诺贝尔化学奖见解
诺贝尔奖获得者的科学研究方法与思路

诺贝尔奖获得者的科学研究方法与思路科学研究是人类社会进步的引擎,而诺贝尔奖则是科学界的最高荣誉。
诺贝尔奖获得者们以其杰出的贡献和创新性研究方法在各自的领域取得了成功。
在本文中,我们将探讨一些诺贝尔奖获得者常用的科学研究方法和思路。
一、坚持创新思维诺贝尔奖获得者们的研究方法中最显著的一个特点就是坚持创新思维。
无论是在医学、物理还是化学领域,他们都试图找到以往未被发现或未被充分研究的问题,并提出全新的解决方案。
他们敢于挑战传统观念,冒险尝试新的理论和实验,从而推动了学科的进步。
二、跨领域合作诺贝尔奖获得者们通常倾向于与其他领域的科学家合作,以达到更深层次的研究成果。
他们深刻理解到,只有与不同专业的科学家合作,才能将多个学科的知识融合在一起,从而攻克更为复杂的问题。
通过跨领域合作,他们打破了学科间的壁垒,开创了新的研究方向。
三、注重基础研究诺贝尔奖获得者们在科学研究中注重基础研究的重要性。
他们深刻理解到,只有对基础科学问题进行深入的研究,才能够有更广泛的应用和更具有创造性的发现。
他们从最基础的原理出发,通过不断的实验和观察,逐渐解开了自然界的奥秘。
四、长期坚持诺贝尔奖获得者们通常是长期坚持在某个领域进行研究的。
他们对自己所从事的领域有着深厚的兴趣和执着的热爱,经过多年的努力和探索,才能有所突破。
他们的研究耗时费力,但正是这份坚持使他们能够创造出震撼世界的发现。
五、强调实验验证诺贝尔奖获得者们非常重视实验验证的结果。
他们通过实验数据来支撑自己的理论,通过实验结果来验证自己的科学研究成果。
他们严谨而细致的实验态度,使得他们的研究成果更加可靠和有说服力。
六、认真分析数据诺贝尔奖获得者们对实验数据的分析非常认真。
他们深入研究和理解实验结果的背后含义,通过对数据的分析,推断出新的科学规律和信息。
他们的严谨态度使得他们的研究更加全面和深入。
七、不畏失败诺贝尔奖获得者们在科学研究中也经历了一系列的失败和挫折。
然而,他们并不因此而气馁,反而从失败中吸取经验教训,并不断改进自己的研究方法。
第二章诺贝尔化学奖简介

第二章诺贝尔化学奖简介诺贝尔化学奖总表从化学诺贝尔奖看化学学科的发展2004年诺贝尔化学奖诺贝尔化学奖总表1901-19101901年荷兰雅克布斯·范特霍夫o发现了化学动力学法则和溶液渗透压德国赫尔曼·费歇尔o合成了糖类和嘌呤衍生物瑞典阿累尼乌斯o提出了电离理论,促进了化学的发展。
英国威廉·拉姆齐爵士o发现了空气中的稀有气体元素并确定他们在周期表里的位置。
德国阿道夫·拜耳o对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展。
法国穆瓦桑o研究并分离了氟元素,并且使用了后来以他名字命名的电炉。
德国爱德华·毕希纳o对酶及无细胞发酵等生化反应的研究。
新西兰欧内斯特·卢瑟福爵士o对元素的蜕变以及放射化学的研究。
德国威廉·奥斯特瓦尔德o对催化作用、化学平衡以及化学反应速率的研究。
德国奥托·瓦拉赫:o在脂环类化合物领域的开创性工作促进了有机化学和化学工业的发展的研究。
1911-19201911年法国玛丽亚·居里o发现了镭和钋,提纯镭并研究镭的性质。
法国格利雅o发明了格氏试剂,促进了有机化学的发展。
法国保罗·萨巴蒂埃o发明了有机化合物的催化加氢的方法,促进了有机化学的发展。
瑞士阿尔弗雷德·沃纳o对分子内原子成键的研究,开创了无机化学研究的新领域。
美国西奥多·理查兹o精确测量了大量元素的原子量。
德国理查德·威尔施泰特o对植物色素的研究,特别是对叶绿素的研究。
德国弗里茨·哈伯o对单质合成氨的研究。
德国沃尔特·能斯特o对热力学的研究。
1921-19301921年英国弗雷德里克·索迪o对放射性物质以及同位素的研究。
英国弗朗西斯·阿斯顿o使用质谱仪发现了非放射性元素的同位素,并且阐明了整数法则。
奥地利弗里茨·普雷格尔o创立了有机化合物微量分析法。
诺贝尔奖获得者给我们的启示

诺贝尔奖获得者给我们的启示作者:邹十践来源:《青少年科技博览(中学版)》2003年第01期对专业的浓厚兴趣一个青少年对所学专业感不感兴趣是其成才的关键。
获得1929年诺贝尔化学奖的瑞典科学家冯·奥伊勒·歇尔平,他从小喜欢画画,后来他到德国去进修美术,因其家庭经济原因,他不得不到慕尼黑大学化学系去做临时工,挣钱养活自己。
在做工时,他接触了化学,觉得化学奥妙无穷,故对它产生了浓厚的兴趣。
这种兴趣大大超过了他对美术的热爱,于是,他矢志不移地攻研化学,成就非凡。
他因“阐明了糖发酵过程和酶的作用”获得了诺贝尔化学奖。
也许是这位半路出家的化学家对专业的浓厚兴趣和苦钻苦研精神影响、感染、熏陶了他的儿子,其子也非常酷爱化学,这个小奥伊勒终于在1970因对“发现神经末梢部位的传递物质以及该物质的贮藏、释放、受抑制机理”作出贡献,而获得了诺贝尔生理学医学奖。
敢于向权威挑战青胜于蓝、后来居上是一条促进科学发展和人才成长的客观规律。
英国科学家汤姆逊于1897年发现了电子,实际上这是对“原子不可再分”的一个挑战,他因对“气体放电理论和实验研究”作出重要贡献而获得1906年诺贝尔物理学奖。
此后他提出了一个原子结构的“西瓜模型”,假定“西瓜模型”中的瓜籽为带负电荷的电子,西瓜瓤是带正电荷的物质,这两者相加达到平衡后,产生一个中性的原子。
但汤姆逊的学生卢瑟福(英国著名的物理学家)不同意老师的这种观点。
他用一个实验否定了“西瓜模型”。
他认为,原子应是一个像太阳系那样的行星模型。
卢瑟福因首先提出了“放射性元素的蜕变理论”,因而获得了1908年的诺贝尔化学奖。
有趣的是卢瑟福的学生玻尔(丹麦的著名物理学家)对其老师的理论也产生了怀疑,是因为卢瑟福的行星模型有不足之处:若一个原子核在模型中间,电子绕其运转,电子的能量肯定会越来越小,最终就会落到原子核上面。
而卢瑟福的行星模型无法解释这种现象。
玻尔把量子论引进到原子模型,即当电子在围绕原子核运动时,只能在某些稳定的轨道上运行,只有当电子从能量较高的轨道跳到能量较低的轨道上时,才产生能量或耗损能量。
2010诺贝尔化学奖

2010诺贝尔化学奖简介2010年的诺贝尔化学奖于2010年10月6日宣布,该奖项颁发给了三位科学家:理查德·F·海兹、本杰明·E·库贝和阿尔德·A·海利,以表彰他们对偶氮芳烃化合物的重要发现及其应用的贡献。
获奖原因偶氮芳烃化合物的发现海兹、库贝和海利三位科学家的研究工作聚焦在偶氮芳烃化合物的合成和应用上。
他们在20世纪60年代和70年代探索了许多新颖的化学反应,并发现了许多有机合成方法。
然而,他们最重要的发现是实现了偶氮芳烃化合物的合成。
偶氮芳烃化合物在有机化学和生物化学领域具有广泛的应用。
它们是人造DNA和RNA的构成单位,并且在医药领域中也有重要的作用。
例如,许多抗癌药物和抗生素都是以偶氮芳烃化合物为基础合成的。
应用价值和意义这一发现使得科学家们能够合成更多的有机化合物,并深入研究它们在生物体内的作用机制。
由于偶氮芳烃化合物的结构稳定性和生物活性,它们已被广泛应用于医药领域和有机化学合成中。
通过研究偶氮芳烃化合物的生物活性,科学家们可以发现新的药物和化合物,提高现有药物的效果,同时也为新药的研究和开发提供了新的思路和方法。
获奖人简介理查德·F·海兹理查德·F·海兹,生于1941年,美国化学家。
他是斯坦福大学的教授,也是一名企业家。
他以其对合成有机化学的杰出贡献而著名。
他的研究聚焦于有机合成、药物化学和能源科学。
本杰明·E·库贝本杰明·E·库贝,生于1947年,美国化学家。
他毕业于哈佛大学和哥伦比亚大学,曾任教于哈佛大学。
库贝教授的研究兴趣主要集中在有机合成方法学、材料化学和催化反应领域。
阿尔德·A·海利阿尔德·A·海利,生于1955年,美国化学家。
他是宾夕法尼亚大学的教授,也是一名企业家和顾问。
他在完善和推广偶氮芳烃化合物的合成方法方面作出了重大贡献。
对诺贝尔化学奖的感想和看法

对诺贝尔化学奖的感想和看法
诺贝尔化学奖是全球化学界最高荣誉,我对其非常敬佩和赞赏。
这个奖项的设立使得整个化学领域的科学家们都有了更大的动力和奋斗目标,助推了化学科学的发展。
我认为,诺贝尔化学奖的评选标准非常严格和公正。
获奖者需要在化学领域做出了创新性的贡献,其研究成果需要对人类社会产生重大影响。
这使得获奖者们不仅在学术界得到认可,更在社会上获得了广泛赞誉。
通过对诺贝尔化学奖的关注,我了解到许多杰出的化学家和他们的研究成果。
这些研究项目涉及了生命科学、材料科学、有机合成等多个领域,使得我对化学的广度和深度有了更全面的认识。
诺贝尔化学奖的颁发不仅给获奖者们带来了荣誉和奖金,更承载了社会对科学和创新的肯定。
我希望诺贝尔化学奖的存在能够激励更多的年轻学者投身于化学研究,为人类社会的发展做出更多贡献。
总的来说,诺贝尔化学奖是一个极具影响力和重要性的奖项,它激励和推动了化学领域的持续发展,并为广大的化学科学家树立了榜样。
我对诺贝尔化学奖抱有敬佩之情,并期待未来会有更多杰出的化学家获得这一殊荣。
有机化学诺贝尔奖

有机化学诺贝尔奖
有机化学诺贝尔奖是诺贝尔化学奖的一个子领域,授予在有机化学领域做出重大贡献的科学家。
自1901年首次颁发诺贝尔化学奖以来,已经有数百位科学家获得了这一殊荣,其中包括许多在有机化学领域做出了杰出贡献的人。
有机化学是研究有机物,即碳基化合物的化学结构、性质和反应规律的一门科学。
在有机化学的发展史上,许多人做出了划时代的贡献,例如,刘大铭教授发现了脂肪酸的结构,索尔贝格教授提出了烷基化学键的理论,齐勒斯教授发现了立体化学的概念,还有许多人提出了各种有机合成方法和反应机理的理论。
在有机化学诺贝尔奖的历史上,诺贝尔委员会已经授予了许多杰出的科学家这一殊荣,例如,托马斯·金克尔教授和理查德·希尔教授因发现了凯库勒结构而获得了1983年的诺贝尔化学奖,而2010 年的诺贝尔化学奖则颁给了理查德·赫克和阿基米德·科尼奥特因为他们发明了交叉偶联反应而获得。
有机化学在医药、材料、环保等领域都有着广泛的应用,有机化学诺贝尔奖的获得者们的研究成果也为人类的生活带来了很多福祉。
- 1 -。
1988 年诺贝尔化学奖的启示

1.1光合作用基本原理
• 众所周知,光合作用是我们这个
星球上最重要的一种能量转换过 程。生物界就是依靠光合作用而 生存的。它是在绿色植物中,二 氧化碳和水合成糖、释放出氧的 过程,即 • 6CO2+6H2O→C6H12O6+6O2
• 其作用机理是:略 • 实际上,光合作用过程在生物体内是由许多个
2. 实验的关键
• Michel等成功地从一种紫色光合作用细菌—
—绿红极毛杆菌 (rhodopseudomonasviridis) 中提纯了光合 作用反应中心。这是一个完整的膜蛋白-色素 的复合体。他们不仅完整地分离提纯了这一 大分子复合体,而且培养的晶体尺寸大到足 够作X衍射晶体学的测定。他们收集了几十 万个X光衍射点的数据,从而作出了高分辨 的三维空间的结构分析。这一整体组装的生 物大分子——膜蛋白-色素的复合体的结构略。
2.3 实验结果
• 用这一方法,Michel等用硫酸铵加清洁剂体系
和亲水脂分子体系培养出了细菌视紫红质 (bacteriorhodopsin)和porin晶体,以后又培养 出了高于0.25nm分辨率的光合反应中心的晶体。 • Michel等取得这一重大成就的关键,是制备出 了可供X衍射结晶学分析用的膜蛋白的结晶。 在蛋白质结晶学研究中,重要的竞争之一就是 看谁能制备出可供X衍射用的三维结晶,因为 只有当结晶尺寸足够大,才能收集到高分辨的 数据,在原子水平上测定其空间结构。
1988年诺贝尔化学奖 年诺贝尔化学奖 的启示
制作人: 制作人:彭宗辉
1。前言
• 在众多强有力的竞争者中,三位德国科学
家荣获1988年诺贝尔化学奖。他们是 HartmutMichel、Johann Deisenhofer和Robert Huber。他们的功绩在于首次得到了可供X 衍射结构分析用的细菌光合反应中心的膜 蛋白结晶,并测定了这一膜蛋白-色素复合 体的高分辨率的三维空间结构,从而对阐 明光合作用的光化学反应的本质作出了极 其重要的贡献。回顾他们的成功之路,希 望对大家是会有所启发和帮助。
2023诺贝尔化学奖的启示和感悟

2023年的诺贝尔化学奖将激励着世界各地的科学家们不断探索,将化学研究推向新的高度。
化学作为自然科学的重要分支,已经在人类社会的发展中发挥着举足轻重的作用。
本文将从以下几个方面探讨2023年诺贝尔化学奖的启示和感悟。
一、化学在现代科学中的地位化学作为自然科学的重要分支,通过对物质的研究和探索,为人类社会的发展做出了重要贡献。
从古至今,化学在医药、农业、工业等领域都有着不可替代的作用。
药品的研发、农作物的增产和疾病的控制都需要化学知识的支持。
2023年诺贝尔化学奖的获得者将成为化学界的杰出代表,为化学研究树立典范。
二、获奖成果对人类社会的影响获得2023年诺贝尔化学奖的成果将对人类社会产生深远影响。
这些成果可能会推动新的科技革命,例如富集环境污染物、解决能源危机等。
获奖成果可能会改变人类生活方式,改善人们的生活质量,提高环境保护水平,推动社会可持续发展。
获奖成果可能会对教育产生影响,激发更多人对化学研究的兴趣,培养更多化学人才。
三、对科研工作者的启示2023年诺贝尔化学奖的获得者无疑是对世界各地科研工作者的鼓舞和激励。
获奖者通过不懈的努力和卓越的创新,成为了化学领域的领军人物。
这给广大科研工作者上了一堂生动的课,告诉他们只有不断求索,不断创新,才能获得更多的科研成果和社会认可。
这也提醒科研工作者在科研道路上要保持初心,志存高远,始终以造福人类、促进社会发展为己任。
四、对科学普及的影响诺贝尔化学奖的获得者将成为化学知识普及的重要使者。
他们的成果将引起广泛的关注和讨论,吸引更多人关注化学研究。
通过各种科普活动和媒体宣传,获奖者可以将复杂的化学知识变得通俗易懂,让更多人了解化学在生活中的应用和意义。
这将有助于提升公众对科学的认知和理解,培养更多对化学研究感兴趣的人才,为化学事业的发展注入新的活力。
五、对未来科研方向的指引2023年诺贝尔化学奖的获奖成果将为未来的科研方向提供重要的指导。
获奖成果可能会突破传统的科研范畴,拓展化学研究的新领域,引领未来科研的发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 日本人,1930年出生于日本北海道鹉川町(80岁) • 1959年在北海道大学获得博士学位 • 1961年留校工作 • 曾在美国普渡大学作博士生 • 1973年任北海道大学工学系教授 • 现在是北海道大学名誉教授
Heck反应
• 20世纪70年代,Heck和Mizoroki独立开发了如下 类型反应
B(OH)2
Pd(OAc)2, X-Phos K3PO4, THF 80 oC, 5 h 93%
NO2
Buchwald, S. L. et al. J. Am. Chem. Soc. 2003, 125, 11818.
实例三: 应用Suzuki反应合成维生素D3 维生素D3具有调节钙和磷代谢的作用。
Sato, F. et al. Org, Lett. 2003, 5, 523.
谢谢大家!
Cl +
Ph
Pd2(dba)3, PBut3 Cs2CO3, dioxane 120 oC, 21 h 83%
Ph
Littke, A. F.; Fu, G. C. J. Org. Chem. 1999, 64, 10.
实例二:烯基磺酸酯的Heck反应
O
OTs +
COOCH3
Pd(OAc)2, PPh3 DMFTEA, O 105 oC, 0.5 h 90%
2010年诺贝尔化学奖
获奖理由:“有机合成中钯催化交叉偶联”研究
讲解人:付华
学术贡献
• 他们在“钯催化交叉偶联反应”研究领域作出了杰出贡献, 他们在“钯催化交叉偶联反应”研究领域作出了杰出贡献, 其研究成果使人类能有效合成复杂有机物。 其研究成果使人类能有效合成复杂有机物。 • 为制造复杂的有机材料,需要通过化学反应将碳原子集合 为制造复杂的有机材料, 在一起,但碳原子非常稳定,不易发生化学反应, 在一起,但碳原子非常稳定,不易发生化学反应,采用钯 催化解决该问题的一个思路是使碳活化。 解决该问题的一个思路是使碳活化 催化解决该问题的一个思路是使碳活化。 • 目前“钯催化交叉偶联反应”技术已在全球的科研、医药 目前“钯催化交叉偶联反应”技术已在全球的科研、 生产和电子工业等领域得到广泛应用。 生产和电子工业等领域得到广泛应用。
实例五:纳米钯(Pd(0))催化的Heck反应 有人采用表面活性剂或聚合物,在没有加入膦配体 条件下使纳米钯粒子稳定分布在有机溶剂中。
Br + OHC
COOBu
nano Pd(0), PVP NaOAc, DMA 140 oC 99%
COOBu
Reetz, M. T.; Lohmer, G. Chem. Commun. 1996, 16, 1921.
Negishi反应的发展 反应的发展
The First Negishi Cross-Coupling Reaction of Two Alkyl Centers Utilizing a Pd-N-Heterocyclic Carbene (NHC) Catalyst.
Organ, M. G. et al. Org. Lett. 2005, 7, 17.
Arefolov, A.; Panek, J. S. Org. Lett. 2002, 4, 2307.
实例三:利用Negishi反应合成天然产物
那基稀酮A也是一种海洋天然产物,具有很好的药物活性, 采用Negishi反应可以高产率的得到该化合物的中间体。
实例四:利理
Oxidative Addition R X + L2Pd(0)
R Pd L
L X
R'
ZnX
metal transformation
L ZnX2 + R Pd
L R'
reductive elimination
R R' + L2Pd(0)
应用实例
实例一:利用Negishi反应进行核苷碱基修饰
Ei-ichi Negishi (根岸荣一 )
总引: 14300;他引:7349;H因子:61
• 日本人,1935年出生于中国长春 (75岁) • 1958年从东京大学毕业后进入帝人公司 • 1963年在美国宾夕法尼亚大学获得博士学位 • 现任美国普渡大学教授
Akira Suzuki (铃木章)
Richard F. Heck (理查德·赫克)
总引:78116;他引:58054;H因子:114
• 美国人 • 1931年出生于美国的斯普林菲尔德(Springfield) (79岁) • 1952年, 1954年在美国加利福尼亚大学洛杉矶分校获得学士和博士学位 • 随后,进入瑞士苏黎世联邦工学院 作博士后 • 1971年进入美国特拉华大学(Univ. of Delaware)工作,于1989年退休。 • 现为特拉华大学名誉教授
Me
Cl + Me Me
B(OH)2
Pd(OAc)2, Dave Phos CsF, dioxane, rt 94%
Me Me
Me
Glorius, F. et al. Angew. Chem., Int. Ed. 2003, 42, 3690.
实例二:芳基磺酸酯的Suzuki反应
OTs + NO2
B(OH)2 + Br
CO2Me
Pd(PPh3)4, PhH Na2CO3, 6 h Suzuki reaction
CO2Me
Miyaura, N.; Yang, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
Suzuki反应
• 钯催化有机硼试剂参与的C-C交叉偶联反应称 为Suzuki反应。
Pd Cat. R X + R' BY2 R = aryl, vinyl, alkyl X = I, Br, Cl, OTf Y = OH, OR2, etc R R'
Suzuki反应机理
• Suzuki反应与前者类似,也经历了氧化加成和 还原消除等过程。
应用实例
实例一:氯代芳烃的Suzuki反应
实例四:纳米钯(Pd(0))催化的Heck反应 有人采用表面活性剂或聚合物,在没有加入膦配体 条件下使纳米钯粒子稳定分布在有机溶剂中。
Br + OHC
COOBu
nano Pd(0), PVP NaOAc, DMA 140 oC 99%
COOBu
Reetz, M. T.; Lohmer, G. Chem. Commun. 1996, 16, 1921.
Negishi反应可用于杯芳烃的合成中。如采用溴代杯芳烃在原 位产生的有机锌试剂跟碘代芳烃反应,可以得到较高产率的 杯芳烃衍生物。
Larsen, M.; Jørgensen, M. J. Org. Chem. 1997, 62, 4171.
Negishi反应的发展 反应的发展
如果有机锌试剂上面 含有较大位阻的取代 基,通常反应条件比 较苛刻,产率较低, Buchwald等人用发现 了一种含膦配体2,可 以使带有较大位阻基 团的底物在较温和的 条件下反应。
COOCH3
Zhang, F. et al. Tetrahedron Lett. 2002, 43, 573.
实例三:芳基磺酰氯的Heck反应
COOBu COOBu + Cat., K2CO3 m-xylene, reflux 4-5h 90%
Cl O S O
Cat. =
Dubbaka, S. R.; Vogel, P. Chem. Eur. J. 2005, 11, 2633.
5-氟烷基嘧啶核苷具有生物活性和药物活性
Chacko, A.-M.; Qu, W. C.; Kung, H. F. J. Org. Chem. 2008, 73, 4874.
实例二:利用Negishi反应合成天然产物
Discodermolide是一种来自海 洋生物海绵天然产物,具有抗 癌活性。可利用Negishi反应 可以方便的构建该化合物的 结构片段。
Suzuki反应
• 1981年,Suzuki和Miyaura将苯硼酸与芳基溴代物反应生成 了C-C交叉偶联反应。芳基硼酸与金属有机化合物相比,对 热、空气、水不敏感,具有廉价、低毒等优点。
R M + X R' Pd Cat. the previous reactions R R'
M = Sn, Li, Cu, etc
I H3C CH3 Pd(OAc)2, PPh3 DMF, 90 oC, 24 h COOCH3
+ COOCH3
H3C
CH3
Heck, R. F.; Nolley, J. P.Jr J. Org. Chem. 1972, 37, 2320. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. 1971, 44, 581.
ZnCl + I OMe Cl2Pd(PPh3)2/(i-Bu)2AlH (1:2) 85% OMe
Pd Cat. R X + R' ZnX X = Cl, Br, I, OSO2CF3
R R' +
ZnX2
Negishi, E. I.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.
实例六: 应用Heck反应合成具有药物活性的分子 Archazolid A具有抑制癌细胞生长活性。
Rudolph, S. et al. J. Am. Chem. Soc. 2007, 129, 6100.
Negishi反应
• Pd催化有机锌与有机卤代物、三氟磺酸酯等之 间发生的交叉偶联反应,称为Negishi反应。