2013年云南昭通市中考数学试卷及解析

合集下载

云南省中考数学真题试卷

云南省中考数学真题试卷

2013云南省中考数学真题试卷和答案一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)﹣6的绝对值是()A.﹣6 B.6C.±6 D.2.(3分)下列运算,结果正确的是()A.m6÷m3=m2B.3mn2•m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n2 3.(3分)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(3分)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元5.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.A C=BDC.A C⊥BD D.▱ABCD是轴对称图形6.(3分)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是()A.相离B.外切C.相交D.内切7.(3分)要使分式的值为0,你认为x可取得数是()A.9B.±3 C.﹣3 D.38.(3分)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)25的算术平方根是.10.(3分)分解因式:x3﹣4x=.11.(3分)在函数中,自变量x的取值范围是.12.(3分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(3分)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=.14.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、解答题(本大题共9个小题,满分58分)15.(4分)计算:sin30°+(﹣1)0+()﹣2﹣.16.(5分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(6分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.组别 A B C D E时间t(分钟)t<40 40≤t<60 60≤t<80 80≤t<100 t≥100人数12 30 a 24 12(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数及B组圆心角度数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.19.(7分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.20.(6分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?21.(7分)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE 是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.22.(7分)某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23.(9分)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.答案一、选择题1-4 BBDB 5-8 ACDA二、填空题9、510、x(x+2)(x﹣2)11、x≥﹣1且x≠012、13、44°14、三、解答题15、解:原式=+1+4﹣=5.解答:解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE 或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).17、解答:解:(1)如图所示:.(2)结合坐标系可得:A'(5,2),B'(0,6),C'(1,0).18、解答:解:(1)12÷10%=120(人);(2)a=120﹣12﹣30﹣24﹣12=42;(3)众数是12人;(4)每天体育锻炼时间不少于1小时的学生人数是:2400×=1560(人).19、解答:解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)(2)所有等可能的情况数为9种,其中是x2﹣3x+2=0的解的为(1,2),(2,1)共2种,则P是方程解=.解答:解:过点A作AD⊥BC于D,根据题意得∠ABC=30°,∠ACD=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴CA=CB.∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC中,∠ACD=60°,∴CD=AC=×100=50(海里).故船继续航行50海里与钓鱼岛A的距离最近.21、解答:解:(1)∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S矩形ADBE=BD•AD=3×4=12.22、解答:解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.解答:解:(1)设直线EC的解读式为y=kx+b,根据题意得:,解得,∴y=x+1,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0).∵四边形ABCD是等腰梯形,C(2,3),∴点D的坐标为(0,3).(2)设过A(﹣1,0)、D(0,3)、C(2,3)三点的抛物线的解读式为y=ax2+bx+c,则有:,解得,∴抛物线的关系式为:y=x2﹣2x+3.(3)存在.①作线段AC的垂直平分线,交y轴于点P1,交AC于点F.∵OA=OE,∴△OAE为等腰直角三角形,∠AEO=45°,∴∠FEP1=∠AEO=45°,∴△FEP1为等腰直角三角形.∵A(﹣1,0),C(2,3),点F为AC中点,∴F(,),∴等腰直角三角形△FEP1斜边上的高为,∴EP1=1,∴P1(0,2);②以点A为圆心,线段AC长为半径画弧,交y轴于点P2,P3.可求得圆的半径长AP2=AC=3.连接AP2,则在R t△AOP2中,OP2===,∴P2(0,).∵点P3与点P2关于x轴对称,∴P3(0,﹣);③以点C为圆心,线段CA长为半径画弧,交y轴于点P4,P5,则圆的半径长CP4=CA=3,在Rt△CDP4中,CP4=3,CD=2,∴DP4===,∴O P4=OD+DP4=3+,∴P4(0,3+);同理,可求得:P5(0,3﹣).综上所述,满足条件的点P有5个,分别为:P1(0,2),P2(0,),P3(0,﹣),P4(0,3+),P5(0,3﹣).。

2013年云南昭通市中考数学试卷及答案(word解析版)

2013年云南昭通市中考数学试卷及答案(word解析版)

·····2013年昭通市中考试题数 学(主试题共25个题,满分100分;附加题,共4个小题,满分50分。

考试用时150分钟)主试题(三个大题,共25个小题,满分100分)一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题3分,满分30分) 1(2013昭通市,1,3分)-4的绝对值是( )A 14B 14- C 4 D -4 【答案】C2 (2013昭通市,2,3分)下列各式计算正确的是( )A 222()a b a b +=+B 235a a a +=C 824a a a ÷=D 23a a a ⋅= 【答案】D3(2013昭通市,3,3分)如图1,AB ∥CD ,DB ⊥BC ,∠2 =50°,则∠1的度数是( ) AB CD 1 2图1 A 40° B 50° C 60° D 140° 【答案】A4(2013昭通市,4,3分)已知一组数据:12,5,9,5,14,下列说法不正确...的是( ) A 平均数是9 B 中位数是9 C 众数是5 D 极差是5 【答案】D5(2013昭通市,5,3分)如图2,已知AB 、CD 是⊙O 的两条直径,∠ABC =28°,那么∠BAD =( )图2 OCD B图2·····A 28°B 42°C 56°D 84°【答案】 A6(2013昭通市,6,3分)图3是一个正方体的表面展开图,则原正方体中与“建”字所 在的面相对的面上标的字是( ) 建 美 丽 设 云南图3图3 A 美 B 丽 C 云 D 南 【答案】D7(2013昭通市,7,3分)如图4,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( )ABCC ′ B ′图4图4A12 B 13C 14D 24【答案】B8(2013昭通市,8,3分)已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )110 10 1A B C D 【答案】C9(2013昭通市,9,3分)已知二次函数y = ax 2+bx +c (a ≠ 0)的图象如图5所示,则下列结论中正确的是( ) x =1xyO-1图5·····A a >0B 3是方程ax 2+bx +c =0的一个根C a +b +c =0D 当x <1时,y 随x 的增大而减小 【答案】B10(2013昭通市,10,3分)图6所示是某公园为迎接“中国——南亚博览会”设置的一休闲区∠AOB =90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是( )图6D B OC 小路小 路草 坪休 闲区 A图6 A 9(103)2π-米2 B 9(3)2π-米2C 9(63)2π-米2 D (693)π-米2【答案】C二、填空题(本大题共7个小题,每小题3分,满分21分)11(2013昭通市,11,3分)根据云南省统计局发布我省生产总值的主要数据显示:去年生产总值突破万亿大关,2013年第一季度生产总值为226 040 000 000元人民币,增速居全国第一 这个数据用科学记数法可表示为 元 【答案】22604×101112(2013昭通市,12,3分)实数227,7,8-,32,36,3π中的无理数是【答案】7、32、3π13(2013昭通市,13,3分)因式分解:2218x -= 【答案】2(x +3)(x -3)14(2013昭通市,14,3分)如图7,AF = DC ,BC ∥EF ,只需补充一个 条件 ,就得△ABC ≌△DEF·····图7AFBCDE图7【答案】BC = EF (或∠A =∠D ,或∠B =∠E ,或AB ∥DE 等) 15(2013昭通市,15,3分)使代数式321x -有意义的x 的取值范围是【答案】12x ≠16(2013昭通市,16,3分)如图8,AB 是⊙O 的直径,弦BC =4cm ,F 是弦BC 的中点,∠ABC =60°若动点E 以1cm/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s) (0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s)的值为 (填出一个正确的即可)图8ABC OE F图8【答案】4(或7或9或12)(只需填一个答案即可得分)17(2013昭通市,17,3分)如图9所示,图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n = (用n 表示,n 是正整数)2n -15 12 347 1 1 2 43 3 n图9 【答案】n 2三、解答题(本大题共8个小题,满分49分)·····18 (2013昭通市,18,6分)计算:02013214(3)10sin30(1)()3π----︒--+【答案】解:02013214(3)10sin 30(1)()3π----︒--+ 21519=--++ 6=19 (2013昭通市,19,5分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1 条为棕色 在准备校艺术节的演出服装时突遇停电,小明任意拿出1件上衣和1条裤子穿上请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率【答案】解:列表如下:裤子 上衣 蓝色蓝色棕色红色 (红色,蓝色) (红色,蓝色) (红色,棕色) 蓝色(蓝色,蓝色)(蓝色,蓝色)(蓝色,棕色)由上表可知,总情况6种,而且每种结果出现的可能性相同 小明穿的上衣和裤子恰好都是蓝色占2种,所以小明穿的上衣和裤子恰好都是蓝色的概率是1320 (2013昭通市,20,5分)为了推动课堂教学改革,打造高效课堂,配合地区“两型课堂”的课题研究,羊街中学对八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图10 请根据图中提供的信息,回答下列问题图10 图11(1)求本次被调查的八年级学生的人数,并补全条形统计图11; (2)若该校八年级学生共有540人,请你计算该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)? 【答案】解:(1)设本次被调查的八年级学生有x 人,观察图10和图11,“喜欢”的学生18名,占本次被调查的八年级学生的人数的比为360120,即31,列方程:x 18=31,得·····x =54 经检验x =54是原方程的解 由54非常喜欢的人数=360200,得:非常喜欢的人数为30(2)列方程:120200==540540360+支持人数喜欢的人数+非常喜欢的人数由此解得支持的学生有480名21 (2013昭通市,21,5分)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P 处观看小亮与爸爸在湖中划船(如图12所示) 小船从P 处出发,沿北偏东60°方向划行200米到A 处,接着向正南方向划行一段时间到B 处 在B 处小亮观测到妈妈所在的P 处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)? (参考数据:sin37°≈060,cos37°≈080,tan37°≈075,2≈141,3≈173)图12AB 37°60°P图12【答案】解:过P 作PC ⊥AB 于C ,AB37°60°PC在Rt △APC 中,AP = 200m ,∠ACP = 90°,∠PAC = 60° ∴ PC= 200×sin60°=200 ×23=1003(m ) ∵ 在Rt △PBC 中,sin37°=PBPC, ∴ 100 1.73288()sin 370.6PC PB m ⨯==≈︒ 答:小亮与妈妈相距约288米·····22 (2013昭通市,22,6分)如图13,直线y =k 1x +b (k 1≠0)与双曲线y =2k x(k 2≠0)相交于A (1,m )、B (-2,-1)两点 (1)求直线和双曲线的解析式 (2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式A yxBO图13【答案】解:(1)∵ 双曲线y = 2k x经过点B (-2,-1), ∴ k 2 = 2 ∴ 双曲线的解析式为:y =2x∵ 点A (1,m )在双曲线y = 2x上, ∴ m = 2,则A (1,2) 由点A (1,2),B (-2,-1)在直线y =k 1x +b 上,得 112,2 1.k b k b +=⎧⎨-+=-⎩解得11,1.k b =⎧⎨=⎩ ∴ 直线的解析式为:y = x +1 (2)y 2<y 1<y 323 (2013昭通市,23,7分)如图14,已知AB 是⊙O 的直径,点C 、D 在⊙O 上, 点E 在⊙O 外,∠EAC =∠B = 60°(1)求∠ADC 的度数; (2)求证:AE 是⊙O 的切线BCD图14O图14·····【答案】解:(1)∵ ∠ABC 与∠ADC 都是弧AC 所对的圆周角,∴ ∠ADC =∠B =60° (2)∵ AB 是⊙O 的直径, ∴ ∠ACB =90°, ∴ ∠BAC =30°∴ ∠BAE =∠BAC +∠EAC =30°+60°=90°, 即 BA ⊥AE∴ AE 是⊙O 的切线24 (2013昭通市,24,7分)如图15,在菱形ABCD 中,AB = 2,60DAB ∠=,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN(1)求证:四边形AMDN 是平行四边形(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由 AMBNDCE图15 【答案】(1)证明:∵ 四边形ABCD 是菱形,∴ ND ∥AM ∴ ∠NDE =∠MAE ,∠DNE =∠AME ∵ 点E 是AD 中点,∴ DE = AE ∴ △NDE ≌△MAE ,∴ ND = MA ∴ 四边形AMDN 是平行四边形 (2)① 1; 理由如下:∵ 四边形ABCD 是菱形, ∴ AD = AB = 2若平行四边形AMDN 是矩形, 则DM ⊥AB , 即 ∠DMA =90° ∵ ∠A =60°, ∴ ∠ADM =30° ∴ AM =12AD =1 25 (2013昭通市,25,8分)如图16,已知A (3,0)、B (4,4)、原点O (0,0)在抛物线y = ax 2+bx +c (a ≠0)上(1)求抛物线的解析式(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个交点D ,求m 的·····值及点D 的坐标(3)如图17,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应)图16 OyxABDOyxABDN图16 图17【答案】(1)∵ A (3,0)、B (4,4)、O (0,0)在抛物线y =ax 2+bx +c (a ≠0)上∴ 930,1644,0,a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得1,3,0.a b c =⎧⎪=-⎨⎪=⎩∴ 抛物线的解析式为:y =x 2-3x …………………2分 (2)设直线OB 的解析式为y = k 1 x ( k 1≠0),由点B (4,4)得 4=4 k 1,解得k 1=1∴ 直线OB 的解析式为y = x ,∠AOB = 45° ∵ B (4,4),∴ 点B 向下平移m 个单位长度的点B ′的坐标为(4,0), 故m = 4∴ 平移m 个单位长度的直线为y = x - 4解方程组 23,4.y x x y x ⎧=-⎨=-⎩ 得2,2.x y =⎧⎨=-⎩∴ 点D 的坐标为(2,-2) …………………………5分(3)∵ 直线OB 的解析式y =x ,且A (3,0)∵ 点A 关于直线OB 的对称点A ′的坐标为(0,3)设直线A ′B 的解析式为y =k 2x +3,此直线过点B (4,4)∴ 4k 2+3=4, 解得 k 2=14 ∴ 直线A ′B 的解析式为y =14x +3∵ ∠NBO =∠A BO ,·····∴ 点N 在直线A ′B 上, 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上, ∴14n +3=n 2-3n 解得 n 1=34-,n 2=4(不合题意,舍去)∴ 点N 的坐标为(34-,4516)如图,将△NOB 沿x 轴翻折,得到△N 1OB 1,yxA ′ N BO A P 2DB 1N 1P 1则 N 1 (34-,4516-),B 1(4,-4)∴ O 、D 、B 1都在直线y =-x 上∵ △P 1OD ∽△NOB ,∴ △P 1OD ∽△N 1OB 1, ∴ P 1为O N 1的中点∴1112OP OD ON OB ==, ∴ 点P 1的坐标为(38-,4532-) 将△P 1OD 沿直线y =-x 翻折,可得另一个满足条件的点(4532,38) 综上所述,点P 的坐标为(38-,4532-)和(4532,38)·····附加题(共4个小题,满分50分)1(2013昭通市,附加题1,12分)已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球(1)求从中随机取出一个黑球的概率(2)若往口袋中再放入x 个黑球,且从口袋中随机取出一个白球的概率是14,求代数式223(1)1x x x x x -÷+---的值 【答案】解:(1)P (取出一个黑球)44347==+ (2)设往口袋中再放入x 个黑球, 从口袋中随机取出一个白球的概率是14即 P (取出一个白球)3174x ==+由此解得x =5 经检验x =5是原方程的解∵ 原式2213(1)1x x x x x ---=÷-- 21(1)(2)(2)x x x x x x --=⋅--+1(2)x x =+∴ 当x =5时,原式=1352(2013昭通市,附加题2,12分)云南连续四年大旱,学校为节约用水,提醒人们关注漏水的水龙头因此,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升 实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏时间t (秒) 10 20 30 40 50 60 70 漏出的水量V (毫升)25811141720(1)在图1的坐标系中描出上表中数据对应的点(2)如果小王同学继续实验,请求出多少秒后量筒中的水会满而溢出(精确到1秒)·····(3)按此漏水速度,1小时会漏水_______千克(精确到01千克)图1 图2 实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?【答案】解:实验一: (1)如图所示: O24 6 8 10 12 14 16 18 20 V /毫升10 20 30 40 50 60 70 t /秒图1(2)设V 与t 的函数关系式为V = kt + b ,根据表中数据知:当t = 10时,V = 2;当t = 20时,V = 5;∴ 210,520,k b k b =+=+⎧⎨⎩ 解得:3,101.k b ⎧=⎪⎨⎪=-⎩∴ V 与t 的函数关系式为 3110V t =- 由题意得:3110010t -≥,解得,1010233633t =≥ ∴ 约337秒后,量筒中的水会满而开始溢出(3)11千克实验二:因为小李同学接水的量筒装满后水开始溢出 3 (2013昭通市,附加题3,12分)如图3,在⊙C 的内接△AOB 中,AB = AO = 4,tan ∠AOBO24 6 8 10 12 14 16 18 20 V /毫升10 20 30 40 50 60 70 t /秒O 2040 60 80 100 120 140 160 180V /毫升 20 40 60 80 100 120 140 t /秒·····= 34,抛物线y = a (x -2)2+m (a ≠0)经过点A (4,0)与点(-2,6) (1)求抛物线的解析式;(2)直线m 与⊙C 相切于点A ,交y 轴于点D ,动点P 在线段OB 上,从点O 出发向点B 运动,同时动点Q 在线段DA 上,从点D 出发向点A 运动,点P 的速度为每秒1个单位长,点Q 的速度为每秒2个单位长 当PQ ⊥AD 时,求运动时间t 的值图3A xRQ P DC Bym O图3 【答案】解:(1)将点A (4,0)和点(-2,6)的坐标代入y = a (x -2)2+m 中,得方程组,40,16 6.a m a m +=⎧⎨+=⎩解之,得1,22.a m ⎧=⎪⎨⎪=-⎩∴ 抛物线的解析式为2122y x x =-(2)如图,连接AC 交OB 于E∵ 直线m 切⊙C 于点A , ∴ AC ⊥m∵ 弦 AB = AO , ∴ AB AO = ∴ AC ⊥OB ,∴ m ∥OB ∴ ∠ OAD =∠AOB∵ OA =4,tan ∠AOB =43,∴ OD = OA ·tan ∠OAD =4×43= 3 作OF ⊥AD 于F ,则OF = OA ·sin ∠OAD = 4×53= 24t 秒时,OP =t ,DQ =2t ,若PQ ⊥AD , 则 FQ =OP = t DF =DQ -FQ = t ∴ △ODF 中,t = DF =22OD OF -=18秒·····AxP FQD C Bym O E4(2013昭通市,附加题4,14分)已知△ABC 为等边三角形,点D 为直线BC 上的一个动点(点D 不与B C 、重合),以AD 为边作菱形ADEF (A D E F 、、、按逆时针排列),使60DAF ∠=︒,连接CF(1)如图4,当点D 在边BC 上时,求证:①BD = CF , ②AC = CF + CD(2)如图5,当点D 在边BC 的延长线上且其他条件不变时,结论AC = CF + CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由(3)如图6,当点D 在边CB 的延长线上且其他条件不变时,请补全图形,并直接写出AC 、C F 、CD 之间存在的数量关系ABDCEFABC DEFA图4 图5 图6 【答案】(1)【证明】:①∵60BAD DAC DAC CAF ∠+∠=∠+∠=︒, ∴ BAD CAF ∠=∠又∵ ,AB AC AD AF == ∴ △ABD ≌ △AFC , ∴ BD CF = ② 由△ABD ≌ △AFC 知BD CF =, ∴ CF CD BD CD BC +=+= 又在等边△ABC 中AC BC =, ∴ AC CF CD =+(2)解:AC CF CD =+不成立,应该是CF =AC +CD ,理由为: 如图,延长AC 到H ,使CH CD =,连结BH , 则 在△ACD 与△BCH 中,,,,AC BC ACD BCH CD CH =∠=∠= ∴ △ACD ≌ △BCH∴ ,.BH AD HBC DAC =∠=∠ ∴ ,.ABH FAC BH AF ∠=∠=·····∴ △ABH 与△CAF 中,,,.AB AC ABH FAC BH AF =∠=∠=∴ △ABH ≌△CAF , ∴AH CF =, ∴CF AC CD =+(3)解:当点D 在边CB 的延长线上且其他条件不变时,补全图形如下图6所示,此时 AC 、CF 、CD 之间存在的数量关系为CD AC CF =+(备注:连结CF ,容易证明△ABD ≌△AHC ,∴BD HC =,又=,HC CF AC BC =)ABDCEFABCD EFHADCH BF E。

2013年大理、楚雄、文山、保山、丽江、怒江、迪庆、临沧中考数学试题(解析版)

2013年大理、楚雄、文山、保山、丽江、怒江、迪庆、临沧中考数学试题(解析版)

云南省八地市2013年中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2013•云南)﹣6的绝对值是()2.(3分)(2013•云南)下列运算,结果正确的是()3.(3分)(2013•云南)图为某个几何体的三视图,则该几何体是()4.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()5.(3分)(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()6.(3分)(2013•云南)已知⊙O1的半径是3cm,⊙2的半径是2cm,O1O2=cm,则两圆的位置关系是()cm=,2=17.(3分)(2013•云南)要使分式的值为0,你认为x可取得数是()8.(3分)(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•云南)25的算术平方根是5.10.(3分)(2013•云南)分解因式:x3﹣4x=x(x+2)(x﹣2).11.(3分)(2013•云南)在函数中,自变量x的取值范围是x≥﹣1且x≠0.12.(3分)(2013•云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).=由题意,得l.故答案为π或lR13.(3分)(2013•云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=44°.14.(3分)(2013•云南)下面是按一定规律排列的一列数:,,,,…那么第n个数是..故答案为:.三、解答题(本大题共9个小题,满分58分)15.(4分)(2013•云南)计算:sin30°+(﹣1)0+()﹣2﹣.+1+4=516.(5分)(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.,17.(6分)(2013•云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)(2013•云南)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.2400×=156019.(7分)(2013•云南)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.20.(6分)(2013•云南)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B 点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?AC=×21.(7分)(2013•云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.=6×==422.(7分)(2013•云南)某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.,,,23.(9分)(2013•云南)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y 轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.,解得,,解得,斜边上的高为.=,),﹣,=3=,),)。

2013年云南省昭通市中考数学预测试卷(三)

2013年云南省昭通市中考数学预测试卷(三)

2013年云南中考数学预测试卷(三)一、选择题(每小题3分,共24分)D.2.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是().C D.5.(3分)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()6.(3分)某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()7.(3分)如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()8.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()二、填空题(每小题3分,共21分)9.(3分)计算=_________.10.(3分)2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为_________人.11.(3分)已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是_________.12.(3分)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是_________.13.(3分)(2012•衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为_________mm.14.(3分)在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是_________.15.(3分)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD 交于点M,OM=,则点C的坐标为_________.三、解答题(本大题共8个小题,共75分)16.(8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当x=﹣6时,各分母均不为0,∴x=﹣6是原方程的解.…⑤请回答:(1)第①步变形的依据是_________;(2)从第_________步开始出现了错误,这一步错误的原因是_________;(3)原方程的解为_________.17.(9分)某校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课,学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图.请你结合图中的信息,解答下列问题:(1)该校学生报名总人数是多少?(2)从图中可知,选羽毛球的学生有多少人?选排球和篮球的人数占总人数的百分之几?(3)将两个统计图补充完整.18.(9分)如图,函数y=kx与y=的图象在第一象限内交于点A.在求点A坐标时,小明由于看错了k,解得A (1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若kx﹣>0,请直接写出x的取值范围.19.(9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形AB′C′D′.(1)当α的度数为_________时,射线AB′经过点C(此时射线AD也经过点C′);(2)在(1)的条件下,求证:四边形B′CC′D是等腰梯形.20.(9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.21.(10分)某商场经营某种品牌的童装,购进时的单价是40元.根据市场调查,在一段时间内,销售单价是60元时,销售量是100件,而销售单价每降低1元,就可多售出10件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于56元,且商场要完成不少于110件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?22.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是_________(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=_________CE(用含n的代数式表示).23.(11分)如图,抛物线与直线AB交于点A(﹣1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2013年云南省昭通市中考数学预测试卷(三)参考答案与试题解析一、选择题(每小题3分,共24分)D.2.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是().C D.5.(3分)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()6.(3分)某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()(353=58,故本选项错误;7.(3分)如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()∠8.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()=,二、填空题(每小题3分,共21分)9.(3分)计算=4.10.(3分)2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为 1.7×108人.11.(3分)已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是1.12.(3分)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是.第二次抽取的数字大于第一次抽取的数字的概率是:=.故答案为:13.(3分)(2012•衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为8mm.AD===4mm14.(3分)在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是.4AB=BC=4AC==4﹣x=,AD=故答案为:.15.(3分)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD 交于点M,OM=,则点C的坐标为(6,4).MF=(MF=(OE=三、解答题(本大题共8个小题,共75分)16.(8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当x=﹣6时,各分母均不为0,∴x=﹣6是原方程的解.…⑤请回答:(1)第①步变形的依据是等式的性质;(2)从第③步开始出现了错误,这一步错误的原因是移项不变号;(3)原方程的解为x=.x=x=17.(9分)某校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课,学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图.请你结合图中的信息,解答下列问题:(1)该校学生报名总人数是多少?(2)从图中可知,选羽毛球的学生有多少人?选排球和篮球的人数占总人数的百分之几?(3)将两个统计图补充完整.=400所以选排球和篮球的人数占总人数是:人,排球所占的百分比是:×人,篮球所占的百分比是:18.(9分)如图,函数y=kx与y=的图象在第一象限内交于点A.在求点A坐标时,小明由于看错了k,解得A (1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若kx﹣>0,请直接写出x的取值范围.,3=y=)代入正比例解析式得:y=)联立两函数解析式得:或,19.(9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形AB′C′D′.(1)当α的度数为30°时,射线AB′经过点C(此时射线AD也经过点C′);(2)在(1)的条件下,求证:四边形B′CC′D是等腰梯形.BAC=∠BAD=×,20.(9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.CBN=BC=8﹣﹣21.(10分)某商场经营某种品牌的童装,购进时的单价是40元.根据市场调查,在一段时间内,销售单价是60元时,销售量是100件,而销售单价每降低1元,就可多售出10件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于56元,且商场要完成不少于110件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?)由题意,得:对称轴为22.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是BD=2CE(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=2n CE(用含n的代数式表示).∴,∴,23.(11分)如图,抛物线与直线AB交于点A(﹣1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.CD﹣﹣+时,取最大值抛物线与直线)∴x)y=.,)的纵坐标是(﹣m)﹣m+2S=CD×(﹣m+2()(﹣取最大值,此时,))),﹣x)x+﹣﹣x=3,﹣x)x+∴x+x,﹣),﹣x),﹣+2x+)﹣x﹣﹣(﹣+2x+)﹣,)。

2013年初中数学试卷分析

2013年初中数学试卷分析

昭通市2013年初中学业水平考试数学质量分析报告7月10日至7月16日我们对昭通市2013年初中学业水平考试数学试卷进行了认真阅评,为更好地发挥本次初中学业水平考试对我市初中数学教学的正确导向作用,促使我市数学教学成绩的全面提升,我们对本次初中学业水平考试数学试卷进行了如下定性、定量的评析。

一、试卷基本情况分析1、(1)试题内容及考点分布试题的考点与重点考查内容与《2013年云南省初中学业水平标准与考试说明》中考试要求细目表基本保持一致:二、试题评价1、本卷较为全面的考查了初中学段(七年级——九年级)数学基础知识和基本技能,注重了对学生分析问题、解决问题能力的全面考查,也对学生在数学思考、情感和态度等方面进行了一定程度的考查。

全卷在一定程度上采纳了《昭通市2013年学业水平考试命题说明(修改)》(以下简称《说明》)的意见,使得全卷在试题结构、难度结构及梯度等方面有了较大改善。

2、从考生答题情况分析,Ⅰ卷整体难度基本符合《说明》上的7:2:1,但是绝大多数考生Ⅰ卷25题(3)未做, 6万多人中只有9人在本小题获满分,属过难题;填空题12,14,16的设置,使阅卷难度及试题难度增大,值得商榷;一些题的数值计算量应适当降低。

3、附加题作为附带选拔功能的检测,今年梯度设置较去年合理,在题型上基本符合《说明》,附加1,附加2难度有所下降,但附加3,附加4顺序不合理,附加3第2问偏难,而附加4整体难度远小于附加3,从而导致有些学生在附加3上花费时间过多而没时间去考虑更简单的附加4,可以考虑两题交换顺序,这样考查效度会有所提高。

三、考生答题情况及错误原因分析1、选择题:今年选择题由去年的7个增加到今年的10个,整体难度合适,以简单题为主,选择题平均分21.936,难度属于简单。

学生在解答本题时还是存在填涂答题卡不规范或用笔不规范,导致扫描结果为空选。

但开放或半开放性题目却占到3个(第12、14、16题)很多学生对开放性题目回答不完整,从而导致题目得分率降低,阅卷难度增加;相关基础知识及方法掌握不到位,解答不规范和随意性较大,有答错位置现象。

云南省大理等八地市年中考数学试卷(解析版)

云南省大理等八地市年中考数学试卷(解析版)

云南省大理等八地市2013年中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分).3.(3分)(2013•云南)图为某个几何体的三视图,则该几何体是()..D.4.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金5.(3分)(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()•云南)已知⊙O1的半径是3cm,⊙2的半径是2cm,6.(3分)(2013O1O2=>,,7.(3分)(2013•云南)要使分式的值为0,你认为x可取得数是8.(3分)(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.解答:解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选A.点评:本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•云南)25的算术平方根是5.考点:算术平方根.分析:根据算术平方根的定义即可求出结果.解答:解:∵52=25,∴25的算术平方根是5.故填5.点评:易错点:算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.10.(3分)(2013•云南)分解因式:x3﹣4x=x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.分析:应先提取公因式x,再对余下的多项式利用平方差公式继续分解.解解:x3﹣4x,答:=x(x2﹣4),=x(x+2)(x﹣2).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.(3分)(2013•云南)在函数中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x的取值范围.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)(2013•云南)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).考点:扇形面积的计算;弧长的计算分析:利用扇形的面积公式S扇形=lR(其中l为扇形的弧长,R为扇形所在圆的半径)求解即可.解答:解:设扇形的弧长为l,由题意,得l×3=2π,解得l=.故答案为π.点评:本题主要考查了扇形的面积公式,计算扇形的面积有2个公式:S扇形=或S扇形=lR(其中n为圆心角的度数,R为扇形所在圆的半径,l 为扇形的弧长),需根据条件灵活选择公式.13.(3分)(2013•云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=44°.考点:等腰三角形的性质;平行线的性质.分析:根据等腰三角形两底角相等求出∠BAC,再根据两直线平行,内错角相等解答.解答:解:∵AB=AC,∠ABC=68°,∴∠BAC=180°﹣2×68°=44°,∵AB∥CD,∴∠ACD=∠BAC=44°.故答案为:44°.点评:本题考查了等腰三角形两底角相等的性质,平行线的性质,是基础题,熟记各性质是解题的关键.14.(3分)(2013•云南)下面是按一定规律排列的一列数:,,,,…那么第n个数是.考点:规律型:数字的变化类.专题:规律型.分析:观察不难发现,分子是连续的奇数,分母减去3都是平方数,根据此规律写出第n个数的表达式即可.解答:解:∵分子分别为1、3、5、7,…,∴第n个数的分子是2n﹣1,∵4﹣3=1=12,7﹣3=4=22,12﹣3=9=32,19﹣3=16=42,…,∴第n个数的分母为n2+3,∴第n个数是.故答案为:.点评:本题是对数字变化规律的考查,从分子与分母两个方面考虑求解是解题的关键.三、解答题(本大题共9个小题,满分58分)15.(4分)(2013•云南)计算:sin30°+(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分分别进行零指数幂、负整数指数幂的运算,然后代入特殊角的三角函数值=+1+4﹣16.(5分)(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.理由如下:在△ABC和△ADE中,,17.(6分)(2013•云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.18.(7分)(2013•云南)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.。

2013年数学中考试卷及答案

2013年数学中考试卷及答案

2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。

各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。

其中填空1道、解答题1道。

这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。

答题时间为45分钟。

①阅读理解2个大题、②解答题2个小题,③计算题1个小题。

要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。

一、试题主要考查了数形结合和空间想象能力。

这是对学生数形结合、空间想象能力的有力考查。

例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。

同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。

这体现了中考数学命题在知识考查中体现了回归教材这一特点。

特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。

例如第1、2、3、5题分别考查了点的坐标及面积。

第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。

二、考查了学生的运算能力,也包括空间想象能力。

2013学年云南省中考数学年试题

2013学年云南省中考数学年试题

()

6.设首项为
1,公比为
2 3
的等比数列 {an }
的前
n
项和为
Sn
,则
A. Sn 2an 1
B. Sn 3an 2
数学试卷 第 1 页(共 6 页)
()
C. Sn 4 3an
D. Sn 3 2an
7.执行如图的程序框图,如果输入的 t [1,3] ,则输
出的 s 属于 A.[3, 4]
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
18.(本小题满分 12 分) 为了比较两种治疗失眠症的药(分别称为 A 药, B 药)的疗效,随机地选取 20 位患者服 用 A 药,20 位患者服用 B 药,这 40 位患者服用一段时间后,记录他们日平均增加的睡 眠时间(单位: h ).试验的观测结果如下: 服用 A 药的 20 位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用 B 药的 20 位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
15.已知 H 是球 O 的直径 AB 上一点, AH : HB 1: 2 , AB⊥平面 , H 为垂足, 截球 O
所得截面的面积为 π ,则球 O 的表面积为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年昭通市中考试题数 学(主试题共25个题,满分100分;附加题,共4个小题,满分50分.考试用时150分钟)主试题(三个大题,共25个小题,满分100分)一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题3分,满分30分) 1.(2013昭通市,1,3分)-4的绝对值是( )A .14B .14- C .4 D .-4 【答案】C2. (2013昭通市,2,3分)下列各式计算正确的是( )A .222()a b a b +=+B .235a a a +=C .824a a a ÷=D .23a a a ⋅= 【答案】D3.(2013昭通市,3,3分)如图1,AB ∥CD ,DB ⊥BC ,∠2 =50°,则∠1的度数是( )图1 A .40° B .50° C .60° D .140° 【答案】A4.(2013昭通市,4,3分)已知一组数据:12,5,9,5,14,下列说法不正确...的是( ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是5 【答案】D5.(2013昭通市,5,3分)如图2,已知AB 、CD 是⊙O 的两条直径,∠ABC =28°,那么∠BAD =( )图2图2A .28°B .42°C .56°D .84° 【答案】A6.(2013昭通市,6,3分)图3是一个正方体的表面展开图,则原正方体中与“建”字所 在的面相对的面上标的字是( )A .美B .丽C .云D .南 【答案】D7.(2013昭通市,7,3分)如图4,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( )图4图4A .12 B .13C .14 D【答案】B8.(2013昭通市,8,3分)已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )A. B. C. D. 【答案】C9.(2013昭通市,9,3分)已知二次函数y = ax 2+bx +c (a ≠ 0)的图象如图5所示,则下列结论中正确的是( ) x =1xyO-1图5A .a >0B .3是方程ax 2+bx +c =0的一个根C .a +b +c =0D .当x <1时,y 随x 的增大而减小 【答案】B10.(2013昭通市,10,3分)图6所示是某公园为迎接“中国——南亚博览会”设置的一休闲区.∠AOB =90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是( )图6D B OC 小路小 路草 坪休 闲区 A图6 A.(10π米2 B.(π米2C.(6π米2 D.(6π-米2【答案】C二、填空题(本大题共7个小题,每小题3分,满分21分)11.(2013昭通市,11,3分)根据云南省统计局发布我省生产总值的主要数据显示:去年生产总值突破万亿大关,2013年第一季度生产总值为226 040 000 000元人民币,增速居全国第一. 这个数据用科学记数法可表示为 元. 【答案】2.2604×1011 12.(2013昭通市,12,3分)实数2278-3π中的无理数是.、3π 13.(2013昭通市,13,3分)因式分解:2218x -= . 【答案】2(x +3)(x -3)14.(2013昭通市,14,3分)如图7,AF = DC ,BC ∥EF ,只需补充一个 条件 ,就得△ABC ≌△DEF .图7AFB CDE图7【答案】BC = EF (或∠A =∠D ,或∠B =∠E ,或AB ∥DE 等) 15.(2013昭通市,15,3分)使代数式321x -有意义的x 的取值范围是 . 【答案】12x ≠16.(2013昭通市,16,3分)如图8,AB 是⊙O 的直径,弦BC =4cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以1cm/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s) (0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s)的值为 .(填出一个正确的即可)图8B图8【答案】4(或7或9或12)(只需填一个答案即可得分)17.(2013昭通市,17,3分)如图9所示,图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n = . (用n 表示,n 是正整数)2n -15 12 34n7 1 1 2 43 3 n图9 【答案】n 2三、解答题(本大题共8个小题,满分49分)18. (2013昭通市,18,6分)计算0201321(3)10sin30(1)()3π---︒--+.【答案】解:02013214(3)10sin 30(1)()3π----︒--+21519=--++ 6=19. (2013昭通市,19,5分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1 条为棕色. 在准备校艺术节的演出服装时突遇停电,小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率. 【答案】解:列表如下:裤子 上衣 蓝色 蓝色 棕色 红色 (红色,蓝色) (红色,蓝色) (红色,棕色) 蓝色(蓝色,蓝色)(蓝色,蓝色)(蓝色,棕色)由上表可知,总情况6种,而且每种结果出现的可能性相同. 小明穿的上衣和裤子恰好都是蓝色占2种,所以小明穿的上衣和裤子恰好都是蓝色的概率是13. 20. (2013昭通市,20,5分)为了推动课堂教学改革,打造高效课堂,配合地区“两型课堂”的课题研究,羊街中学对八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图10. 请根据图中提供的信息,回答下列问题.图10 图11(1)求本次被调查的八年级学生的人数,并补全条形统计图11;(2)若该校八年级学生共有540人,请你计算该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?【答案】解:(1)设本次被调查的八年级学生有x 人,观察图10和图11,“喜欢”的学生18名,占本次被调查的八年级学生的人数的比为360120,即31,列方程:x 18=31,得x =54. 经检验x =54是原方程的解. 由54非常喜欢的人数=360200,得:非常喜欢的人数为30.(2)列方程:120200==540540360+支持人数喜欢的人数+非常喜欢的人数.由此解得支持的学生有480名.21. (2013昭通市,21,5分)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P 处观看小亮与爸爸在湖中划船(如图12所示). 小船从P 处出发,沿北偏东60°方向划行200米到A 处,接着向正南方向划行一段时间到B 处. 在B 处小亮观测到妈妈所在的P 处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈1.73)图12AB 37°60°P图12【答案】解:过P 作PC ⊥AB 于C ,AB37°60°PC在Rt △APC 中,AP = 200m,∠ACP = 90°,∠PAC = 60°. ∴ PC= 200×sin60°=200 ×23=1003(m ). ∵ 在Rt △PBC 中,sin37°=PBPC, ∴ 100 1.73288()sin 370.6PC PB m ⨯==≈︒答:小亮与妈妈相距约288米.22. (2013昭通市,22,6分)如图13,直线y =k 1x +b (k 1≠0)与双曲线y =2k x(k 2≠0)相交于A (1,m)、B (-2,-1)两点.(1)求直线和双曲线的解析式.(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式.图13【答案】解:(1)∵ 双曲线y = 2k x经过点B (-2,-1), ∴ k 2 = 2. ∴ 双曲线的解析式为:y = 2x. ∵ 点A (1,m )在双曲线y =2x上, ∴ m = 2,则A (1,2). 由点A (1,2),B (-2,-1)在直线y =k 1x +b 上,得 112,2 1.k b k b +=⎧⎨-+=-⎩解得11,1.k b =⎧⎨=⎩ ∴ 直线的解析式为:y = x +1. (2)y 2<y 1<y 3.23. (2013昭通市,23,7分)如图14,已知AB 是⊙O 的直径,点C 、D 在⊙O 上, 点E 在⊙O 外,∠EAC =∠B = 60°.(1)求∠ADC 的度数; (2)求证:AE 是⊙O 的切线.图14图14【答案】解:(1)∵ ∠ABC 与∠ADC 都是弧AC 所对的圆周角, ∴ ∠ADC =∠B =60°. (2)∵ AB 是⊙O 的直径, ∴ ∠ACB =90°, ∴ ∠BAC =30°.∴ ∠BAE =∠BAC +∠EAC =30°+60°=90°,即 BA ⊥AE .∴ AE 是⊙O 的切线.24. (2013昭通市,24,7分)如图15,在菱形ABCD 中,AB = 2,60DAB ∠=,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由. AMBNDCE图15【答案】(1)证明:∵ 四边形ABCD 是菱形,∴ ND ∥AM . ∴ ∠NDE =∠MAE ,∠DNE =∠AME . ∵ 点E 是AD 中点,∴ DE = AE . ∴ △NDE ≌△MAE ,∴ ND = MA . ∴ 四边形AMDN 是平行四边形. (2)① 1; 理由如下:∵ 四边形ABCD 是菱形, ∴ AD = AB = 2.若平行四边形AMDN 是矩形, 则DM ⊥AB , 即 ∠DMA =90°. ∵ ∠A =60°, ∴ ∠ADM =30°. ∴ AM =12AD =1. 25. (2013昭通市,25,8分)如图16,已知A (3,0)、B (4,4)、原点O (0,0)在抛物线y = ax 2+bx +c (a ≠0)上.(1)求抛物线的解析式.(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个交点D ,求m 的值及点D 的坐标.(3)如图17,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应)OyxABDOyxABDN图16 图17【答案】(1)∵ A (3,0)、B (4,4)、O (0,0)在抛物线y =ax 2+bx +c (a ≠0)上.∴ 930,1644,0,a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得1,3,0.a b c =⎧⎪=-⎨⎪=⎩∴ 抛物线的解析式为:y =x 2-3x …………………2分 (2)设直线OB 的解析式为y = k 1 x ( k 1≠0),由点B (4,4)得 4=4 k 1,解得k 1=1.∴ 直线OB 的解析式为y = x ,∠AOB = 45°. ∵ B (4,4),∴ 点B 向下平移m 个单位长度的点B ′的坐标为(4,0), 故m = 4.∴ 平移m 个单位长度的直线为y = x - 4.解方程组 23,4.y x x y x ⎧=-⎨=-⎩ 得2,2.x y =⎧⎨=-⎩∴ 点D 的坐标为(2,-2) . …………………………5分(3)∵ 直线OB 的解析式y =x ,且A (3,0).∵ 点A 关于直线OB 的对称点A ′的坐标为(0,3) .设直线A ′B 的解析式为y =k 2x +3,此直线过点B (4,4) . ∴ 4k 2+3=4, 解得 k 2=14. ∴ 直线A ′B 的解析式为y =14x +3. ∵ ∠NBO =∠A BO ,∴ 点N 在直线A ′B 上, 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴14n+3=n2-3n.解得n1=34-,n2=4(不合题意,舍去)∴点N的坐标为(34-,4516).如图,将△NOB沿x轴翻折,得到△N1OB1,则N1 (34-,4516-),B1(4,-4).∴O、D、B1都在直线y=-x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1, ∴P1为O N1的中点.∴111 2OP ODON OB==,∴点P1的坐标为(38-,4532-).将△P1OD沿直线y =-x翻折,可得另一个满足条件的点(4532,38).综上所述,点P的坐标为(38-,4532-)和(4532,38).附加题(共4个小题,满分50分)1.(2013昭通市,附加题1,12分)已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.(1)求从中随机取出一个黑球的概率.(2)若往口袋中再放入x 个黑球,且从口袋中随机取出一个白球的概率是14,求代数式223(1)1x x x x x -÷+---的值. 【答案】解:(1)P (取出一个黑球)44347==+ (2)设往口袋中再放入x 个黑球, 从口袋中随机取出一个白球的概率是14即 P (取出一个白球)3174x ==+.由此解得x =5. 经检验x =5是原方程的解.∵ 原式2213(1)1x x x x x ---=÷--21(1)(2)(2)x x x x x x --=⋅--+1(2)x x =+∴ 当x =5时,原式=135. 2.(2013昭通市,附加题2,12分)云南连续四年大旱,学校为节约用水,提醒人们关注漏水的水龙头.因此,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升. 实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到(1)在图1(2)如果小王同学继续实验,请求出多少秒后量筒中的水会满而溢出(精确到1秒). (3)按此漏水速度,1小时会漏水_______千克(精确到0.1千克).图1 图2 实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?【答案】解:实验一: (1)如图所示:V /(2)设V 与t 的函数关系式为V = kt + b ,根据表中数据知:当t = 10时,V = 2;当t = 20时,V = 5;∴ 210,520,k b k b =+=+⎧⎨⎩ 解得:3,101.k b ⎧=⎪⎨⎪=-⎩∴ V 与t 的函数关系式为 3110V t =-. 由题意得:3110010t -≥,解得,1010233633t =≥. ∴ 约337秒后,量筒中的水会满而开始溢出.(3)1.1千克实验二:因为小李同学接水的量筒装满后水开始溢出3. (2013昭通市,附加题3,12分)如图3,在⊙C 的内接△AOB 中,AB = AO = 4,tan ∠AOB = 34,抛物线y = a (x -2)2+m (a ≠0)经过点A (4,0)与点(-2,6).V /V /(1)求抛物线的解析式;(2)直线m 与⊙C 相切于点A ,交y 轴于点D ,动点P 在线段OB 上,从点O 出发向点B 运动,同时动点Q 在线段DA 上,从点D 出发向点A 运动,点P 的速度为每秒1个单位长,点Q 的速度为每秒2个单位长. 当PQ ⊥AD 时,求运动时间t 的值.图3【答案】解:(1)将点A (4,0)和点(-2,6)的坐标代入y = a (x -2)2+m 中,得方程组,40,16 6.a m a m +=⎧⎨+=⎩解之,得1,22.a m ⎧=⎪⎨⎪=-⎩∴ 抛物线的解析式为2122y x x =-(2)如图,连接AC 交OB 于E.∵ 直线m 切⊙C 于点A , ∴ AC ⊥m .∵ 弦 AB = AO , ∴ AB AO =. ∴ AC ⊥OB ,∴ m ∥OB . ∴ ∠ OAD =∠AOB .∵ OA =4,tan ∠AOB =43,∴ OD = OA ·tan ∠OAD =4×43= 3. 作OF ⊥AD 于F ,则OF = OA ·sin ∠OAD = 4×53= 2.4 .t 秒时,OP =t ,DQ =2t ,若PQ ⊥AD , 则 FQ =OP = t. DF =DQ -FQ = t. ∴ △ODF 中,t = DF ==1.8秒AxP FQD C Bym O E4.(2013昭通市,附加题4,14分)已知△ABC 为等边三角形,点D 为直线BC 上的一个动点(点D 不与B C 、重合),以AD 为边作菱形ADEF (A D E F 、、、按逆时针排列),使60DAF ∠=︒,连接CF .(1)如图4,当点D 在边BC 上时,求证:①BD = CF , ②AC = CF + CD .(2)如图5,当点D 在边BC 的延长线上且其他条件不变时,结论AC = CF + CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由.(3)如图6,当点D 在边CB 的延长线上且其他条件不变时,请补全图形,并直接写出AC 、C F 、CD 之间存在的数量关系ABDCEF ABC DEFA图4 图5 图6 【答案】(1)【证明】:①∵60BAD DAC DAC CAF ∠+∠=∠+∠=︒, ∴ BAD CAF ∠=∠.又∵ ,AB AC AD AF ==. ∴ △ABD ≌ △AFC , ∴ BD CF =. ② 由△ABD ≌ △AFC 知BD CF =, ∴ CF CD BD CD BC +=+=. 又在等边△ABC 中AC BC =, ∴ AC CF CD =+ (2)解:AC CF CD =+不成立,应该是CF =AC +CD ,理由为: 如图,延长AC 到H ,使CH CD =,连结BH , 则 在△ACD 与△BCH 中,,,,AC BC ACD BCH CD CH =∠=∠= ∴ △ACD ≌ △BCH .∴ ,.BH AD HBC DAC =∠=∠ ∴ ,.ABH FAC BH AF ∠=∠=∴ △ABH 与△CAF 中,,,.AB AC ABH FAC BH AF =∠=∠=∴ △ABH ≌△CAF , ∴AH CF =, ∴CF AC CD =+(3)解:当点D 在边CB 的延长线上且其他条件不变时,补全图形如下图6所示,此时 AC 、CF 、CD 之间存在的数量关系为CD AC CF =+.(备注:连结CF ,容易证明△ABD ≌△AHC ,∴BD HC =,又=,HC CF AC BC =)ABCD EFHADCH BF E。

相关文档
最新文档