2017年江西中考《第三章函数及其图象》总复习课件(7份)
江西省2017年中考数学复习第3单元函数及其图像第11课时平面直角坐标系课件

3.1.3 点与坐标轴的距离
1.点P(a,b)到x轴的距离等于点P的纵坐标的绝对值,即 b . 2.点P(a,b)到y轴的距离等于点P的横坐标的绝对值,即 a .
3.1.4 平面直角坐标系中的平移与对称点的坐标
1.用坐标表示平移 (1)用坐标表示平移
①点的平移:
点(x,y)左移a个单位长度:(x-a,y);
2.对称点的坐标的特征 (1)坐标平面内,点P(x,y)关于x轴(横轴)的对称点P1的坐标为(x,-y); (2)坐标平面内,点P(x,y)关于y轴(纵轴)的对称点P2的坐标为(-x,y); (3)坐标平面内,点P(x,y)关于原点的对称点P3的坐标为(-x,-y).
以上规律可归纳为:谁对称谁不变,另一个变号,关于原点对称,横变纵也 变.
3.坐标轴上点的坐标的特征
(1)点P(x,y)在x轴上 y=0,x为任意实数. (2)点P(x,y)在y轴上 x=0,y为任意实数. (3)点P(x,y)既在x轴上,又在y轴上 x、y同时 为零,即点P的坐标为(0,0),即原点.
3.1.2 平面直角坐标系内点的坐标特征
1.平行于坐标轴的直线上点的特征 (1)平行于x轴(或垂直于y轴)的直线上点的纵坐标相同,横坐标为不相等 的实数. (2)平行于y轴(或垂直于x轴)的直线上点的横坐标相同,纵坐标为不相等 的实数. 2.各象限角平分线的点的坐标特征. (1)第一、三象限角平分线上的点横、纵坐标相等. (2)第二、四象限角平分线上的点横、纵坐标互为相反数.
转折点处发生变化;③找终点:图象在终点处结束;④判断图象趋势:结合
起点、转折点、终点判断出函数图象的运动变化趋势;⑤看是否与坐标轴相 交:即此时另外一个量为0.
3.如何判断与函数图象有关结论的正误 分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意: ①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生
江西省2017中考数学第一部分教材同步复习第三章坐标与函数12二次函数的图象与性质课件新人教版

7
(2)二次函数 y=ax2+bx+c(a≠0)的图象是一条抛物线.它的对称轴为直线 x=h b b 4ac-b =- ,顶点坐标为(h,k)或(- , ),当 a>0 时,开口向上(如图 3);当 a 2a 2a 4a <0 时,开口向下(如图 4).
2
8
(3)抛物线的平移规律
9
2.二次函数图象的画法——五点法 b 4ac-b b (1)列表:先取顶点 A(- , ),对称轴 x=- ,令 y=0,求出抛物线 2a 4a 2a 与 x 轴的两个交点 B、C,令 x=0,求出抛物线与 y 轴的交点 D,再求出 D 关于对 b 称轴 x=- 的对称点 E. 2a (2)描点:将 A、B、C、D、E 五点在坐标轴上依次描出来. (3)连线:按照从左到右的顺序将这 5 个点用平滑的曲线连接起来,连线要注意 平滑,画图象不应画到“两端”为止,而应当画成两个方向延伸的形状.
线 AB 的解析式为 y=2x+2.
17
在确定二次函数的解析式时,设哪种解析式形式要根据题中的已知条件来确
定,若题目给出的是图象上点的坐标,设一般式;若给出对称轴和图象上的一点坐 标,设顶点式;若给出了图象与x轴的两交点,设交点式.
应点的横坐标的取值范围.
14
三年中考 ·讲练
二次函数解析式的确定 【例1】 (2016淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经
过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点. (1)求这条抛物线对应的函数解析式; (2)求直线AB对应的函数解析式.
15
23
2017权威 ·预测
1.某数学小组在对二次函数y=kx2+2kx+3(k≠0)的探究中,得出以下结论:
江西省2017中考数学第一部分教材同步复习第三章坐标与函数14平面图形相交线与平行线课件

4.平行公理与相关定理
(1)经过已知直线外一点,有且只有一条直线与已知直线平行.(平行公理) (2)平行于同一条直线的两条直线平行.(平行公理的推论)
(3)同一平面内,垂直于同一直线的两直线平行.
8
►知识点五
命题与定理
1.命题:判断一件事件的句子,叫做命题.
2.命题的组成:每个命题都由条件和结论两部分组成,条件是已知的事项,结 论是由已知事项推断的事项,一般地,命题都可以写成“如果„„那么„„”的形
式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.
3.真命题与假命题:正确的命题称为真命题,不正确的命题称为假命题. 4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而 第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题. 5.定理:判定其他命题真假的依据的真命题,叫做定理.
【注意】对顶角是成对出现的,是具有特殊位置关系的两个角.
2.垂线的定义 两条直线相交所构成的四个角中有一个角是直角时,就说这两条直线互相垂 直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
6
3.垂线的性质 有且只__________ 垂线段 最短. (2)直线外一点到直线上各点连接的所有线段中,③________ 【注意】 垂线的性质中的 “ 过一点”,这一点可在已知直线上,也可在已知直 线外,垂线的性质的前提条件必须是“在同一平面内”. 4.垂线段:过直线外一点,作已知直线的垂线,点与垂足之间的线段.
端点 . 点叫做射线的③_______ 【注意】用两个大写字母表示一条射线时,字母的位置不能改变.
2
3.线段
线段 ,这两个点叫做线段 (1)概念:直线上的两个点和它们之间的部分叫做④______ 的端点. 线段 最短. (2)线段公理:所有连接两点的线中,线段最短,即两点之间⑤_______ (3) 线 段 的 中 点 : 把 一 条 线 段 分 成 两 条 相 等 的 线 段 的 点 , 叫 做 线 段 的 ⑥ 中点 .在解线段的和差倍数的计算题时,应通过画图观察,从而找出线段之间的 _______ 关系.
2017数学中考总复习第三章--函数及其图像.docx

第三章函数及其图像课时 11.平面直角坐标系与函数的概念【考点链接】1.坐标平面内的点与 ______________ 一一对应.2.根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限3.x 轴上的点______坐标为0,y 轴上的点______坐标为0.4.各象限角平分线上的点的坐标特征⑴第一、三象限角平分线上的点,横、纵坐标。
⑵第二、四象限角平分线上的点,横、纵坐标。
5.P(x,y)关于x轴对称的点坐标为__________,关于y轴对称的点坐标为________,关于原点对称的点坐标为 ___________.以上特征可归纳为:⑴关于 x 轴对称的两点:横坐标相同,纵坐标;⑵关于 y 轴对称的两点:横坐标,纵坐标相同;⑶关于原点对称的两点:横、纵坐标均。
6.描点法画函数图象的一般步骤是__________、 __________ 、 __________ .7.函数的三种表示方法分别是 __________ 、__________ 、__________ .8.求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义。
⑴自变量以整式形式出现,它的取值范围是;⑵自变量以分式形式出现,它的取值范围是;⑶自变量以根式形式出现,它的取值范围是;例如: y x 有意义,则自变量x 的取值范围是.y 1x 的取值范围是。
有意义,则自变量x【河北中考试题】的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且0x ≤ 10 ,阴影部分的面积为y ,则能反映y 与x之间函数关系的大致图象是()xD y y y yA100100100100B C O10x x xO x图 4O10O 5 1010 A . B .C. D .2.( 2009 年, 2分)如图 6 所示的计算程序中,y 与 x 之间的函数关系输入 x 所对应的图象应为()y y y4-2O x- 2 O x O 2x- 4- 4取相反数y4×2 O 2x+4输出 yA B C D图 63.( 2010 年, 2 分)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为 5 km /h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t( h),航行的路程为s( km),则 s 与 t 的函数图象大致是()s s s sO t O t O t O tA B C D11.(2011)如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y 和 x,则 y 与 x 的函数图象大致是16.如图 9,梯形 ABCD中, AB∥ DC,DE⊥AB,CF⊥AB,且 AE = EF = FB = 5,DE = 12动点 P 从点 A 出发,沿折线 AD-DC-CB 以每秒 1 个单位长的速度运动到点 B 停止 . 设运动时间为 t 秒, y = S△EPF,则 y 与 t 的函数图象大致是课时 12.一次函数【考点链接】1.正比例函数的一般形式是__________ .一次函数的一般形式是__________________.2.一次函数 y kx b 的图象是经过和两点的一条.3.求一次函数的解析式的方法是,其基本步骤是:⑴;⑵;⑶;⑷.4.一次函数 y kx b 的图象与性质k、b 的符号k> 0b> 0k>0 b < 0k< 0 b > 0k< 0b< 0图像的大致位置经过象限第象限第象限第象限第象限性质y 随 x 的增大y 随 x的增大y 随 x 的增大y 随 x 的增大而而而而5.一次函数 y kx b 的性质k> 0直线上升y 随 x 的增大而;【河北中考试题】1. 2008 8 11l 1的解析表达式为y3x 3,且 l 1 与 x 轴交于点 D ,直线 l 2经过点 A , B ,( 年, 分)如图 ,直线直线l 1 , l 2 交于点 C .y( 1)求点 D 的坐标;l 1l 2( 2)求直线 l 2 的解析表达式;D 3( 3)求 △ ADC 的面积;Ox3A ( 4, 0)( 4)在直线 l 2 上存在异于点 C 的另一点 P ,使得2BC△ ADP 与 △ ADC 的面积相等,请直接写出点 P 的坐标. ..图 112.( 2009 年, 12 分) 某公司装修需用 A 型板材 240 块、 B 型板材 180 块, A 型板材规格是 60 cm ×30 cm ,B 型板材规格是 40 cm ×30 cm .现只能购得规格是 150 cm ×30 cm 的标准板材. 一张标准板材尽可能多地裁出 A 型、 B 型板材,共有下列三种裁法: (图 15 是裁法一的裁剪示意图)裁法一裁法二裁法三A 型板材块数120B 型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y张、按裁法三裁z 张,且所裁出的 A 、B 两种型号的板材刚好够用.( 1)上表中, m =,n =;( 2)分别求出y 与 x 和 z 与 x 的函数关系式;( 3)若用 Q 表示所购标准板材的张数,求Q 与 x 的函数关系式,并指出当 x 取何值时 Q 最小,此时按三种裁法各裁标准板材多少张?5.(2011)一次函数y=6x+ 1 的图象不经过...A.第一象限B.第二象限C.第三象限 D .第四象限24.( 2011)(本小题满分9 分)已知 A、B 两地的路程为240 千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由 A 地运往 B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S(千米)与行驶时间t(时)的函数图象(如图13中①),上周货运量折线统计图(如图13 中②)等信息如下:货运收费项目及收费标准表运输工具运输费单价冷藏单价固定费用元 /(吨 ?千米)元/(吨?时)元/次汽车25200火车 1.652280⑴汽车的速度为__________千米 /时,火车的速度为_________ 千米 /时;设每天用汽车和火车运输的总费用分别为y 汽(元)和 y 火(元),分别求 y 汽、y 火与 x 的函数关系式(不必写出x 的取值范围)及x 为何值时 y 汽>y 火;(总费用 =运输费+冷藏费+固定费用)⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?26.(本小题满分 14 分)一透明的敞口正方体容器 ABCD - A′B′C′装D′有一些液体,棱 AB始终在水平桌面上,容器底部的倾斜角为(∠ CBE = α,如图 17-1所示).探究如图 17-1,液面刚好过棱 CD,并与棱 BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图 17-2 所示.解决问题:(1)CQ与BE的位置关系是 ___________,BQ的长是 ____________dm;(2)求液体的体积;(参考算法:直棱柱体积 V液 =底面积 SBCQ×高 AB)33( 3)求α的度数 .( 注: sin49 °= cos41°=4, tan37°=4)拓展在图 17-1 的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体溢出,图 17-3 或图 17-4 是其正面示意图 . 若液面与棱 C′C或 CB交于点 P,设 PC = x,BQ = y. 分别就图 17-3 和图 17-4 求 y 与x的函数关系式,并写出相应的α的范围 .延伸在图 17-4 的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图 17-5,隔板高 NM = 1 dm, BM = CM,NM⊥BC. 继续向右缓慢旋转,当α= 60 °时,通过计算,判断溢出容器的液体能否达到 4 dm3.6、( 2014)如图,直线 l 经过第二,三,四象限,l 的解析式是y=( m-2) x+n,则 m 的取值范围则数轴上表示为()A BDC26.( 2014)(本小题满分 13 分)某景区的环形路是边长为800 米的正方形 ABCD ,如图,现有 1 号, 2 号两游览车分别从出口 A 和经典 C 同时出发, 1 号车顺时针, 2 号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200 米 /分。
(江西专用)中考数学总复习 第一部分 教材同步复习 第三章 函数 第12讲 二次函数的图象与性质

ab<0(b 与 a 异号)
对称轴在 y 轴○23 __ 右__侧
字母或代数式
符号
图象的特征
c b2-4ac
特殊
c=0
经过○24 __原__点____
c>0
与 y 轴○25 ___正_____半轴相交
c<0 b2-4ac=0
与 y 轴○26 ___负_____半轴相交 与 x 轴有○27 ___唯__一___交点
知识点三 二次函数图象的平移
• 1.二次函数一般式的平移
平移前的解析式
y=ax2+ bx+c
移动方向
向左平移 m个单位
向右平移 m个单位
向上平移 m个单位
向下平移 m个单位
平移后的解析式 y=a(x⑦___+__m___)2+b(x ⑧___+__m___)+c y=a(x⑨___-__m___)2+b(x ⑩__-__m____)+c
知识点四 二次函数解析式的确定
• 1.待定系数法
• (1)选择解析式的形式
已知条件
选用解析式的形式
形式
已知抛物线上三点的坐标
一般选用一般式
y=ax2+bx+c(a,b,c为常 数,a≠0)
已知抛物线的顶点坐标或对称轴 与最大(小)值
y=a(x-h)2+k(a≠0), 一般选用顶点式 (h,k)为二次函数的顶点坐
b2-4ac>0
与 x 轴有○28两__个__不__同__交点
⑰__(__-__h_,__-__k_)___
(3)将变化后的a,h,k代入顶点式中即可得到变化后的解析式.
• 8.若抛物线的顶点为(3,5),则此抛物线的解析式可设为____y_=__a_(__x_-__3_)__2.+5
江西省2017年中考数学复习第3单元函数及其图像第14课时二次函数及其图象课件

第14课时 二次函数及其图象
知识体系图
二次函数的概念 平移 图象法
列表法
二次函数所描述的关系 用三种方法表示 解析法 开口方向 二次函数及其图象 二次函数的图象及性质 对称轴 顶点坐标 增减性
最值
二次函数与一元二次方程
与坐标轴的位置关 系 利用二次函数的图象求 一元二次方程跟的近似值
【例3】(2016年山西)将抛物线y=x2-4x-4向左平移三个单位,再向上平移五 个单位,得到抛物线的表达式为 (D)
A.y=(x+1)2-13
B.y=(x-5)2-3
C.y=(x-5)2-13
D.y=(x+1)2-3
【解析】此题考查了二次函数图象的平移,二次函数图象平移,先将解析式 变为顶点式比较方便,题中二次函数变为顶点式为:y=(x-2)2-8.根据平移的规 律左加右减,上加下减可以得到平移后的二次函数的解析式为D选项,故选择 D选项.
y=a(x-h)2+k
3.4.6 二次函数与一元二#43;c(a≠0)中,取y=0时,x的取值就是一元二次方程
ax2+bx+c=0的解,即y=ax2+bx+c与x轴交点的横坐标就是一元二次方程 ax2+bx+c=0的根.
1.当b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个交点,即方程ax2+bx+c=0有两 个不相等的实数根. 2.当b2-4ac=0,抛物线y=ax2+bx+c与x轴有一个交点,即方程ax2+bx+c=0有两个
m 4 m 5 且m,k都是正整数,∴ 或 m>k, k 2 k 1
(江西专用)中考数学总复习 第一部分 教材同步复习 第三章 函数 第10讲 一次函数

3.常见类型 (1)两点型:直接运用待定系数法求解; (2)平移型:由平移前后 k 不变,设出平移后的函数解析式,再代入已知点即 可.
6.请你写出一个函数,使它的图象经过点 A(1,2),这个函数的表达式可以是 _y_=__2_x___.
式2x>ax+5的解集为__x_>_1_.__5_.
知识点四 一次函数的实际应用
• 1.步骤 • (1)设实际问题中的变量; • (2)建立一次函数关系式; • (3)确定自变量的取值范围; • (4)利用函数性质解决问题; • (5)作答.
• 2.常考类型 • (1)求函数解析式 • a.文字型及表格型应用题,一般根据题干中数量的等量关系来列函数解析式; • b.图象型应用题,一般在图象上找两个已知点的坐标,根据待定系数法求函数解析式. • (2)方案问题 • 通常涉及两个相关量,根据所满足的关系式,列不等式,求解出某一个变量的取值范围,再根据另
知识点二 一次函数解析式的确定
1.待定系数法:先根据明确的函数关系设出函数关系式中的未知系数,再根据 条件确定解析式中未知的系数,从而求出函数解析式的方法,叫做待定系数法.
2.步骤
(1)设 (2)列 (3)解
(4)还原
设出一次函数解析式的一般式 y=kx+b(k≠0) 根据已知两点坐标,列出关于 k,b 的二元一次方程组
A
B
C
D
• 3.写出一个y随x的增大而增大的正比例函数解析式y_=__2_x_(__答__案__不___唯__一__)__. • 4.一次函数y=-3x+3的图象与y轴的交点坐标是(__0_,__3_)__. • 5.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表
江西省2017中考数学 第一部分 教材同步温习 第三章节 坐标与函数 14 平面图形 相交线与平行线讲义 新人教版

►知识点五 命题与定理 1.命题:判断一件事件的句子,叫做命题. 2.命题的组成:每个命题都由条件和结论两部分组成,条件是已知的事项,结
论是由已知事项推断的事项,一般地,命题都可以写成“如果……那么……”的形 式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.
3.真命题与假命题:正确的命题称为真命题,不正确的命题称为假命题. 4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而 第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题. 5.定理:判定其他命题真假的依据的真命题,叫做定理. 对于定理,它是经过证明的真命题,但并不是所有的真命题都是定理,定理可 以作为判定其他命题真假的依据.
2.(2013江西)如图在△ABC中,∠A=90°,点D在AC边上, DE∥BC,若∠1=155°,则∠B的度数为__6_5_°___.
【考查内容】平行线的性质. 【解析】∵∠1=155°, ∴∠EDC=180°-∠1=180°-155°=25°, ∵DE∥BC,∴∠C=∠EDC=25°, 在Rt△ABC中,∵∠A=90°,∠C=25°, ∴∠B=180°-90°-25°=65°.
部分 教材同步复习
14、平面图形、相交线与平行线
14、平面图形、相交线与平行线
知识要点 ·归纳
►知识点一 直线、射线、线段 1.直线:经过两点有一条直线,并且只有①___一__条___直线,简述为:两点确定
②_一___条___直线. 2.射线:射线是直线的一部分.直线上的一点和它一旁的部分叫做射线,这个
4.角平分线 (1)概念:从一角的顶点引出一条射线,把这个角分成两个相等的角的射线,叫 做这个角的平分线. (2)定理:角平分线上的点到角两边的距离相等. 5.余角与补角 (1)概念:两个角的和是180°时,称这两个角互为补角,简称互补;两个角的和 等于90°时,称这两个角互为余角,简称互余. (2)性质:等角(或同角)的余角相等,等角(或同角)的补角相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-