2019版高考数学(文)人教A版(全国)一轮复习 课件 第三章 导数及其应用 第3讲

合集下载

高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.

2019届高考数学(文科)一轮复习课件(人教A版)第三章 导数及其应用 3.2

2019届高考数学(文科)一轮复习课件(人教A版)第三章 导数及其应用 3.2

+ ������ =
π 3
1 2 x +cos 4 π 3
x,
1 2
∴f'(x)=2x-sin x,它是一个奇函数,其图象关于原点对称,故排除 B,D.
又 [f'(x)]'= -cos x,当 - <x< 时 ,cos x> ,∴[f'(x)]'<0,故函数 y=f' (x)在区 间 A - 3 , 3 内单调递减,排除 C.故选 A.
关闭
1
解析 答案
-11知识梳理 双基自测 自测点评
1.若函数f(x)在区间(a,b)内递增,则f‘(x)≥0;“f’(x)>0在(a,b)内恒成 立”是“f(x)在(a,b)内单调递增”的充分不必要条件. 2.对于可导函数f(x),“f'(x0)=0”是“函数f(x)在x=x0处有极值”的 必要不充分条件.如函数y=x3在x=0处导数为零,但x=0不是函数 y=x3的极值点. 3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需 要分类讨论,不可想当然认为极值就是最值. 4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值 与极小值之间没有必然的大小关系.
∴a=1,b=1 或 a=-3,b=-9. ∵当 a=1,b=1 时 ,f'(x)=x2-2x+1=(x-1)2≥0,函数没有极值, 2 1 7 7 ∴ a= 1, b= 1 不成立 . ∴ a=, b=, 故答案为 . 3 9 9
9
2
1
3
3
关闭
解析
答案
-9知识梳理 双基自测 自测点评
1
2
3
4
5
1
关闭

2019版高考数学一轮复习第三章函数、导数及其应用第一节函数及其表示课件

2019版高考数学一轮复习第三章函数、导数及其应用第一节函数及其表示课件

映射
非空的集合 设A,B是两个___________
设A,B是两个非空 ____ ________ 的数集
如果按照某种确定 的对应关系 f,使对 对应 于集合A中的任意 ____一 关系 个数 x,在集合B中 f:A→B 唯一确定 的数 都有_________ f(x)和它对应
如果按某一个确定的对应 关系 f,使对于集合A中的 任意 一个元素x,在集合B _____ 唯一确定 的元素y与 中都有_________ 之对应
)
解析:选项 A 中,f(x)=x2 与 g(x)= x2的定义域相同,但对应 关系不同;选项 B 中,二者的定义域都为{x|x>0},对应关系也 相同;选项 C 中,f(x)=1 的定义域为 R,g(x)=(x-1)0 的定义 x2-9 域为{x|x≠1};选项 D 中,f(x)= 的定义域为{x|x≠-3}, x+3 g(x)=x-3 的定义域为 R.
5x+1 答案: 2 (x≠0) x
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 函数的定义域
[题组练透]
1.函数 f(x)=ln(x2-x)的定义域为 A.(0,1) C.(-∞,0)∪(1,+∞) B.[0,1] D.(-∞,0]∪[1,+∞) ( )
解析:由题意知,x2-x>0,即 x<0 或 x>1. 则函数的定义域为(-∞,0)∪(1,+∞),故选 C.
3.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有 着不同的 对应关系 ,这样的函数通常叫做分段函数.
[小题体验]Βιβλιοθήκη 1. (2018· 台州模拟 )下列四组函数中,表示相等函数的是( A. f(x)= x2, g(x)= x2 x2 x B. f(x)= , g(x)= x x 2 C. f(x)= 1, g(x)= (x- 1)0 x2- 9 D. f(x)= , g(x)= x- 3 x+ 3

2019届高考数学人教A版理科第一轮复习课件:3.1 导数的概念及运算

2019届高考数学人教A版理科第一轮复习课件:3.1 导数的概念及运算

1
关闭
答案
考点1
考点2
考点 1
导数的运算
例 1 分别求下列函数的导数: (1)y=ex· sin x; (2)y=x ������
(2)几何意义:函数f(x)在点x0处的导数f'(x0)的几何意义是在曲线 切线的斜率 y=f(x)上点 (x0,f(x0)) 处的 ,切线方程 为 y-f(x0)=f'(x0)(x-x0) .
-5-
知识梳理
双基自测
1 2 3 4 5 6
3.函数f(x)的导函数 一般地,如果函数y=f(x)在区间(a,b)上的每一点处都有导数,导数
1.下列结论正确的打“√”,错误的打“×”. (1)f'(x0)是函数y=f(x)在x=x0附近的平均变化率. ( ) (2)求f'(x0)时,可先求f(x0),再求f'(x0). ( ) (3)曲线的切线不一定与曲线只有一个公共点. ( ) (4)与曲线只有一个公共点的直线一定是曲线的切线. ( ) (5)曲线y=f(x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同. ( )
-11解析 关闭
1
3
2
答案
知识梳理
双基自测
1 2 3 4 5
ln������ 3.(2017 吉林长春二模)若函数 f(x)= ,则 f'(2)= ������
.
关闭
由 f'(x)=
1-ln2 4
1-ln ������ ������ 2
,得 f'(2)=
1-ln2 4
.
关闭
-12解析
答案
知识梳理
-7-
知识梳理
双基自测
1 2 3 4 5 6

2019届高考数学一轮复习第三章导数及其应用考点规范练14导数的概念及运算文新人教B版

2019届高考数学一轮复习第三章导数及其应用考点规范练14导数的概念及运算文新人教B版

考点规范练14 导数的概念及运算基础巩固1.已知函数f (x )=√x 3+1,则lim Δx →0f (1-Δx )-f (1)Δx 的值为 ()A.-13 B.13 C.23D.02.已知曲线y=ln x 的切线过原点,则此切线的斜率为() A.e B.-e C.1eD.-1e3.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则切点横坐标为1的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=04.(2017江西上饶模拟)若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x-2的距离的最小值为() A.1 B.√2 C.√22D.√35.曲线f (x )=x 3-x+3在点P 处的切线平行于直线y=2x-1,则点P 的坐标为() A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)6.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),则a b等于() A.-8B.-6C.-1D.57.若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是() A.y=sin x B.y=ln x C.y=e xD.y=x 38.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+154x-9都相切,则a 等于() A.-1或-2564B.-1或214C.-74或-2564D.-74或79.(2017吉林长春二模)若函数f (x )=lnx x,则f'(2)=.10.(2017山西太原模拟)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是. 11.曲线y=log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于. 12.若函数f (x )=12x 2-ax+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是.能力提升13.函数y=f (x ),y=g (x )的导函数的图象如图所示,则y=f (x ),y=g (x )的图象可能是()14.(2017广州深圳调研)如图,y=f (x )是可导函数,直线l :y=kx+2是曲线y=f (x )在x=3处的切线,令g (x )=xf (x ),g'(x )是g (x )的导函数,则g'(3)=()A.-1B.0C.2D.415.设直线l 1,l 2分别是函数f (x )={-lnx ,0<x <1,lnx ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是() A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)16.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=e x+x 2+1,则函数h (x )=2f (x )-g (x )在点(0,h (0))处的切线方程是.高考预测17.若函数f (x )=ln x-f'(1)x 2+5x-4,则f'(12)=.参考答案考点规范练14 导数的概念及运算1.A 解析limΔx →0f (1-Δx )-f (1)Δx =-lim Δx →0f (1-Δx )-f (1)-Δx=-f'(1)=-(13×1-23)=-13.2.C 解析由题意可得y=ln x 的定义域为(0,+∞),且y'=1x.设切点为(x 0,ln x 0),则切线方程为y-ln x 0=1x 0(x-x 0).因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e,故此切线的斜率为1e.3.B 解析由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0).因为y'=-2x+1,所以y'|x=1=-1, 故切线方程为y=-(x-1),即x+y-1=0.4.B 解析因为定义域为(0,+∞),所以y'=2x-1x ,令2x-1x=1,解得x=1,则曲线在点P (1,1)处的切线方程为x-y=0,所以两平行线间的距离为d=√2=√2.故所求的最小值为√2.5.C 解析∵f (x )=x 3-x+3,∴f'(x )=3x 2-1.设点P (x ,y ),则f'(x )=2,即3x 2-1=2,解得x=1或x=-1, 故P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x-1上,符合题意.故选C . 6.A 解析由题意得y=kx+1过点A (1,2),故2=k+1,即k=1.∵y'=3x 2+a ,且直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),∴k=3+a ,即1=3+a ,∴a=-2.将点A (1,2)代入曲线方程y=x 3+ax+b ,可解得b=3, 即a b=(-2)3=-8.故选A .7.A 解析设曲线上两点P (x 1,y 1),Q (x 2,y 2),则由导数几何意义可知,两条切线的斜率分别为k 1=f'(x 1),k 2=f'(x 2). 若函数具有T 性质,则k 1·k 2=f'(x 1)·f'(x 2)=-1.A 项,f'(x )=cos x ,显然k 1·k 2=cos x 1·cos x 2=-1有无数组解,所以该函数具有性质T;B 项,f'(x )=1x(x>0),显然k 1·k 2=1x 1·1x 2=-1无解,故该函数不具有性质T;C 项,f'(x )=e x>0,显然k 1·k 2=e x 1·e x 2=-1无解,故该函数不具有性质T;D 项,f'(x )=3x 2≥0,显然k 1·k 2=3x 12×3x 22=-1无解,故该函数不具有性质T .综上,选A .8.A 解析因为y=x 3,所以y'=3x 2.设过点(1,0)的直线与y=x 3相切于点(x 0,x 03),则在该点处的切线斜率为k=3x 02,所以切线方程为y-x 03=3x 02(x-x 0),即y=3x 02x-2x 03.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y=0与y=ax 2+154x-9相切,可得a=-2564; 当x 0=32时,由y=274x-274与y=ax 2+154x-9相切,可得a=-1. 9.1-ln24解析由f'(x )=1-lnxx 2,得f'(2)=1-ln24. 10.y=2e x-e 解析∵f (x )=x e x,∴f (1)=e,f'(x )=e x+x e x,∴f'(1)=2e,∴f (x )的图象在点(1,f (1))处的切线方程为y-e =2e(x-1),即y=2e x-e .11.12log 2e 解析∵y'=1xln2,∴k=1ln2, ∴切线方程为y=1ln2(x-1),∴所围三角形的面积为S=12×1×1ln2=12ln2=12log 2e .12.[2,+∞)解析∵f (x )=12x 2-ax+ln x ,∴f'(x )=x-a+1x .∵f (x )存在垂直于y 轴的切线, ∴f'(x )存在零点,∴x+1x -a=0有解, ∴a=x+1x ≥2(x>0).13.D 解析由y=f'(x )的图象知y=f'(x )在(0,+∞)内单调递减,说明函数y=f (x )的切线的斜率在(0,+∞)内也单调递减,故可排除A,C .又由图象知y=f'(x )与y=g'(x )的图象在x=x 0处相交,说明y=f (x )与y=g (x )的图象在x=x 0处的切线的斜率相同,故可排除B .故选D . 14.B 解析由题图可知曲线y=f (x )在x=3处的切线斜率等于-13,即f'(3)=-13.又g (x )=xf (x ),g'(x )=f (x )+xf'(x ),g'(3)=f (3)+3f'(3).由题图可知f (3)=1,所以g'(3)=1+3×(-13)=0. 15.A 解析由题意得P 1,P 2分别位于两段函数的图象上.设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1.所以x 2=1x 1.所以切线l 1的方程为y-ln x 1=1x 1(x-x 1),切线l 2的方程为y+ln x 2=-1x 2(x-x 2), 即y-ln x 1=-x 1(x -1x 1). 分别令x=0得A (0,-1+ln x 1),B (0,1+ln x 1). 又l 1与l 2的交点为P (2x11+x 12,lnx 1+1-x 121+x 12). ∵x 1>1,∴S △PAB =12|y A -y B |·|x P |=2x 11+x 12<1+x 121+x 12=1. ∴0<S △PAB <1,故选A .16.x-y+4=0解析∵f (x )-g (x )=e x+x 2+1,且f (x )是偶函数,g (x )是奇函数,∴f (-x )-g (-x )=f (x )+g (x )=e -x +x 2+1.∴f (x )=e x +e -x +2x 2+22,g (x )=e -x -e x2.∴h (x )=2f (x )-g (x )=e x +e -x +2x 2+2-e -x -e x2=32e x +12e -x +2x 2+2.∴h'(x )=32e x -12e -x +4x ,即h'(0)=32−12=1.又h(0)=4,∴切线方程为x-y+4=0.-2f'(1)x+5,17.5解析∵f'(x)=1x∴f'(1)=1-2f'(1)+5,解得f'(1)=2,)=2-2+5=5.∴f'(12。

2019届高考数学一轮复习第三章导数及其应用考点规范练15导数与函数的单调性极值最值文新人教B版

2019届高考数学一轮复习第三章导数及其应用考点规范练15导数与函数的单调性极值最值文新人教B版

考点规范练15 导数与函数的单调性、极值、最值基础巩固1.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)2.(2017山东烟台一模)已知函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b>0,c>0,d<0B.a>0,b>0,c<0,d<0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d>03.定义域为R的可导函数y=f(x)的导函数f'(x),满足f(x)<f'(x),且f(0)=2,则不等式f(x)>2e x 的解集为()A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)4.(2017河南濮阳一模)设f'(x)是函数f(x)定义在(0,+∞)上的导函数,满足xf'(x)+2f(x)=1x2,则下列不等式一定成立的是()A.f(e)e2>f(e2)eB.f(2)9<f(3)4C.f(2)e2>f(e)4D.f(e)e2<f(3)95.已知函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是.6.若函数g(x)=ln x+ax2+bx,且g(x)的图象在点(1,g(1))处的切线与x轴平行.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.7.已知函数f(x)=ax 2+bx+ce x(a>0)的导函数y=f'(x)的两个零点为-3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为-e3,求f(x)的极大值及f(x)在区间[-5,+∞)内的最大值.8.设a>0,函数f (x )=e xx 2+a .(1)若a=59,求函数f (x )的单调区间;(2)当x=12时,函数f (x )取得极值,证明:对于任意的x 1,x 2∈[12,32],|f (x 1)-f (x 2)|≤3-e3√e .9.设函数f (x )=3x 2+axe x(a ∈R ).(1)若f (x )在x=0处取得极值,确定a 的值,并求此时曲线y=f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)内为减函数,求a 的取值范围.能力提升10.(2017广西南宁一模)已知函数f(x)=-x2-6x-3,g(x)=2x3+3x2-12x+9,m<-2,若∀x1∈[m,-2),∃x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为()A.-5B.-4C.-2√5D.-311.(2017河北邯郸二模)若函数f(x)=(x2-ax+a+1)e x(a∈N)在区间(1,3)内只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为.12.设函数f(x)=x 2-1lnx.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.13.设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;.(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值不小于14高考预测14.已知函数f(x)=a ln x-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数]在区间(t,3)内总不是单调函数,求m的取值范围.g(x)=x3+x2·[f'(x)+m2参考答案考点规范练15 导数与函数的单调性、极值、最值1.D 解析函数f (x )=(x-3)e x 的导数为f'(x )=[(x-3)e x ]'=e x +(x-3)e x =(x-2)e x.由函数导数与函数单调性的关系,得当f'(x )>0时,函数f (x )单调递增,此时由不等式f'(x )=(x-2)e x>0,解得x>2. 2.C 解析由题图可知f (0)=d>0,排除选项A,B;由f'(x )=3ax 2+2bx+c ,且由题图知(-∞,x 1),(x 2,+∞)是函数的单调递减区间,可知a<0,排除D .故选C . 3.C 解析设g (x )=f (x )e x,则g'(x )=f '(x )-f (x )e x. ∵f (x )<f'(x ),∴g'(x )>0,即函数g (x )在定义域内单调递增. ∵f (0)=2,∴g (0)=f (0)=2,∴不等式f (x )>2e x 等价于g (x )>g (0). ∵函数g (x )在定义域内单调递增. ∴x>0,∴不等式的解集为(0,+∞),故选C .4.B 解析∵xf'(x )+2f (x )=1x2,∴x 2f'(x )+2xf (x )=1x ,令g (x )=x 2f (x ),则g'(x )=2xf (x )+x 2f'(x )=1x>0,∴函数g (x )在(0,+∞)内单调递增. ∴g (2)=4f (2)<g (e)=e 2f (e)<g (3)=9f (3), ∴f (2)9<f (3)4.故选B .5.(0,1)∪(2,3)解析由题意知f'(x )=-x+4-3x=-x 2+4x -3x=-(x -1)(x -3)x .由f'(x )=0得x 1=1,x 2=3,可知1,3是函数f (x )的两个极值点.则只要这两个极值点有一个在区间(t ,t+1)内,函数f (x )在区间[t ,t+1]上就不单调,由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.6.解(1)因为g (x )=ln x+ax 2+bx ,所以g'(x )=1x+2ax+b ,由题意,得g'(1)=1+2a+b=0,所以2a+b=-1. (2)当a=0时,g'(x )=-x -1x, 由g'(x )>0解得0<x<1,由g'(x )<0解得x>1,即函数g (x )在(0,1)内单调递增,在(1,+∞)内单调递减.当a>0时,令g'(x )=0,得x=1或x=12a ,若12a<1,即a>12,则由g'(x )>0解得x>1或0<x<12a,由g'(x )<0解得12a <x<1,即函数g (x )在(0,12a ),(1,+∞)内单调递增,在(12a ,1)内单调递减;若12a>1,即0<a<12,则由g'(x )>0解得x>12a或0<x<1,由g'(x )<0解得1<x<12a,即函数g (x )在(0,1),(12a ,+∞)内单调递增,在(1,12a)内单调递减; 若12a=1,即a=12,则在(0,+∞)上恒有g'(x )≥0, 即函数g (x )在(0,+∞)内单调递增.综上可得:当a=0时,函数g (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a<12时,函数g (x )在(0,1)内单调递增,在(1,12a )内单调递减,在(12a,+∞)内单调递增; 当a=12时,函数g (x )在(0,+∞)内单调递增; 当a>12时,函数g (x )在(0,12a )内单调递增,在(12a,1)内单调递减,在(1,+∞)内单调递增. 7.解(1)因为f (x )=ax 2+bx+ce x,所以f'(x )=-ax 2+(2a -b )x+b -ce x,设g (x )=-ax 2+(2a-b )x+b-c.因为a>0,所以由题意知:当-3<x<0时,g (x )>0,即f'(x )>0; 当x<-3或x>0时,g (x )<0,即f'(x )<0.所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x=-3是f (x )的极小值点,故有9a -3b+c e -3=-e 3.结合g (0)=b-c=0,g (-3)=-9a-3(2a-b )+b-c=0,解得a=1,b=5,c=5,所以f (x )=x 2+5x+5e x.因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,且f (x )在区间[-5,+∞)内的最大值为f (-5)和f (0)中的最大者. 而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)内的最大值是5e 5.8.(1)解当a=59时,f'(x )=e x (x 2+a -2x )(x 2+a )2=e x [(x -1)2+a -1](x 2+a )2=e x [(x -1)2-49](x 2+59)2.令f'(x )>0,即(x-1)2-49>0,解得x<13或x>53.因此,函数f (x )在区间(-∞,13),(53,+∞)内单调递增. 令f'(x )<0,即(x-1)2-49<0,解得13<x<53. 因此,函数f (x )在区间(13,53)内单调递减. (2)证明当x=12时,函数f (x )取得极值,即f'(12)=0,所以(12)2+a-2×12=0.所以a=34.同理,由(1)易知,f (x )在区间(-∞,12),(32,+∞)内单调递增,在区间(12,32)内单调递减. 所以f (x )在x=12时取得极大值f (12)=√e ,在x=32时取得极小值f (32)=e √e3. 所以在区间[12,32]上,f (x )的最大值是f (12)=√e ,最小值是f (32)=e √e3. 所以对于任意的x 1,x 2∈[12,32],|f (x 1)-f (x 2)|≤√e −e3√e ,即|f (x 1)-f (x 2)|≤3-e3√e .9.解(1)对f (x )求导得f'(x )=(6x+a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x+ae x.因为f (x )在x=0处取得极值,所以f'(0)=0,即a=0. 当a=0时,f (x )=3x 2e x ,f'(x )=-3x 2+6xe x ,故f (1)=3e ,f'(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y-3e=3e(x-1),化简,得3x-e y=0.(2)由(1)知f'(x )=-3x 2+(6-a )x+ae x.令g (x )=-3x 2+(6-a )x+a , 由g (x )=0解得x 1=6-a -√a 2+366,x 2=6-a+√a 2+366. 当x<x 1时,g (x )<0,即f'(x )<0,故f (x )为减函数; 当x 1<x<x 2时,g (x )>0,即f'(x )>0,故f (x )为增函数; 当x>x 2时,g (x )<0,即f'(x )<0,故f (x )为减函数. 由f (x )在[3,+∞)内为减函数,知x 2=6-a+√a 2+366≤3,解得a ≥-92,故a 的取值范围为[-92,+∞).10.A 解析∵g (x )=2x 3+3x 2-12x+9,∴g'(x )=6x 2+6x-12=6(x+2)(x-1),则当0<x<1时,g'(x )<0,函数g (x )递减,当x>1时,g'(x )>0,函数g (x )递增,∴当x>0时,g (x )min =g (1)=2.∵f (x )=-x 2-6x-3=-(x+3)2+6≤6,作函数y=(x )的图象,如图所示,当f (x )=2时,方程两根分别为-5和-1,则m 的最小值为-5,故选A . 11.x-y+6=0解析∵f'(x )=e x[x 2+(2-a )x+1],若f (x )在(1,3)内只有1个极值点,∴f'(1)·f'(3)<0,即(a-4)(3a-16)<0,解得4<a<163.∵a ∈N ,∴a=5.故f (x )=e x (x 2-5x+6),f'(x )=e x (x 2-3x+1),故f (0)=6,f'(0)=1,故切线方程是y-6=x ,故答案为x-y+6=0. 12.(1)证明f'(x )=2xlnx -x 2-1x(lnx )2=x(lnx )2(2lnx -x 2-1x 2)(x>0,x ≠1). 令g (x )=2ln x-x 2-1x 2,则g'(x )=2(x+1)(x -1)x 3. 当0<x<1时,g'(x )<0,g (x )是减函数,g (x )>g (1)=0. 于是f'(x )=x (lnx )2g (x )>0,故f (x )在(0,1)内为增函数.当x>1时,g'(x )>0,g (x )是增函数,g (x )>g (1)=0,于是f'(x )=x(lnx )2g (x )>0,故f (x )在(1,+∞)内为增函数.(2)解af (x )-x=a (x 2-1)lnx-x=x lnx [a (x 2-1)x -lnx].令h (x )=a (x 2-1)x-ln x (x>0),则h'(x )=ax 2-x+ax 2. 令φ(x )=ax 2-x+a ,当a>0,且Δ=1-4a 2≤0,即a ≥12时,此时φ(x )=ax 2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a ≥12时h'(x )≥0,故h (x )在(0,1),(1,+∞)内为增函数,若0<x<1时,h (x )<h (1)=0, 所以af (x )-x=xlnx h (x )>0; 若x>1时,h (x )>h (1)=0,所以af (x )-x=xlnxh (x )>0, 所以当x>0,x ≠1时都有af (x )>x 成立,当0<a<12时,h'(x )<0,解得1-√1-4a 22a <x<1+√1-4a 22a,所以h (x )在(1,1+√1-4a 22a)内是减函数,h (x )<h (1)=0. 故af (x )-x=xlnxh (x )<0,不符合题意. 当a ≤0时,x ∈(0,1)∪(1,+∞),都有h'(x )<0,故h (x )在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内af (x )-x=xlnxh (x )<0,不符合题意. 综上所述,a 的取值范围是a ≥12. 13.(1)解由f (x )=x 3-ax-b ,可得f'(x )=3x 2-a.下面分两种情况讨论:①当a ≤0时,有f'(x )=3x 2-a ≥0恒成立.所以f (x )的单调递增区间为(-∞,+∞).②当a>0时,令f'(x )=0,解得x=√3a3,或x=-√3a3.当x 变化时,f'(x ),f (x )的变化情况如下表:所以f (x )的单调递减区间为(-√3a 3,√3a3),单调递增区间为(-∞,-√3a3),(√3a3,+∞).(2)证明因为f (x )存在极值点,所以由(1)知a>0,且x 0≠0.由题意,得f'(x 0)=3x 02-a=0,即x 02=a 3,进而f (x 0)=x 03-ax 0-b=-2a 3x 0-b.又f (-2x 0)=-8x 03+2ax 0-b=-8a 3x 0+2ax 0-b=-2a 3x 0-b=f (x 0),且-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=-2x 0.所以x 1+2x 0=0.(3)证明设g (x )在区间[-1,1]上的最大值为M ,max{x ,y }表示x ,y 两数的最大值.下面分三种情况讨论:①当a ≥3时,-√3a 3≤-1<1≤√3a 3,由(1)知,f (x )在区间[-1,1]上单调递减,所以f (x )在区间[-1,1]上的取值范围为[f (1),f (-1)],因此M=max{|f (1)|,|f (-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}={a -1+b ,b ≥0,a -1-b ,b <0.所以M=a-1+|b|≥2.②当34≤a<3时,-2√3a 3≤-1<-√3a 3<√3a 3<1≤2√3a 3,由(1)和(2)知f (-1)≥f (-2√3a 3)=f (√3a 3),f (1)≤f (2√3a 3)=f (-√3a 3), 所以f (x )在区间[-1,1]上的取值范围为[f (√3a 3),f (-√3a 3)],因此M=max {|f (√3a 3)|,|f (-√3a 3)|}=max {|-2a 9√3a -b|,|2a 9√3a -b|} =max {|2a 9√3a +b|,|2a 9√3a -b|}=2a 9√3a +|b|≥29×34×√3×34=14.③当0<a<34时,-1<-2√3a 3<2√3a 3<1,由(1)和(2)知f (-1)<f (-2√3a 3)=f (√3a 3),f (1)>f (2√3a 3)=f (-√3a 3),所以f (x )在区间[-1,1]上的取值范围为[f (-1),f (1)],因此M=max{|f (-1)|,|f (1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>14.综上所述,当a>0时,g (x )在区间[-1,1]上的最大值不小于14.14.解(1)函数f (x )的定义域为(0,+∞),且f'(x )=a (1-x )x. 当a>0时,f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞); 当a<0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1); 当a=0时,f (x )不是单调函数.(2)由(1)及题意得f'(2)=-a 2=1,即a=-2. ∴f (x )=-2ln x+2x-3,f'(x )=2x -2x. ∴g (x )=x 3+(m 2+2)x 2-2x ,∴g'(x )=3x 2+(m+4)x-2. ∵g (x )在区间(t ,3)内总不是单调函数,∴g'(x )=0在区间(t ,3)内有变号零点.∵g'(0)=-2,∴{g '(t )<0,g '(3)>0.∴g'(t )<0,即3t 2+(m+4)t-2<0对任意t ∈[1,2]恒成立, ∵g'(0)<0,∴只需g'(1)<0且g'(2)<0,即m<-5且m<-9,即m<-9;由g'(3)>0,即m>-373.∴-373<m<-9.即实数m 的取值范围是(-373,-9).。

高考数学一轮复习第三章导数及其应用3.1导数的概念及运算

高考数学一轮复习第三章导数及其应用3.1导数的概念及运算
小题速解 由题意得y'=2cos x-sin x,则y'|x=π=-2.计算A、B、C、D选项中直线的斜率,可知只有 C符合.故选C.
3.(2018课标全国Ⅰ,6,5分)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的 切线方程为 ( ) A.y=-2x B.y=-x C.y=2x D.y=x

2
ln
x
.
当0<x<1时,x2-1<0,ln x<0,所以g'(x)<0,故g(x)单调递减;
当x>1时,x2-1>0,ln x>0,所以g'(x)>0,故g(x)单调递增.
所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C在直线L的下方.
思路分析 (1)先求导,再求切线斜率,进而得出切线方程; (2)令g(x)=x-1-f(x),待证等价于g(x)>0(∀x>0,x≠1),再利用函数单调性和最值解决问题.
又g(e)=0,∴ln x= ex 有唯一解x=e.∴x0=e.
∴点A的坐标为(e,1).
方法总结 求曲线y=f(x)过点(x1,y1)的切线问题的一般步骤: ①设切点为(x0, f(x0)); ②求k=f '(x0); ③得出切线的方程为y-f(x0)=f '(x0)(x-x0); ④由切线经过已知点(x1,y1)求得x0,进而得出切线方程.

= 2
.
(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),
则y0=2 x03 -3x0,且切线斜率为k=6 x02-3,所以切线方程为y-y0=(6 -3)(x-x0), 因此t-y0=(6 x02 -3)(1-x0).整x理02 得4 x03 -6 x02 +t+3=0. 设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.

高考数学异构异模复习第三章导数及其应用3.2.2函数的极值与最值课件理

高考数学异构异模复习第三章导数及其应用3.2.2函数的极值与最值课件理
e 内是减函数.又 h(1)=0,所以当 x∈34,1时,h(x)>0,从而 f′(x)>0,这时 f(x)单调递增,当 x∈(1,2)时, h(x)<0,从而 f′(x)<0,这时 f(x)单调递减,所以 f(x)在34,2内的极大值是 f(1)=1.
(2)由题可知 g(x)=(x2-a)e1-x, 则 g′(x)=(2x-x2+a)e1-x=(-x2+2x+a)e1-x. 根据题意,方程-x2+2x+a=0 有两个不同的实根 x1,x2(x1<x2), 所以 Δ=4+4a>0,即 a>-1,且 x1+x2=2,
注意点 极值点的含义及极值与最值的关系 (1)“极值点”不是点,若函数 f(x)在 x1 处取得极大值,则 x1 即为极大值点,极大值为 f(x1);在 x2 处取 得极小值,则 x2 为极小值点,极小值为 f(x2). (2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未 必有极值;极值有可能成为最值,最值只要不在端点必定是极值.
第三章 导数及其应用
第2讲 导数的应用
考点二 函数的极值与最值
撬点·基础点 重难点
1 判断函数极值的方法 一般地,当函数 f(x)在点 x0 处连续时, (1)如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是 极大值 ; (2)如果在 x0 附近的左侧 f′(x)<0,右侧 f′(x)>0,那么 f(x0)是 极小值 . 2 求可导函数 f(x)的极值的步骤 (1)求导函数 f′(x); (2)求方程 f′(x)=0 的根; (3)检验 f′(x)在方程 f′(x)=0 的根的左右两侧的函数值的符号,如果 左正右负,那么函数 y=f(x)在这 个根处取得极大值;如果 左负右正 ,那么函数 y=f(x)在这个根处取得极小值,可列表完成. 3 函数的最值 在闭区间[a,b]上的连续函数 y=f(x),在[a,b]上必有最大值与最小值.在区间(a,b)上的连续函数 y =f(x),若有唯一的极值点,则这个极值点就是最值点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诊断自测
1.判断正误(在括号内打“√”或“×”) (1)函数在某区间上或定义域内极大值是唯一的.( ×)
(2)函数的极大值不一定比极小值大.( √ ) (3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件 .( × ) (4) 函数的最大值不一定是极大值,函数的最小值也不 一定是极小值.( √ )
那么它必有最大值和最小值.
(2) 设函数 f(x) 在 [a , b] 上连续且在 (a , b) 内可导,求 f(x) 在 [a , b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与 f(a),f(b) 是最大值,最小的一个是最小值.
比较,其中最大的一个
答案 D
3.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)
的图象如图所示,则下列结论中一定成立的是(
)
A.函数f(x)有极值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2)
第3讲
导数与函数的极值、最值
最新考纲
了解函数在某点取得极值的必要条件和充分条
件;会用导数求函数的极大值、极小值(其中多项式函数不 超过三次);会求闭区间上函数的最大值、最小值(其中多项 式函数不超过三次).
知识梳理 1.函数的极值与导数 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续且f′(x0)=0, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是 极大值 ; ②如果在x0附近的左侧f′(x) < 0,右侧f′(x) > 0,那么f(x0) 是极小值.
2.函数f(x)=-x3+3x+1有(
A.极小值-1,极大值1 C.极小值-2,极大值2
解析
)
B.极小值-2,极大值3 D.极小值-1,极大值3
因为 f(x)=-x3+3x+1,故有 y′=-3x2+3,令 y′
=-3x2+3=0,解得 x=± 1,于是,当 x 变化时,f′(x),f(x) 的变化情况如下表: x (-∞,-1) -1 (-1,1) 1 (1,+∞) f′(x) - 0 + 0 - f ( x) 极大值 极小值 所以 f(x)的极小值为 f(-1)=-1,f(x)的极大值为 f(1)=3.
考点一 利用导数研究函数的极值问题 [微题型1] 求不含参函数的极值
3 x a 【例 1-1】 已知函数 f(x)=4+ x-ln x-2,其中 a∈R,且 1 曲线 y=f(x)在点(1,f(1))处的切线垂直于直线 y= x. 2 (1)求 a 的值; (2)求函数 f(x)的极值.
1 a 1 解 (1)对 f(x)求导得 f′(x)=4-x2-x ,由 f(x)在点(1,f(1))处 1 3 5 的切线垂直于直线 y=2x, 知 f′(1)=-4-a=-2, 解得 a=4. 2 x -4x-5 3 x 5 (2)由(1)知 f(x)=4+4x-ln x-2,则 f′(x)= 4x2 .
令 f′(x)=0,解得 x=-1 或 x=5. 因为 x=-1 不在 f(x)的定义域(0,+∞)内,故舍去. 当 x∈(0,5)时,f′(x)<0,故 f(x)在(0,5)上为减函数; 当 x∈(5,+∞)时,f′(x)>0,故 f(x)在(5,+∞)上为增函 数.由此知函数 f(x)在 x=5 时取得极小值 f(5)=-ln 5, f(x)无极大值.
解析
由题图可知,当x<-2时,f′(x)>0;当-2<x<1
时, f′(x) <0;当 1<x< 2 时, f′(x) <0 ;当x> 2时, f′(x) >
0. 由此可以得到函数 f(x) 在 x =- 2 处取得极大值,在 x = 2
处取得极小值.
答案 D
4.(2015· 陕 西 卷 ) 函 数 y = xex 在 其 极 值 点 处 的 切 线 方 程 为
-1
1 3 5.(人教 A 选修 1-1P97 例 5 改编)函数 f(x)= x -4x+4 在 3 [0,3]上的最大值与最小值分别为________.
1 3 解析 由 f(x)=3x -4x+4,得 f′(x)=x2-4=(x-2)(x+ 2),令 f′(x)>0,得 x>2 或 x<-2;令 f′(x)<0,得-2 <x<2.所以 f(x)在(-∞,-2),(2,+∞)上单调递增; 4 在(-2,2)上单调递减,而 f(2)=- ,f(0)=4,f(3)=1, 3 4 故 f(x)在[0,3]上的最大值是 4,最小值是-3. 4 答案 4,-3
[微题型2] 求含参函数的极值
【例1-2】 (2015· 银川一中一模)求函数f(x)=ln x-ax,a∈R
的极值.
解 函数 f(x)的定义域为(0,+∞). 1-ax 1 求导数,得 f′(x)=x -a= x . (1)若 a≤0, 则 f′(x)>0, f(x)是(0, +∞)上的增函数, 无极值; 1 (2)若 a>0,令 f′(x)=0,得 x=a. 1 1 当 x∈0,a时,f′(x)>0,f(x)在0,a上是增函数; 1 1 当 x∈a,+∞时,f′(x)<0,f(x)在a,+∞上是减函数.
(2)求可导函数极值的步骤:
①求f′(x);
②求方程 f′(x)=0 的根; ③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右 负,那么f(x)在这个根处取得 极大值 ; 如 果 左 负 右 正 , 那么f(x)在这个根处取得 极小值 .
2.函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件 如果在区间 [a , b] 上函数 y = f(x) 的图象是连续不断的曲线,
________.
解析 由 y=xex 可得 y′=ex+xex=ex(x+1),从而可得 y=
xex 在(-∞,-1)上递减,在(-1,+∞)上递增,所以当 x =-1 时,y=xex 取得极小值-e-1,因为 y′|x=-1=0,故切 1 线方程为 y=-e ,即 y=- . e 1 答案 y=-e
相关文档
最新文档