复习运筹学课件__胡运权_第四版_复习要点30页PPT

合集下载

运筹学复习提纲分解PPT课件

运筹学复习提纲分解PPT课件

3
v1
5
2
v4 5
2
1
3
1
5
v3
v5
第32页/共40页
班次 1 2 3 4 5 6
时间 6:00 —— 10:00 10:00 —— 14:00 14:00 —— 18:00 18:00 —— 22:00 22:00 —— 2:00 2:00 —— 6:00
所需人数 60 70 60 50 20 30
设司机和乘务人员分别在各时间段一开始时上班,并 连续工作八小时,问该公交线路怎样安排司机和乘务人员, 既能满足工作需要,又配备最少司机和乘务人员?
第28页/共40页
28
§3
复杂情况下的目标规划
例7.一工艺品厂商手工生产某两种工艺品A、B,已知生产一
件产品A需要耗费人力2工时,生产一件产品B需要耗费人力3
工时。A、B产品的单位利润分别为260元和125元。为了最
大效率地利用人力资源,确定生产的首要任务是保证人员高
负荷生产,要求每周总耗费人力资源不能低于600工时,但也
(*)并整理得
50 c2
+
• 假若产品Ⅰ、Ⅱ的利润均改变,则可直接用式(*)来 判断。
• 假设产品Ⅰ、Ⅱ的利润分别为60元、55元,则
- 2 - (60 / 55) - 1
那么,最优解为 z = x1 + x2 和 z = 2 x1 + x2 的交点 x1 = 100第,8页x/共24=0页 200 。
23
17
• 如果把工作时间看成创造的效益,那么又该如何指派,
才能获得最大效益?
• 如果再增加一项工作E,四人完成的时间分别是
17,20,15,16分钟,那么又该如何指派使得所花时 目标规划

运筹学PPT完整版

运筹学PPT完整版
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社

运筹学(一)ppt课件

运筹学(一)ppt课件

2x3 4 3x3 6
x1 0, x2 0, x3取值无约束
解: z令 z,x1 x1,x3x3 x3 ,其x中 3 , x3 0, 同时引入 x4和 松剩 弛余 变 x5,标 变 量准 量形式
m z x 1 a 2 x 2 x 3 x 3 3 x 3 0 x 4 0 x 5
案、措施,是问题中要确定的未知量。
2.目标函数:指问题要达到的目的要求,表示为 决策变量的函数。
3.约束条件:指决策变量取值时受到的各种可用 资源的限制,表示为含决策变量的等式或不等 式。
最新版的一般表示形式:
m ax (mm in ) 或 f ( xm ) a cz 1 x 1 c 1 cx x 21 i x 2 c 2 n x 2 ( cn x ) n c n x n
( 4 )无可行解。
目标函数为max z=3x1+x2,约束条件为
x 1 x 2 2 ; 最x 新1 版整 理ppt 2 x 2 6
库存管理。存储论应用于多种物资库存量的管理,确定某些设备的合 理的能力或容量以及适当的库存方式和库存量
运输问题。用运筹学中运输问题的方法,可以确定最小成本的运输线 路、物资的调拨、运输工具的调度以及建厂地址的选择。
人事管理。可以用运筹学方法对人员的需求和获得情况进行预测;确 定合适需要的人员编制;用指派问题对人员合理分配;用层次分析法 等方法来确定一个人才评价体系等。
数为0;
(4)第i 个约束为 型,在不等式左边减去一 个非负的变量,称为剩余变量;同时令该变量在目
标函数中的系数为0;
(5)若 ,x令0 xx
(6)若 无x约束,令 x,x其中x,
x,x0
例3:将下述线性规划模型化为标准形式:

《运筹学基础及应用》胡运权主编,哈工大出版社,完整版ppt课件

《运筹学基础及应用》胡运权主编,哈工大出版社,完整版ppt课件

真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
Page 8
运筹学在工商管理中的应用
Page 9
运筹学在工商管理中的应用涉及几个方面: 1. 生产计划 2. 运输问题 3. 人事管理 4. 库存管理 5. 市场营销 6. 财务和会计
基可行解
线性规划问题的数学模型
Page 30
例1.4 求线性规划问题的所有基矩阵。
maxZ 4x1 2x2 x3
5x110x1x2
x3 6x2
x4 2x3
3 x5
2
x
j
0,
j
1,
,5
解: 约束方程的系数矩阵为2×5矩阵
5 1 A1 0 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
图解法
Page 31
线性规划问题的求解方法
一般有 两种方法
图解法 单纯形法
两个变量、直角坐标 三个变量、立体坐标
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址

《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

《运筹学》胡运权第4版线性规划的对偶理论及灵敏度分析省名师优质课赛课获奖课件市赛课一等奖课件

13
2
y3
2 3

y1符号不限, y 2 0, y3 0
非 对 偶 形 式 旳 原对 偶 问 题
例2-4 写出下列问题旳对偶问题
max z c1x1 c2 x2 c3x3
a11x a12 x a13x3 b1
s.t.
a21x1 a31x1
a22 x2 a32 x2
a23 x3 a33 x3
出让自己旳资源?
问 题 旳 导 出
例2-1
条件:出让代价应不低于用同等数量资源由自己组织生 产活动时获取旳获利。
y1,y2,y3分别代表单位时间(h)设备A、设备B和调试工 序旳出让代价。 y1,y2,y3旳取值应满足:
6y 2
y 3
2
5y 1
2y 2
y 3
1
美佳企业用6h设备B和1h调试可 生产一件家电I,获利2元
y1, y2 , y3 0
LP1和LP2两个线性规划问题,一般称LP1为原问题, LP2为前者旳对偶问题。
max Z c1x1 c2 x2 cn xn
对 偶 问 题
s.t.
a11 a21
am1
a12 a22
am2
a1n x1 b1
a2n
x2
b2
amn xn bm
规 划 问
minW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym (, )c1
a12y1
a22 y2
am2
ym
(,
)c2
题 旳 对 偶 问
a1n y1 a2n y2 amn ym (, )cn

y j 0(符号不限,或 0)i 1 ~ m

运筹学-绪论PPT课件

运筹学-绪论PPT课件
运筹学编写组.运筹学.清华大学出版社 胡运权.运筹学教程.清华大学出版社 杜纲.管理科学基础.天津大学出版社 邓梁成.运筹学的原理和方法.华中科技大学 中国工程项目管理知识体系.建工社 其他:线性代数、管理学及部分杂志
➢ 设备维修和更新 ➢ 项目评价和选择 ➢ 工程优化设计
➢ 计算机和信息系 统
➢ 城市管理 ➢ 发展战略
五、教学及考试说明
➢ 以课本为主教学 ➢ 必要的习题(30~40题) ➢ 考试:采用闭卷 ➢ 平时成绩30%;考试成绩占70%
六、教材和参考书
➢ 教材: ➢ 胡云权.运筹学教程(第三版).清华大学出版社 ➢ 宋学峰.运筹学.东南大学出版社 ➢ 参考书:
➢ 60年代,相继在工业、农业、经济和社会问题各 领域都得到应用。
➢ 理论飞快发展,形成许多分支:数学规划、图与 网络、排队论、存储论、对策论、决策论等。
➢ 1959年成立国际运筹学联合会。我国1980年成 立运筹学会,1982年加入国际运筹学联合会。
四、运筹学解决问题的思路
➢ 提出问题——用自然语言描述问题。 ➢ 建立数学模型——用变量、函数、方程描述问
题。
➢ 求解——主要用数学方法求出模型的最优解、 次优解、满意解,复杂模型求解要用计算机。
➢ 解的检验——检查模型和求解步骤有无错误, 检查解是否反映现实问题。
➢ 决策实施——决策者根据自己的经验和偏好, 对方案进行选择和修改,作出实施的决定。
五、运筹学的运用
➢ 生产计划 ➢ 市场销售 ➢ 资本运营 ➢ 库存管理 ➢ 运输问题 ➢ 财政和会计 ➢ 人事管理
——近代一些运筹学工作者
一、什么是运筹学
➢ 3、运筹学的三大来源 1)军事
两次世界大战期间的军事运筹研究 2)管理

复习课运筹学-.ppt

复习课运筹学-.ppt

LP问题的单纯形法
用单纯形法求解下列线性规划
max
z 2x1 3x2
求最大; 全是≤的不等式;
x s.t. 2
1 2x x1 x
2 2
2 2
常数项 b≥0; 全有非负约束。
x 1 , x 2 0
这类最适用: 单纯形法
LP问题的单纯形法
标准化;列初始单纯形表;迭代。 引入松弛变量x3 ,成x1+2x2+x3=2
max z 2 x1 3 x 2 引入松弛变量x4 ,成2x1+x2+x4=2
s
.t
.
x 2
1
x
1
2
x2 x2
2 2
x1 , x 2 0
maxz 2x1 3x2 0x3 0x4
x1 2x2 x3 2 s.t.2x1 x2 x4 2
两 个 松 弛
极小化极大。 x1,x2,x3,x4 0
0
zj
σj=cj-zj
LP问题的单纯形法
单纯形表 最优? 谁进基? 比值? 谁出基?
迭代 次数
基变量
CB
x1 2
x2 3
x3 0
x4 0
b 比值
x3 0 1 2 1 0 2 1
x4 0 2 1 0 1 2 2
0
zj
0000
0
σj=cj-zj 2 3 0 0
LP问题的单纯形法
迭代 X2进基,x3出基,红格要变成几?
迭代 次数
基变量
CB
x1 2
x2 3
x3 0
x4 0
b 比值
x3 0 1 2 1 0 2 1
x4 0 2 1 0 1 2 2

最新《运筹学》胡运权 第4版 第三章 运输问题培训讲学

最新《运筹学》胡运权 第4版 第三章 运输问题培训讲学

i=1 j=1
10 x22 3 x23 9 x24 8 x31 5 x32 11x33 6x34
x11 x12 x13 x14 =1 6
x
2
1
x22
x23
x24 =10
x
31
x32
x33
x34 = 22
s
.
t
.
x11 x12
x21 x22
x31 = 8 x32 =14

的产量(销量)已满足,则把

该行(列)的其他格划去。如

此进行下去,直至得到一个基

本可行解。

2.西北角法
寻 找 初 始
销地
产地
B1
B2
B3 B4 产量
A1 A2 A3 销量
4
8 12
4
11 16

82
6 10 4 3
9 10

8
5 8 11 14 6 22

8
14
12
14
48


③⑤


34

§1
对产销平衡运输问题,除上述

两个特点外,还有以下特点:

(1) 所有结构约束条件都是等式

约束;

(2) 各产地产量之和等于各销地

销量之和。





§1 运 输 问 题 及 其 数 学 模 型
例1 某部门有3个生产同类产品的工厂(产地),生产
的产品由4个销售点(销地)出售,各工厂的生产量、 各销售点的销售量(假定单位均为t)以及各工厂到 各销售点的单位运价(元/t)示于表3-2中,要求研 究产品如何调运才能使总运费最小?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习运筹学课件__胡运权_第四版_复 习要点
6


凝பைடு நூலகம்










7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
Thank you
1
0















6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
相关文档
最新文档