mathtype测试文档
mathtype附录公式编号

序号观点理由举例结论1mathtype在撰写科技论文、教学材料等方面具有重要意义mathtype可以快速输入数学公式,提高文档撰写效率使用mathtype可以方便地插入复杂的数学公式,并且具有高质量的排版效果mathtype在撰写科技论文、教材等方面具有不可替代的作用2mathtype的使用能够提高数学表达的准确性和美观度mathtype具有丰富的数学符号库,能够满足各种数学表达需求使用mathtype排版的数学公式,符合专业的排版要求,提高了数学表达的准确性和美观度科研论文、学术期刊等专业领域需要使用mathtype来提高数学表达的质量3mathtype方便了数学教学过程中的教学设计和制作教师可以利用mathtype快速输入数学公式,制作教学材料和习题学生也可以借助mathtype轻松编辑数学作业和报告这样既提高了教学效率,又让学生更加专注于数学知识的学习4mathtype附录公式编号mathtype能够自动生成公式编号和交叉引用这一功能极大地方便了文档的整理和管理在论文和教材撰写过程中,可以轻松地对公式进行编号和引用,使得文档结构更加清晰和规范5mathtype在国际上具有广泛的应用mathtype能够输出多种格式的数学公式,包括Word、LaTeX、MathML等这使得mathtype成为国际上数学表达的主流工具之一对于有国际合作或交流的科研人员和学者来说,熟练使用mathtype 是非常必要的技能6mathtype在科技论文、教学材料等领域具有不可替代的作用,其能够提高数学表达的准确性和美观度,方便了教学设计和制作,并且在国际上具有广泛的应用。
特别是其附录公式编号的功能,为文档的整理和管理提供了便利。
推广mathtype的使用,提高用户的mathtype 技能水平,对于提高数学表达的质量和效率具有重要意义。
7另外,mathtype还具有方便的编辑和修改功能在数学公式的编辑过程中,mathtype可以实时预览结果,方便用户观察和修改这使得用户可以更加方便地对数学公式进行调整和修改,从而提高了编辑效率mathtype还支持对数学公式的导出和打印,方便用户进行文档的共享和传播8除了在科技论文和教学材料中的应用,mathtype还在工程设计和数据分析领域具有重要意义工程设计中经常需要使用数学公式进行计算和分析而mathtype则提供了丰富的功能和工具,帮助工程师们轻松地编写和编辑复杂的数学公式,从而提高了工程设计的准确性和效率在数据分析领域,mathtype也能够帮助分析人员更加准确地表达数学模型和公式,提高数据分析的质量和可信度9mathtype还能够帮助数学爱好者和研究人员进行数学研究和交流数学爱好者可以利用mathtype方便地编写数学笔记、论文和博客研究人员也能够通过mathtype更加准确地表达数学理论和模型,方便与他人进行交流和讨论这种便利和高效性使得mathtype成为了数学领域不可或缺的工具之一10在今后的发展中,mathtype还有很大的潜力随着科技的不断发展,对数学表达的要求也将会越来越高mathtype可以在不断改进和完善的基础上,提供更加便捷和高效的数学表达工具特别是在人工智能和自然语言处理领域的发展中,mathtype还有着更广阔的应用前景11mathtype不仅在科技论文、教学材料领域具有重要意义,还在工程设计、数据分析、数学研究和交流等领域发挥着重要作用其方便的编辑和修改功能、丰富的数学符号库以及对多种格式的支持,使得mathtype成为了数学表达中不可或缺的工具在未来,mathtype还有着更大的发展空间,可以为更广泛的领域提供更加便捷和高效的数学表达解决方案推广mathtype的使用,提高用户的mathtype技能水平,对于推动数学表达工具的发展和提高数学表达的质量具有重要意义。
mathtype内联公式行距

mathtype内联公式行距标题:Mathtype内联公式行距调整指南在撰写科技论文、学术报告或数学教材时,我们经常需要用到MathType这款强大的数学公式编辑工具。
其中,内联公式(inline equation)的排版与行距设置是提升文档整体美观度和阅读舒适度的重要环节。
本文将详细介绍如何在MathType中调整内联公式的行距。
一、内联公式的概念内联公式是指嵌入在文本中的数学公式,它们与周围的文本行对齐,使得公式能够更好地融入到文本流中,便于读者理解。
然而,默认的行距可能无法满足所有格式化需求,有时需要根据实际内容进行个性化调整。
二、MathType内联公式行距的调整方法1. 打开MathType软件,插入或编辑内联公式。
2. 在Word或其他支持MathType的应用程序中,选中已插入的内联公式。
3. 进入Word的“段落”设置(或者相应应用程序的样式调整选项),在这里可以找到“行距”设置项。
请注意,直接在MathType内部调整的是公式本身的大小,而非其在文本中的行距。
4. 根据需要选择合适的行距倍数或固定值,以确保内联公式与其他文本之间的间距协调一致。
三、注意事项- 调整行距时应考虑整个文档的一致性,避免因个别公式的行距变化影响整体布局。
- 若发现调整后公式与文本行依然不协调,可尝试微调公式本身的尺寸或查阅目标出版物的排版规范。
- 部分情况下,通过修改Word的"悬挂缩进"或"间距"等参数也能间接实现内联公式行距的优化。
总结,掌握Mathtype内联公式行距的调整技巧对于提高科技文献的质量具有重要意义。
灵活运用这些排版手段,可以帮助我们创建出既专业又易读的高质量文档。
MathType的公式在word中跟文字不对齐

MathType的公式在word中跟⽂字不对齐部分Mathtype公式与⽂档⽂字没有很好的对齐,⽽是浮起来了,也就是说Mathtype公式的位置⽐正常⽂字稍⾼,这是我写论⽂时碰到的⼀个很⿇烦的问题。
然后就是⾏距稍微⼤了点。
后来在⽹上查了很多相关的解决⽅法,才真正解决问题。
我总结的⽅法如下:1、字体,字符间距,位置,标准;格式,段落,中⽂版式,对齐⽅式,居中。
这样公式和⽂字在⽔平⽅向上的中⼼就是⼀致的了。
2、⽂件,页⾯设置,⽂档⽹格,⽆⽹格,确定。
这样就不会因为公式把⾏距撑得很⼤。
⽹上很多朋友提供了其他解决⽅法,虽然⼤部分没有解决问题,但是都实现了不同的效果。
我把⼏种主要的贴在这⾥:1、字体⼤⼩如果⼀致的话是能像正常字体⼀样的,⼀般来说正⽂字体是5号,也就是10.5磅,⽽MathType默认字体⼤⼩是12磅(⼩四号),改成10.5磅⾏⾼就⼀样了(有时候起到作⽤)2、我看来公式和正⽂的基线是⼀样的,段落垂直对齐格式是否设为“底端对齐”?编辑了⼀段类似的⽂字,当垂直对齐设为“底端对齐”时,会出现图中的情况,当设为“⾃动”或“基线对齐”时,就正常了(改为居中对齐就正确了)3、选中所有内容,右击\字体\字符间距\找到到”间距”⼀栏选择---加宽,设置下磅值如:20磅位置,降低,将公式的位置降低(能够将上浮的公式位置下移)4、有时候编辑好的公式放到word⾥⾯会偏上或者偏下,这时候可以选中之后按住ctrl键,然后再按上下键调整位置。
(我尝试时,好像这样的快捷键组合没有作⽤)5、双击它,进⼊mathtype编辑状态。
直接ctrl+S(就是保存)。
OK。
这样有的公式是解决了,有的不⾏。
出现这种问题的原因就是使⽤过格式刷刷过,导致⾏⾼不⼀致。
(好像不⾏)6、⽅法⼀:修改公式⼤⼩。
双击公式进⼊编辑状态,“尺⼨”---“定义”⽅法⼆:选中公式,word上的“格式”---字体---字符间距----位置---选择降低或者提升输⼊多少磅(总结了上⾯的,还是不彻底)——————————————————————————————我的⽅法:段落->中⽂版式->对齐⽅式->⾃动就OK了,不⽤那么复杂。
在office2010中加载MathType6.7的方法

在office2010中调用MathType的方法
一、打开word2010文档,点击“视图”→“宏”;
二、在“宏”下拉菜单中选“录制宏”,在打开的对话框“Macro name”中写要录制的宏的名称“MathType”,并在“将宏保存在(S):”(Store macro in(S):)中选择“所有文档(Normal.dotm)”(All Documents (Normal.dotm)),“确定”(“OK”),开始录制宏;
三、选择word界面上的“插入”→“对象”→“对象”,打开“对象”对话框,在“新建”、“对象类型”对话中选中“MathType 6.0 Equtaion”,“确定”。
这时,会打开MathType主程序;
四、点击文档的任意位置,回到word界面,选“视图”→“宏”,在“宏”下拉菜单中选“停止录制宏”。
“宏”已经被录制;
五、将记录的宏添加到word界面上的快速访问工具栏:点击word界面上的“文件”,打开“选项”,在“word选项”对话框中点击“快速访问工具栏”,在“从下列位置选择命令”下拉菜单中选“宏”命令,在“<分离符>”对话框中出现“Normal.NewMacros.MathType”,点击选中,添加到右边对话框;
六、点击右边对话框下面的“修改”,可以选择你喜欢的图标。
你也可以不修改。
然后点击“确定”,再打开word时,在“快速访问工具栏”将出现MathType的宏观的图标。
调用时,只要点击该图标即可。
选自“/en/support/mathtype/allnotes.htm”。
mathtype与word

人们通常是在Word中处理日常工作事物,在Word文档中能否使用或者运行Mathtype 呢?我们就来看看MathType是如何在Word使用运行的。
1.支持Word办公Office 2013和Office 365:MathType 6.9版本在Windows 7或8系统中完全兼容Office 2013和Office 365。
Office 2010、2007、2003和XP:MathType 6.9版本完全兼容上述软件。
Office Web Apps、移动Office和Office RT:上述软件不可以编辑MathType公式,但是可以显示和打印在其他Office版本上已经建立的公式。
32和64位的Office:MathType 6.9版本完全兼容上述软件。
2.MathType在Word 2013、2010、2007、Word 2003和XP 2002中的菜单和工具栏插入公式:不管是否有公式编号,Word功能区的MathType选项卡都可以轻松插入公式。
不再需要使用呆板的插入对象对话框了。
MathType命令:MathType选项卡还提供了一系列在Word中的快速访问命令,比如给未打开的公式重新编号,插入公式参数以及将Word文档转换为网页。
3.在文档中更改公式的字体和格式MathType在Word中增加了自己的菜单栏,涵盖了很多有用的命令。
公式格式就是其中之一,它允许你更改文档中所有公式的字体和样式。
4.生成好看且易理解的数学网页MathPage:MathType所包含的MathPage技术能够很容易地将Word文件转换成网页,并能够像MathType和公式编辑器一样恰当地处理数学符号。
MathPage还有几个发布选项,包括MathJax,一种外部资源的显示引擎。
MathML或GIF:MathPage可以将生成的公式保存为GIF格式或MathML格式,MathML 允许您复制粘贴数学内容到能够识别MathML的任何程序上。
mathtyp公式编号

mathtyp公式编号MathType是一种广泛使用的公式编辑器,它可以让用户在文档中轻松地插入各种数学符号、公式和方程式。
在使用MathType时,一个常见的需求就是给公式添加编号,以便在文档中进行引用和跨页展示。
下面介绍一些关于MathType公式编号的方法和技巧。
1. 使用Word自带的公式编号功能在Word中,可以使用自带的公式编号功能来对MathType公式进行编号。
具体操作步骤如下:(1) 在Word中打开文档,插入需要编号的MathType公式;(2) 选中公式,右键菜单中选择“MathType Ctrl + Shift + G 设置公式编号...”;(3) 在弹出的设置对话框中,选择对公式进行编号,并设置编号格式和起始编号等选项;(4) 点击“确定”按钮,完成公式编号的设置。
此时,公式下方会自动添加一个带编号的标签。
2. 使用VBA宏实现公式编号如果需要对大量的MathType公式进行编号,手动设置会比较繁琐和耗时。
这时,我们可以使用VBA宏来自动化完成公式编号。
具体实现方法如下:(1) 在Word中打开需要编号的文档,按下“Alt + F11”快捷键,打开VBA编辑器;(2) 在VBA编辑器中,选择“插入”-“模块”,把下面的代码复制到新建的模块中:Sub EquationNumbering()' 定义公式编号起始值Dim n As Integern = 1' 遍历Word文档中的所有公式For Each eq In ActiveDocument.InlineShapesIf eq.Type = wdInlineShapeFormula Theneq.Range.Select' 设置公式编号Selection.OMaths.Item(1).Range.InsertBefore '(' & n & ') 'n = n + 1End IfNextEnd Sub(3) 点击“运行”按钮,开始执行宏。
mathtype公式行间距与正文对应

MathType是数字文档中创建和编辑数学方程式,公式,符号的强大工具。
使用MathType的一个重要方面是确保方程间隔和对齐与周围文本一致。
在本篇散文中,我们将探索MathType方程中的行距概念及其与文本的对应性,以及保持数学文档适当对齐的重要性。
MathType方程中的行间距是指方程行间垂直的空间以及它如何与文本的其余部分相互作用。
必须保持一致的行距,以确保方程式与周围内容无缝地融合。
在数学文档中,方程式中的行距应当与文本中的行距相匹配,以保持连贯和专业的外观。
MathType方程中合适的行间距可以通过在 MathType 软件内调整行间距设置来实现。
这使得用户可以自定义行距以匹配文本,确保方程式与文档的其他部分和谐地出现。
通过注意这些细节,数学文档可以更有视觉吸引力,更容易阅读。
除行间距外,还应考虑将MathType方程与周围文本相配合。
方程式应与文档的左侧或右侧边距一致,以保持整齐有序的布局。
等式一致有助于读者更容易浏览内容,提高文件的总体清晰度。
值得一提的是,正确使用MathType和正确的对齐和线间距等方程可以对数学内容的理解和解释产生重大影响。
研究人员在一所领先的大学进行的一项研究发现,当方程式清晰地呈现出适当的对齐和行距时,学生能够更有效地理解和保留数学概念。
这表明在数学文件中注意这些细节的实际重要性。
MathType方程中的行间距在保持数学文档的一致性和视觉吸引力方面发挥着至关重要的作用。
通过确保方程式的行距与周围文字对齐,并关注方程式的对齐,数学家和研究人员可以创建更容易阅读和理解的文件。
归根结底,正确使用MathType和关注这些细节可以提高数学内容的整体质量,并有助于更好的学习和研究经验。
Word2010(2007)错误438对象不支持该属性或方法(mathtype)

Word2010(2007)错误438对象不支持该属性或方法(mathtype)Word 2010(2007)错误438 对象不支持该属性或方法(mathtype)如果你用的是Word 2010(2007),那么你可能遇到过“运行时错误’438 ’:对象不支持该属性或方法”的提示。
不必删除Normal.dotm模板,根本不是这个模板的问题!问题描述:在word 2010(2007)中使用Ctrl+C和Ctrl+V执行复制、粘贴操作,总是出现“错误438 对象不支持该属性或方法”的提示。
几乎每次都出现,有时第一次使用就出现,有时连续执行复制粘贴时出现。
同文档复制粘贴、跨文档复制粘贴都会出现。
非常频繁。
严重影响使用。
问题原因:MathType Commands 6加载项所引起(MathType 6.7a及其之前版本都会出现这个问题,我用的是MathType 6.7a英文版)解决方案:引起错误438的两个文件是:%Program Files%\Microsoft Office\Office14\STARTUP\MathPage.wll%Program Files%\Microsoft Office\Office14\STARTUP\MathType Commands 6 For Word 2010.dotmDesign Science的公式编辑器MathType 6.7引起了这个问题。
删除以上2个文件后,word 2010没有再出现过错误438.这时,MathType Commands 6加载项不再可以使用,word2010不会再有MathType 选项卡。
欲插入公式,可以用插入对象的方法。
在插入选项卡,文本类中,有一个“对象”,可以从中选择MathType 公式。
这与Microsoft Word 2003是类似的。
也可以在MathType中输入公式,然后复制到word2010中。
(推荐方法)word2007是否有此问题,未经测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019考研数学完整版及参考答案 一、选择题:1-8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.
(1)设函数()yfx具有二阶导数,且()0,()0fxfx,x为自变量x在点0x处的增
量,dyy与分别为()fx在点0x处对应的增量与微分,若0x,则( ) (A)0dyy. (B)0dyy. (C)d0yy. (D)d0yy.
(2)设()fx是奇函数,除0x外处处连续,0x是其第一类间断点,则0()dxftt是( ) (A)连续的奇函数. (B)连续的偶函数. (C)在0x间断的奇函数. (D)在0x间断的偶函数.
(3)设函数()gx可微,1()()e,(1)1,(1)2gxhxhg,则(1)g等于( ) (A)ln31. (B)ln31. (C)ln21. (D)ln21.
(4)函数212eeexxxyCCx满足的一个微分方程是( ) (A)23e.xyyyx (B)23e.xyyy (C)23e.xyyyx (D)23e.xyyy
(5)设(,)fxy为连续函数,则1400d(cos,sin)dfrrrr等于( ) (A)22120d(,)dxxxfxyy. (B)221200d(,)dxxfxyy. (C)22120d(,)dyyyfxyx. (D)221200d(,)dyyfxyx. (6)设(,)(,)fxyxy与均为可微函数,且(,)0yxy,已知00(,)xy是(,)fxy在约束条件(,)0xy下的一个极值点,下列选项正确的是( ) (A)若00(,)0xfxy,则00(,)0yfxy.
(B)若00(,)0xfxy,则00(,)0yfxy. (C)若00(,)0xfxy,则00(,)0yfxy. (D)若00(,)0xfxy,则00(,)0yfxy.
(7)设12,,,s均为n维列向量,A为mn矩阵,下列选项正确的是( ) (A)若12,,,s线性相关,则12,,,sAAA线性相关. (B)若12,,,s线性相关,则12,,,sAAA线性无关. (C)若12,,,s线性无关,则12,,,sAAA线性相关. (D)若12,,,s线性无关,则12,,,sAAA线性无关.
(8)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的1倍加到第2列得C,记110010001P,则( ) (A)1CPAP. (B)1CPAP. (C)TCPAP. (D)TCPAP.
二.填空题 (9)曲线4sin52cosxxyxx 的水平渐近线方程为 (10)设函数2301sind,0(),0xttxfxxax 在0x处连续,则a (11)广义积分220d(1)xxx (12) 微分方程(1)yxyx的通解是 (13)设函数()yyx由方程1eyyx确定,则 0ddxyx (14)设矩阵2112A,E为2阶单位矩阵,矩阵B满足2BABE,则B 三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 试确定,,ABC的值,使得23e(1)1()xBxCxAxox,其中3()ox是当0x时比3x高阶的无穷小.
(16)(本题满分10分) 求 arcsinedexxx.
(17)(本题满分10分) 设区域22(,)1,0Dxyxyx, 计算二重积分221dd.1Dxyxyxy
(18)(本题满分12分) 设数列nx满足110,sin(1,2,)nnxxxn
(Ⅰ)证明limnnx存在,并求该极限; (Ⅱ)计算211limnxnnnxx. (19)(本题满分10分) 证明:当0ab时,sin2cossin2cosbbbbaaaa.
(20)(本题满分12分) 设函数()fu在(0,)内具有二阶导数,且22zfxy满足等式22220zzxy.
(I)验证()()0fufuu; (II)若(1)0,(1)1ff,求函数()fu的表达式.
(21)(本题满分12分) 已知曲线L的方程221,(0)4xttytt (I)讨论L的凹凸性; (II)过点(1,0)引L的切线,求切点00(,)xy,并写出切线的方程;
(III)求此切线与L(对应于0xx的部分)及x轴所围成的平面图形的面积.
(22)(本题满分9分) 已知非齐次线性方程组1234123412341435131xxxxxxxxaxxxbx有3个线性无关的解.
(Ⅰ)证明方程组系数矩阵A的秩2rA; (Ⅱ)求,ab的值及方程组的通解.
(23)(本题满分9分) 设3阶实对称矩阵A的各行元素之和均为3,向量TT121,2,1,0,1,1是线性方程组0Ax的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵,使得TQAQ. 数学答案 1. A 【分析】 题设条件有明显的几何意义,用图示法求解.
【详解】 由()0,()0fxfx知,函数()fx单调增加,曲线()yfx凹向,作函数()yfx的图形如右图所示,显然当0x时,00d()d()0yyfxxfxx,故应选(A). 【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日定理求解:
0000()()(),yfxxfxfxxxx因为()0fx,所以()fx单调增加,
即0()()ffx,又0x,则0()()d0yfxfxxy,即0dyy. 定义一般教科书均有,类似例题见《数学复习指南》(理工类)P.165【例6.1】,P.193【1(3)】.
2. B 【分析】由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合
题设条件的特殊函数()fx去计算0()()dxFxftt,然后选择正确选项.
【详解】取,0()1,0xxfxx.则当0x时,222
00011()()dlimdlim22xxFxfttttxx
,而0(0)0lim()xFFx,所以
()Fx为连续的偶函数,则选项(B)正确,故选(B).
【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效. 符合题设条件的函数在多教科书上均可见到,完全类似例题见2006文登最新模拟试卷(数学三)(8).
3. C 【分析】题设条件1()()egxhx两边对x求导,再令1x即可.
【详解】1()()egxhx两边对x求导,得1()()e()gxhxgx.上式中令1x,又(1)1,(1)2hg,可得1(1)1(1)1(1)e(1)2e(1)ln21gghgg,故选(C).
【评注】本题考查复合函数求导,属基本题型. 完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例12】,《数学复习指南》理工类P.47【例2.4】,《数学题型集粹与练习题集》理工类P.1【典例精析】.
4. D 【分析】本题考查二阶常系数线性非齐次微分方程解的结构及非齐次方程的特解与对应齐次微分方程特征根的关系.故先从所给解分析出对应齐次微分方程的特征方程的根,然后由特解形式判定非齐次项形式. 【详解】由所给解的形式,可知原微分方程对应的齐次微分方程的特征根为
121,2.则对应的齐次微分方程的特征方程为2(1)(2)0,20即.
故对应的齐次微分方程为20yyy.又*exyx为原微分方程的一个特解,而1为特征单根,故原非齐次线性微分方程右端的非齐次项应具有形式()exfxC(C为常数).所以综合比较四个选项,应选(D). 【评注】对于由常系数非齐次线性微分方程的通解反求微分方程的问题,关键是要掌握对应齐次微分方程的特征根和对应特解的关系以及非齐次方程的特解形式. 完全类似例题见文登暑期辅导班《高等数学》第7讲第2节【例9】和【例10】,《数学复习指南》P.156【例5.16】,《数学题型集粹与练习题集》(理工类)P.195(题型演练3),《考研数学过关基本题型》(理工类)P.126【例14】及练习.
5. C
【分析】 本题考查将坐标系下的累次积分转换为直角坐标系下的累次积分,首先由题 设画出积分区域的图形,然后化为直角坐标系下累次积分即可. 【详解】 由题设可知积分区域D如右图所示,显然是Y型域,则原式
22120d(,)dyyyfxyx.故选(C).
【评注】 本题为基本题型,关键是首先画出积分区域的图形. 完全类似例题见文登暑期辅导班《高等数学》第10讲第2节例4,《数学复习指南》(理工类)P.286【例10.6】,《考研数学过关基本题型》(理工类)P.93【例6】及练习.
6. D 【分析】 利用拉格朗日函数(,,)(,)(,)Fxyfxyxy在000(,,)xy(0是对应