第5讲 勾股定理(1)
勾股定理(第1课时)精选教学PPT课件

勾股定理的运用
已知直角三角形的任意两条边 长,求第三条边长.
c2=a2+b2 a2=c2-b2 b2=c2-a2
例2:将长为5米的梯子AC斜靠在墙上, BC长为2米,求梯子上端A到墙的底端 B的距离.
解:在Rt△ABC中,∠ABC=90° A ∵BC=2 ,AC=5 ∴AB2= AC²- BC²
情境引入
换成下图你有什发现?说出你的观点.
等腰直角三角形斜边的平方等于两直角边的平方和.
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC
直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
课中探究
其它直角三角形是否也存在这种关系? 观察下边两个图并填写下表:
A的面积 B的面积 C的面积
于斜边的平方.
B
在Rt△ABC中,∠C=900 ,
边BC、AC、AB所对应的边 勾 a
分别为a、b、c则存在下列
弦
c
关系, a2+b2=c2
Cb
A
股
此结论被称为“勾股定理”.
勾股定理
如果直角三角形的两直角边分别为a,b,
斜边为c,那么
a2 + b2 = c2.
即直角三角形两直角边的平方和等于斜边的平方.
劫匪饮弹自尽。 很多人问过她到底说了什么让劫匪居然放了她,然后放弃了惟一生存的机会。她平静地说,我只说了几句话,我对我哥说的最后一句话是:“哥,天凉了,你多穿衣。”
她没有和别人说起劫匪的眼泪,说出来别人也不相信,但她知道那几滴眼泪,是人性的眼泪,是善良的眼泪。
感谢父母给了我生命和无私的爱; 感谢老师给了我知识和看世界的眼睛;
勾股定理说课稿(通用5篇)

勾股定理说课稿(通用5篇)勾股定理说课稿(通用5篇)勾股定理说课稿篇1(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过'教师之为教,不在全盘授予,而在相机诱导。
'因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。
勾股定理(第1课时)精选教学PPT课件

b
a
证明结y论=0得到定理
勾股定理:
如果直角三角形两直角边分别 为a、b,斜边为c,那么
a2 b2 c2
即 直角三角形两直角边 的平方和等于斜边的平方。
ac
b
勾
弦
股
勾 股
在中国古代,人们把弯曲成直角的手臂的上半部分称为 "勾",下半部分称为"股"。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”.
清晨,当欢快的小鸟把我从睡中唤醒,我推开窗户,放眼蓝蓝的天,绿绿的草,晶莹的露珠,清清爽爽的早晨,我感恩上天又给予我一个美好的一天。 入夜,夜幕中的天空繁星点点,我打开日记,用笨拙的笔描画着一天的生活感受,月光展露着温柔的笑容,四周笼罩着夜的温馨,我充满了感恩,感谢大地赋予的安宁。
朋友相聚,酒甜歌美,情浓意深,我感恩上苍,给了我这么多的好朋友,我享受着朋友的温暖,生活的香醇,如歌的友情。 走出家门,我走向自然。放眼花红草绿,我感恩大自然的无尽美好,感恩上天的无私给予,感恩大地的宽容浩博。生活的每一天,我都充满着感恩情怀,我学会了宽容,学会了承接,学会了付出,学会了感动,懂得了回报。用微笑去对待每一天,用微笑去对待世界,对待人生,对待朋友,对待困难。所以,每天,我都有一个好心情,我幸福的生活着每一天。
1 = (a2+2ab+b2)
直角三角形-勾股定理1上海学

第 讲 勾股定理知识点睛1、勾股定理:如果直角三角形的两直角边上分别为a, b ,斜边长为c ,那么222a b c +=。
即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形。
3、勾股定理的证明方法:法1(赵爽:内弦图):甲的面积=(大正方形面积)-(4个直角三角形面积).法2(赵爽:外弦图)::四个直角三角形的面积和 +小正方形的面积 =大正方形的面积,222()ab a b c +-=,22222ab a ab b c +-+=,∴222a b c +=法3(美国第20任总统伽菲尔德的证法):2111()()2222a b a b ab c ++=⨯+ 梯形面积=三个直角三角形的面积和22()2a b ab c +=+ 22222a ab b ab c ++=+∴222a b c +=法4(毕达哥拉斯的旋转证法):若设AB=a ,BC=b ,DB=c ,则梯形A′B′BC 面积()()()21122S a b a b a b =++=+梯形ABBC , 又"""2111222BCD A B D DBB S S S S ab c ab ∆∆∆=++=++""梯形A B BC ,所以()2211112222a b ab c ab +=++,则22222a b ab c ab ++=+,即222a b c +=。
甲c ccbababa cb acb acb aab ca bcb-ab-acc cc甲丙乙ab cabc法5(新娘图法):用方格来验证勾股定理法6(欧几里得证法):如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML=b2,同理可证 S BLMD=a2.相加得S ABDE=S AEML+S BLMD=b2+a2,即 c2=a2+b2.法7:如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=S ABDE+2S△ABC,另一方面S=S ACGF+S HGKD+2S△ABC,相加得所以 c2=a2+b2.练习:用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27); (2)项名达图(2-28); (3)杨作枚图(图2-29).CBA3、由勾股定理的基本关系式222a b c +=,还可得到一些变形关系式如:22c a b =+,222()()a c b c b c b =-=+-,22a c b =-,222()()b c a c a c a =-=+-,22b c a =-等。
《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理1

75 45 M
B C
图1.1-1 图1.1-2 6. 如图 如图1.1-2,在四边形 在四边形ABCD中, ∠ BAD=90°, 在四边形 中 ° 求正方形DCEF ∠ CBD=90°,AD=4,AB=3,BC=12,求正方形 ° 求正方形 的面积. 的面积
飞机在空中水平飞行, 例3 飞机在空中水平飞行,某一时刻刚好飞到 一个男孩头顶正上方4000米处,过了 秒,飞 米处, 一个男孩头顶正上方 米处 过了20秒 机距离这个男孩5000米,飞机每小时飞行多少 机距离这个男孩 米 千米? 千米?
2= b
2 c
c
b
a
赵爽弦图的证法
S大正方形 = S小正方形 + 4S直角三角形 ab c = (b − a) + 4 ⋅ 2
2 2
朱实 中黄实 c b a b- a) ( b- a) 2
化简得: 化简得:
c2 =a2+
b2.
学以致用,做一做 y=0
1.求下列图中字母所代表的正方形的面积: 求下列图中字母所代表的正方形的面积:
相传在2500年前,毕达哥拉斯有 年前,毕达哥拉斯有 相传在 年前 一次在朋友家做客时, 一次在朋友家做客时,发现朋友家用 砖铺成的地面中反映了直角三角形三 边的某种数量关系, 边的某种数量关系,我们一起来观察 图中的地面,看看能发现什么。 图中的地面,看看能发现什么。
毕达哥拉斯 (公元前 公元前572----前492年), 公元前 前 年 古希腊著名的哲学家、 古希腊著名的哲学家、 数学家、天文学家。 数学家、天文学家。
因此, 因此,
AC =
5 ≈ 2 .236 .
D C
因为AC大于木板的宽, 大于木板的宽, 所以木板能从门框内通过。 所以木板能从门框内通过。
勾股定理基础知识点

知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
勾股定理(一)

国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
大正方形的面积该怎样表示?
汉代赵爽的证法
c b a
c2 = b2 + a2
b
c
c b
a
a
1 方法(一): (a b)(a b) 2
对比两种方法, 1 1 方法(二): 2 ab c c 你能得到什么?
SA+SB=SC c
Aa
C
A a
B b
图乙
c C
b B
图甲 图甲 图乙 4 9 A的面积 4 16 B的面积 C的面积 8 25 SA+SB=SC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
a
C F E
D
C
B
A
D
H
F
E
C
B
A
第5讲 勾股定理(1)
一、 发现、验证勾股定理
1. 见课本(八上)第2~3页;
2. 勾股定理:
222222222
t ,R ABC a b c a c b b c a +==-=-直角三角形两直角边的平方和等于斜边的平方如图,在△中,定理的变式:
二、 实践、应用勾股定理
勾股定理反映了直角三角形三边之间的关系,只要已知直角三角形中的两边,就能求出三角形三角形的另一边。
o 290,,,,a=b=c=
2a=b c =50a=
3c=34:8:15,,(4)6,2,,.
t t C a b c A B C a b a b b c a a c ∠=∠∠∠===
=-==
=
例1,在△ABC 中,,分别表示的对边(1)若3,4,则;()若,,则;
()若,则;若则例2 已知一个等腰三角形底边上的高为8,周长为32,则该三角形的面积为例3 如图以R △ABC 的三边为斜边分别向外作等腰R △,若斜边AB=3,求图中阴影部分的面积
三、利用勾股定理列方程
勾股定理反映Rt △三边之间的关系,常用列方程Rt △的问题
=cm cm 例4 如图将一个矩形ABCD 沿AE 折叠,使点D 正好落在BC 边上的点F 处,若矩形ABCD 的边AB 8,BC=10求CE 的长
四、利用勾股定理证明
平方关系问题,常常用勾股定理进行证明。
o 2
2
2
=D BC DE AB AE BE AC
∠⊥-=例5如图,在△ABC 中,C 90,是的中点,试说明:
o t /o
1.t 9015=11
2.t ABC AB=3BC=4ABC AC
3.D AB=4AD=3AD BD DG A BD A t =904R ABC
R ABC C AC BC AB S R ACB AB ∠=+=∠=△作业
在中,,,,求在△中,,,分别以△的三边为边向三角形外作正方形,求以为边的正方形的面积
如图,在矩形纸片ABC 中,,,折叠纸片使边与对角线重合,折痕为,点落在边上的点处,求AG 的长。
4.如图已知在R △ABC 中,,,分别以A 1212o 2222
o ,5.=90,6.9020m 15m 7m S S S ABC BAC AD BC D BC AC BD AD D AB BC CD +∠⊥-=+∠∠====C,BC 为直径作半圆,面积分别记为S 求的值
如图,在△中,,于点试说明如图,已知一块四边形的草坪ABCD 中,其中B=,,,,求这块草坪的面积
7.如图在△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD 的长。
第3题图
G
A
D
第5题图
C
B
A
D
第6题图
C
B
A
D 第7题图
C
B
A。