始终保持分别与边BC 、 AC 交于D ,E 两点(D 、E 不与B 、A 重合). (1)试说明:MD=ME ;(6分)(2)求四边形MDCE 的面积.(4分)附加题(共20分)1.设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的平方和, 其形式是_________________________.(10分)2.(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1()1)(1)(1(222++++++z y x xy zx yz 的值.(10分)参考答案 A 卷题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C ADDBACCBDCD13.19.610-⨯ 14 .____4____ 15. APPLE 16.060 17. 2.1y x = 18. 2c - 19.5220.(1)是,证明略. (2)0100 21. (1)自变量是时间,因变量是速度。

(2)小车共行驶了50分钟,最高时速是90千米/时 (3)30分~60分 (4)略22.(1)田,目等(2)不公平,对小红有利。

B 卷 一. 填空题.1. 0115 19cm 2.516 3. 11 4. 16- 或0 二.作图题. 略三.解答题5.略6. -17. (1)全等 (2)BD=ED+CE (3)DE=BD+CE8.(1)略 (2)1附加题:1. 22()()mn ac bd ad bc =++- 2.1图10。

相关文档
最新文档