2011年中考南丹中学数学第一次模拟考试试卷2
2011学年第二学期九年级数学第一次中考模拟考试

2011学年第二学期初三年级第一次模拟考试数学问卷一、选择题(本题共10小题,每小题3分,共30分) 1.﹣3的相反数是( )A .B .C .3D .﹣32.已知地球上海洋面积约为316 000 000km 2,316 000 000这个数用科学记数法可表示为( )A .3.16×109B .3.16×108C .3.16×107D .3.16×1063.如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图...是( )4.若m ·23=26,则m 等于( )A .2B .4C .6D .8 5.有一组数据:3,4,5,6,6,则下列四个结论中正确的是( ) A .这组数据的平均数、众数、中位数分别是4.8,6,6 B .这组数据的平均数、众数、中位数分别是5,5,5 C .这组数据的平均数、众数、中位数分别是4.8,6,5 D .这组数据的平均数、众数、中位数分别是5,6,6 6.若点123(1,)23y -、(,y )、(,y )都在反比例函数5y x=的图象上,则( ) A .123y y y << B .213y y y << C .123y y y >> D .132y y y <<7.在Rt △ABC 中,∠C=90°,AB=5,BC=3,以AC 所在的直线为轴旋转一周,所得圆锥的表面积为( )A . 12πB .15πC .24πD .30π 8. 已知:m, n 是两个连续自然数(m<n ),且q=mn , 设,m q n q p -++=则p( )A. 总是奇数B. 总是偶数C. 有时奇数,有时偶数D. 有时有理数,有时无理数 9.如图,在Rt△ABC 中,AB=CB ,BO⊥AC,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF . 下列结论:①tan∠ADB=2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD=BF;⑤AO F D FO E S S ∆=四边形,上述结论中正确的个数是( )A. 4个B. 3个C. 2个D. 1个10. 如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A 、B 、C 、D 、二、填空题(本题共6小题,每小题4分,共24分)11.函数21y x =-的自变量x 的取值范围是 .12.分解因式3269a a a -+= 。
2011年中考模拟试卷数学试卷及答案(优质)

2011年中考数学模拟试卷 试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.注意可以用多种不同的方法来选取正确答案.1.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A .9105.8⨯元B .10105.8⨯元C .11105.8⨯元D .12105.8⨯元2.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333 C .01=+-aa D .323211=⎪⎭⎫⎝⎛÷- 3.有2名男生和2名女生,王老师要随机地、两两一对地排座位,一男一女排在一起的概率是( )A. 14B. 23C. 12D. 13 4.如图,一束光线与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角∠DCB 的度数等于 ( ) A .30° B .45° C .50° D .60°5.抛物线y=-x 2+2x -2经过平移得到y=-x 2,平移方法是( )﹒A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位6.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是(A. ①② B .②③C .②④ D . ③④ 7.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A⊥O 2A ,则图中阴影部分的面积是( )A.4π-8B. 8π-16C.16π-16D. 16π-32①正方体②圆柱③圆锥④球第4题第7题8.已知函数y=―t 3 ―2010|t|,则在平面直角坐标系中关于该函数图像的位置判断正确的是( )A .必在t 轴的上方B .必定与坐标轴相交C .必在y 轴的左侧D .整个图像都在第四象限9.如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( )A . a ∶b ∶cB . a 1∶b 1∶c 1C . cosA ∶cosB ∶cosCD . sinA ∶sinB ∶sinC 10.现在把一张正方形纸片按如图方式剪去一个半径为40 2 厘米的14 圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到1厘米,2 ≈1.41, 3 ≈1.73) A . 64 B . 67 C . 70 D . 73二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 函数21-=x y 的自变量x 取值范围是 .12.右图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米, 则河床面的宽减少了 米.(即求AC 的长)13.已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =__________.14.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只 有2个交点,则m =A B C O E F D 第9题ACB.5 = i 1:第12题第10题15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,2正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .三. 全面答一(本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本题满分6分)先化简,再求值:aa a a --÷--224)111(,其中a 是整数,且33<<-a 18.(本题满分6分)如图,在平面直角坐标系中,点A ,B ,C ,P 的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;19. (本题满分6分) 如图,AB 为⊙O 的弦,C 为劣弧AB 的中点,(1)若⊙O 的半径为5,8AB =,求tan BAC ∠; (2)若DAC BAC ∠=∠,且点D 在⊙O 的外部,判断AD 与⊙O 的位置关系,并说明理由.20.(本题满分8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计18题19题…① ② ③ ④第16题算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)(1)被抽查的居民中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.21.(本题满分8分)如图,AB//CD,∠ACD=72°﹒⑴用直尺和圆规作∠C 的平分线CE ,交AB 于E ,并在CD 上取一点F ,使AC =AF ,再连接AF ,交CE 于K ; (要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形﹒ (图中不再增加字母和线段,不要求证明)﹒22.(本题满分10分)一列火车由A 市途经B 、C 两市到达D市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?(保留根号)23.(本题满分10分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租A B C D第21题 第22题出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? (3)275万元是否为最大年收益?若是,说明理由;若不是,请求出当每间的年租金定为多少万元时,达到最大年收益,最大是多少?24.(本题满分12分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度; ②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围); (2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.2011年中考数学模拟试卷 参考答案C第24题一.仔细选一选(本题有10个小题,每小题3分,共30分.)二.认真填一填 (本题有6个小题, 每小题4分, 共24分.)11 x >2 12. 4 13. 12 ,14.15.16.三.全面答一答 (本题有8个小题, 共66分.) 17. (本题6分) 解:原式=2)2)(2()1(12+=+--⋅--a aa a a a a a ……… 3分 当a=-1时, …………….2分 原式= -1 …………….1分18. (本题6分) 解:(1)图略 ………… ………………………………3分(2)()()1212y x x =-+ ………… ……………………………3分19. (本题6分) (1)解: ∵AB 为⊙O 的弦,C 为劣弧AB 的中点,8AB = ∴OC AB ⊥于E ∴ 142AE AB == ……1分 又 ∵5AO = ∴3OE ==∴ 2CE OC OE =-= ……1分 在Rt △AEC 中,21tan 42EC BAC AE ∠=== ……1分 (2)AD 与⊙O 相切. ……1分 理由如下:∵OA OC = ∴C OAC ∠=∠∵由(1)知OC AB ⊥ ∴ ∠C+∠BAC =90°. ……1分 又∵BAC DAC ∠=∠ ∴90OAC DAC ∠+∠=︒ ……1分 ∴AD 与⊙O 相切.E20. (本题8分) (1) 被抽查的居民中,人数最多的年龄段是21~30岁…………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) …………………………………2分图略…………………………………1分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈………………………1分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈………………………1分∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高…………1分21. (本题8分)解:⑴CE作法正确得2分,F点作法正确得1分,K点标注正确得1分;⑵△CKF∽△ACF∽△EAK;△CAK∽△CEA(注:共4对相似三角形,每正确1对可各得1分)22. (本题10分)解:过点B分别作B E⊥CD于E,B F⊥AD于F.由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.………………2分∴DE=50,…………………………………1分BE=1分CE=1分∴BC=1分∵BF=1分∴AB=…………………………………1分∴50394AB BC CD km++==.……………1分EF∴该火车从A 市到D市共行驶了(50394AB BC CD km ++==)km .………1分 23.(本题10分)解:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. ……………2分 (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, ………2分 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元. ……………2分 (3)275万元不是最大年收益 ……………1分 当每间商铺的年租金定为12.5万元或13万元. ……………2分 达到最大年收益,最大是285万元 ……………1分 24.(本题12分) . 解:(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1,∴……………2分②过点E 作EH ⊥BD ,则EH 为△COD 的中位线∴12EH OC ==∵DQ=x ∴BQ=2-x∴)323)(2(21x x S BPQ --⨯=∆ …………………………1分 23)2(21⨯-⨯=∆x S BEQ …………………………1分 ∴233431132+-=+=∆∆x x S S y BEQ BPQ …………………………2分 (2)能成为梯形,分三种情况:当PQ ∥BE 时,∠PQO=∠DBE=30°∴tan 30o OP OQ==即13x =- ∴x=25C注意事项 :1.请先填写班级、姓名、学号及试场号、座位号2.请保持答卷卷面清洁,不要折叠、破损。
2011年数学中考模拟试题.

∴抛物线的解析式为y=- 4(x-9)2+12.
27
15.用18张长为2 cm,宽为1 cm的长方形纸片拼成一个正方形, 则正方形的边长为 ______cm. 【解析】 这个正方形的面积=18×2×1=36(cm2), 故其边长为 36cm=6 cm. 答案:6
16.(2009·德城中考)如图,根据下面的运算程序,若输入 x=1- 3时,输出的结果y= ______.
【解析】 (1)y=280x+(6-x)×200=80x+1 200(0≤x≤6).
(2)可以有结余.
由题意知
80x+1 200 45x+30(6-x)
1
650. 240.
解不等式组得4≤x≤5 5 .
8
∴预支的租车费用可以有结余.
∵x取整数,∴x可取4或5.
∵k=80>0,∴y随x的增大而增大.
【解析】选D.根据题意可知,点A和点B关于x=2对称,又由A
(0,3)可得B(4,3).
8.(2009·重庆中考)观察下列图形,则第n个图形中三角形 的个数是( )
(A)2n+2
(B)4n+4
(C)4n-4
(D)4n
【解析】选D.观察图形发现,第1个图中有4个三角形;第2个
图中有8个三角形;第3个图中有12个三角形;….猜想第n个
b=2 4k2 +b=0 ,
解得
k
2
=-
1 2
.
b=2
所以直线AB的关系式为y=- 1 x+2.
2
26.(12分)(2010·日照中考)如 图,小明在一次高尔夫球争霸赛中, 从山坡下O点打出一球向球洞A点飞 去,球的飞行路线为抛物线,如果 不考虑空气阻力,当球达到最大水平高度12米时,球移动的 水平距离为9米.已知山坡OA与水平方向OC的夹角为30°,O、 A两点相距8 3米.
2011年中考模拟试卷数学试卷及答案(2)

14.
15.
16.
三.全面答一答 (本题有 8 个小题, 共 66 分.)
17. (本题 6 分) 解:原式= a 2 a(a 1) a ……… 3 分 a 1 (a 2)(a 2) a 2
当 a=-1 时, 原式= -1
…………….2 分 …………….1 分
18. (本题 6 分) 解:(1)图略 ………… ………………………………3 分
(2) y 1 x 2 x 1 ………… ……………………………3 分
2
19. (本题 6 分) (1)解: ∵ AB 为⊙O 的弦, C 为劣弧 AB 的中点, AB 8
∴ OC AB 于 E∴ AE 1 AB 4 2
……1 分
又 ∵ AO 5 ∴ OE OA2 OE2 3
abc
D. sinA∶sinB∶sinC
FO E
B
C
D
第9题
1 10.现在把一张正方形纸片按如图方式剪去一个半径为 40 2厘米的 圆面后得到如图纸片,且该
4
纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸
片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到 1 厘米, 2≈1.41,
|t| ()
A.必在 t 轴的上方
B.必定与坐标轴相交
C.必在 y 轴的左侧
D.整个图像都在第四象限
9.如图,△ABC 的三边分别为 a、b、c,O 是△ABC 的外心,OD⊥BC,OE⊥ACA,OF⊥AB,
则 OD∶OE∶OF= ( A. a∶b∶c C. cosA∶cosB∶cosC
)
111
B. ∶ ∶
D
Q
E
A
2011年中考数学模拟试题 (二)

数学模拟试题(二) 第 1 页 共 11 页2011年中考数学模拟试题 (二) 注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本大题共10小题,每小题4分,共40分。
请将答案填入表格中) 题号 1 2 3 4 5 6 7 8 9 10 答案 1.下列各组数中,互为相反数的是…………………………………………………………【 】 A.2与21 B.22-与 C.2与|-2| D.π与14.3- 2.下列计算正确的是…………………………………………………………………………【 】 A.325x x x += B.44x x x ÷= C.325x x x ⋅= D.226)3x x =( 3.如图,直线a ∥b, a 、b 被AB 、AC 所截,∠1=70°,∠2=40°,则∠BAC=…………【 】 A.40° B.50° C.60° D.70° 4. 2011年4月28日国家统计局公布2010年第六次全国人口普查结果,其中我国内地总人口达13.39亿 ,用科学记数法表示“13.39亿”正确的是………………………………………【 】 A.81.33910⨯ B.813.3910⨯ C.91.33910⨯ D.913.3910⨯ 5.如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是………………………………………………………………………………………………【 】 A. 主视图 B. 左视图 C. 俯视图 D. 面积一样 6.若几个能唯一确定一个三角形的量称为三角形的“基本量”。
下列各组量中一定能成为三角形的基本量的是…………………………………………………………………………………【 】 A.三个内角 B.两条边与一个内角 C.周长和两条边 D.面积与一条边 7.如图,在 Rt △ABC 中,∠ACB=90°, ∠BCD=30°,CD ⊥AB 于点D ,则△BCD 与△ACD 的面积比为……………………………………………………………………………………………【 】 A.1∶2 B.1∶3 C.1∶4 D.1∶5题号 一 二 三 四 五 六 七 八 总分 得分得分 学校 班级 姓名考号密 封 线 内 不 要 答 题第3题图 第5题图数学模拟试题(二) 第 2 页 共 11 页8.若二次函数522+-=x x y 配方后为k h x y ++=2)(,则k h +的值为……………【 】A.3B.5C.-3D.-59.反比例函数x ky =在第一象限的图象如图所示,则整数k 的值可能是………………【 】A.1B.2C.3D.410.如图,将边长为12的正方形纸片ABCD 折叠,使得点A 落在边CD 上的E 点,折痕为MN ,若MN 的长为13,则CE 的长为…………………………………………………………………【 】A. 6B.7C.8D.10二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:2(7)123--⨯= .12.若一组数据2,4,x ,6,8的平均数是5,则这组数据的方差是 .13.如图,⊙A 过原点O ,与坐标轴交与C 、D 两点,OC=OD ,点B 在劣弧OC 上(不与点O 重合),BD 是⊙A 的一条弦.则∠OBD= 度.14.已知二次函数2y ax bx c =++的图象如图所示,下列说法正确的是 .(将所有正确答案的序号填在横线上)① 0>ac② 关于x 的方程20++=ax bx c 的解是1x = -1,2x =3 ③ 当0>x 时,y 随x 增大而减小④ 20b a +<得分第7题图 第9题图 第10题图 第13题图 第14题图1 2数学模拟试题(二) 第 3 页 共 11 页三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:22321122a a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中2a =.16.如图是儿童乐园的滑梯平面示意图,为确保安全性,管理人员决定减小滑梯与地面的夹角,由45°改为30°.已知原滑梯AB 长为6米.求改建后滑梯AC 的长度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)四、(本大题共2小题,每小题8分,满分16分) 17. 给出下列命题:命题1:点(1,-1)是直线x y -=与双曲线xy 1-=的一个交点; 命题2:点(1,-2)是直线x y 2-=与双曲线xy 2-=的一个交点; 命题3:点(1,-3)是直线x y 3-=与双曲线xy 3-=的一个交点; 命题4:点(1,-4)是直线x y 4-=与双曲线x y 4-=的一个交点; ……得分 得分 第16题图数学模拟试题(二) 第 4 页 共 11 页 (1) 请观察上面命题,写出命题5. (2) 试写出命题n. 18.如图在平面直角坐标系中有菱形ABCD ,将菱形ABCD 分别作三种变换:①以x 轴为对称轴,在第三象限作菱形1111D C B A ;②以O 点为位似中心,位似比为1:2,将菱形ABCD 放大,在第四象限作放大后的菱形2222D C B A ;③以O 点为旋转中心,顺时针旋转90 在第一象限作菱形3333D C B A 。
2011年中考数学模拟试卷二 人教新课标版

2011年中考数学模拟二一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算-2-1的结果是( )(A )-1 (B )1 (C )3 (D )-3 2.如左图,这个几何体的主视图是( )3.Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( ) A .1 B .2 C .3 D .4 4.估计10+1的值是( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间5.《茂名日报》(2007年5月18日)报道,刚刚投产半年的茂名百万吨乙烯工程传来喜讯,正在创造全国最好的效益,每月为国家创利30 000万元,这个数用科学记数法表示是( )A .3310⨯万元B .4310⨯万元C .40.310⨯万元D .50.310⨯万元 6.设一元二次方程2750x -=的两个根分别是12x x ,,则下列等式正确的是( )A.12x x +=B.12x x += C.12x x +=D.12x x +=7.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中A 8.不等式组11224(1)x x x -⎧⎪⎨⎪-<+⎩≤的解集是( )A .23x <≤B .23x -<<C .23x -<≤D .23x -<≤9.如图,一扇形纸片,圆心角AOB ∠为120,弦AB 的长为,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A .23cm B .2π3cmC .32cmD.3π2cm 10.在平行四边形ABCD中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为A .B .C .D .O1 2 3 4 C C C( ) A .2B .35C .53D .1511.如图,小亮在操场上玩,一段时间内沿M A B M →→→的路径匀速散步,能近似刻画小亮到出发点M 的距离..y 与时间x 之间关系的函数图象是( )12.如图,记抛物线21y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为1P ,2P ,…,1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点1Q ,2Q ,…,1n Q -,再记直角三角形11OPQ ,122PP Q ,…的面积分别为1S ,2S ,…,这样就有21312n S n -=,22342n S n -=,…;记121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是( ) A .23 B .12 C .13 D .14二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上) 13.分解因式:分解因式:224a ab -= .14.如图,PA 与半圆O 相切于点A ,如果∠P =35°,那么∠AOP =_____°. 15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴,y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点A '的位置.若OB =,1tan 2BOC =∠,则点A '的坐标为____________. 16.下图是一组数据的折线统计图,这组数据的极差是 ,平均数是 . 17.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形=4厘米,则边AD 的长是___________厘米.三、解答题(本大题共7个小题,共57分.明过程或演算步骤)B .C .D .18.(本小题满分7分)(1)计算:先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-.(2)解分式方程:解方程:11322x x x-+=--.19.(本小题满分7分)(1)如图,在平行四边形ABCD 中,B ∠,D ∠的平分线分别交对边于点E F ,,交四边形的对角线AC 于点G H ,.求证:A H C G =.(2)如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°. 求∠P 的度数.20.(本小题满分8分) 在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB DC = ②ABE DCE ∠=∠ ③AE DE = ④A D ∠=∠ 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC △不能..构成等腰三角形的概率.21.(本小题满分8分)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:A BD CE G H F信息一:这三个班的捐款总金额是7700元; 信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元. 请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数. 22.(本小题满分9分) 如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. 23.(本小题满分9分)如图①,在边长为的正方形ABCD 中,E F ,是对角线AC 上的两个动点,它们分别从点A ,点C 同时出发,沿对角线以1cm/s 的相同速度运动,过E 作EH 垂直AC 交Rt ACD △的直角边于H ;过F 作FG 垂直AC 交Rt ACD △的直角边于G ,连接HG ,EB .设HE ,EF ,FG ,GH 围成的图形面积为1S ,AE ,EB ,BA 围成的图形面积为2S (这里规定:线段的面积为0).E 到达C F ,到达A 停止.若E 的运动时间为s x ,解答下列问题:(1)当08x <<时,直接写出以E F G H ,,,为顶点的四边形是什么四边形,并求x 为何值时,12S S =.(2)①若y 是1S 与2S 的和,求y 与x 之间的函数关系式.(图②为备用图) ②求y 的最大值.24.(本小题满分9分)如图,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB x ∥轴,B (3,现将纸片按如图折叠,AD ,DE 为折痕,30OAD ∠=︒.折叠后,点O 落在点1O ,点C 落在点1C ,并且1DO 与1DC 在同一直线上.(1)求折痕AD 所在直线的解析式; (2)求经过三点O ,1C ,C 的抛物线的解析式;(3)若⊙P 的半径为R ,圆心P 在(2)的抛物线上运动,⊙P 与两坐标轴都相切时,求⊙P 半径R 的值.。
2011年中考模拟试卷数学卷

2011年中考模拟试卷数学卷考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1. -3的倒数是( ) (A) -31 (B) 31(C) -3 (D) 3 2. 2011年3月5日上午9时,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝在年度计划报告中指出,今年中央财政用于“三农”的投入拟安排9884.5亿元.将9884.5用科学记数法表示应为( )(A) 98.845⨯102(B) 0.98845⨯104(C) 9.8845⨯104(D) 9.8845⨯103。
3. 下列运算正确的是( )(A)6332x x x =+ (B)428x x x =÷ (C)mnn m x x x =⋅ (D)2045)(x x =-4. 函数y =x 的取值范围是( )(A) x ≤1. (B)x ≥-1. (C) x ≥1. (D)x ≤-1.5. 2010年11月13日,中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。
他在决赛中打出的10枪成绩(单位:环)是:10.4,9.6,10.4,10.1,10.2,10.7,10.2,10.5,10.7,10.4.则这组数据的中位数是( ) (A ) 10.7 (B ) 10.4 (C ) 10.3 (D ) 10.26. 小明用一个半径为5cm ,面积为15π2cm 的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为( )(A )3cm (B ) 4cm (C ) 5cm (D ) 15cm 7. 将直线y=2x ─4向右平移3个单位后,所得直线的表达式是(A) y=2x ─1 (B) y=2x ─7 (C) y=2x ─10 (D) y=2x+28. 在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为)1,3(-,半径为1,那么⊙O 与⊙A 的位置关系是( )A .内含B .内切C .相交D . 外切9.不透命的盒子里面装有五个分别标有数字1,2,3,4,5的乒乓球,这些球除数字之外,其他完全相同,一位学生随机地一次摸出两个球,两个球上的数字之和是偶数的概率是( )(A)2513 (B) 52 (C) 2516 (D) 107 10若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大值.设),,(321a a a A =,⎪⎪⎪⎭⎫⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A )1,1+x ,⎪⎪⎪⎭⎫ ⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )(A) 131≤≤-x (B) 211+≤≤x (C) 121≤≤-x (D) 311+≤≤x 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 分解因式:m 3-2m = 。
2011年中考模拟试卷数学卷 (2)

2011年中考模拟试卷 数学卷 满分120分 考试时间100分钟 考生须知:※ 本试卷分试题卷和答题卷两部分..※ 答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.※ 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. ※ 考试结束后,上交试题卷和答题卷. 试 题 卷一、细心选一选(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.下列各组数中,互为相反数的是( ▲ )【原创】A .2和21B .︒30sin 和21-C .2)2(-和2)2(D .12-和21-2.如果代数式y xa 124-与ba yx +-3561时同类项,那么( ▲ )【原创】A .6,2-==b aB .8,3-==b aC .5,2-==b aD .9,3-==b a 3.为了记录本月蔬菜价格的变化情况,应选用的统计图是( ▲ )【原创】A .扇形统计图B .条形统计图C .折线统计图D .都可以4.2011年3月18日,美国内布拉斯加州,沙丘鹤飞过升起的月亮。
美国航空航天局发布消息说,19日,月球将到达19年来距离地球最近位置,它与地球的距离仅有356578千米,从地球上观看,月球比远地点时面积增大14%,亮度增加30%,号称“超级月亮”。
其中356578千米精确到万位是( ▲ )【原创】A .51057.3⨯B .61035.0⨯C .5106.3⨯ D .5104⨯5.要得到二次函数122+--=x x y 的图象,则需将2)1(2+--=x y 的图象( ▲ )【原创】A .向右平移两个单位B .向下平移1个单位C .关于x 轴做轴对称变换D .关于y 轴做轴对称变换6.如果一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是圆且中间有一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考南丹中学第一次模拟考试试卷
数 学
(考试时间:120分钟,满分:120分)
7.如图3,已知O 中,MN 是直径,AB 是弦,MN BC ⊥,垂足为C ,可推出结论 (填写一个即可).
8.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,6.3S 2=甲, 8.15S 2=乙,则小麦长势比较整齐的试验田是 .
9.如图4,在10×6的网格图中(每个小正方形的边长均为1个单位长)。
⊙A 半 径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.
10.如图4,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表,则 a n = (用含n 的代数式表示).
图4
H
G
F
E
D C
B
A 二、选择题(本大题共8小题,每小题3分,共24分;在每小题
给出的四个选项中,只有一项是正确的,请将正确答案的代号
填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分.)
11.下列运算正确的是 ………………………………………( )
A.3333=+
B.3327=÷
C.532=⋅
D.24±= 12.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,
其中,可以看作是轴对称图形的有 ……………………………………( )
A .1个
B .2个
C .3个
D .4个
13.2010年6月24日某县有五所中学参加中考的学生人数分别为:320,250,280,
293,307,以上五个数据的中位数为( )
A.320
B.293
C.250
D.290
14. 下列几何体中,同一个几何体的主视图与俯视图不同的是……………( )
A .
B .
C . D.
15.在平面直角坐标系中,点(25)A ,与点B 关于原点O 对称,则点B 的坐标是…( ) A .(25)--,
B .(25)-,
C .(25)-,
D . (52)--, 16.如图6,在菱形ABCD 中,AC =6, BD =8,则菱形的边长为(
)
A.5
B.10
C.6
D.8
17.某人想沿着梯子爬上高4m 的房顶,梯子的倾斜度(梯子与地面的夹角)
不能大于60°,否则就有危险,那么梯子的长至少为( ).
A
.8m B . C D
18.如图5,E F G H ,,,分别为正方形ABCD 的边,,AB BC
,CD DA 上的点,且1
3
AE BF CG DH AB ====,则图中阴影
部分的面积与正方形ABCD
的面积之比为…………(
)
.
A
.
12 B.2
5
C.35 D.4
9
正方圆柱
圆锥
球 图7
图6
图9
8小题,满分76分;解答应写出文字说明、证明过程或演算步骤.)
19.(本小题满分8分) 计算:2sin30°+|-3|-22+(2010+π)0
20.(本小题满分8分) 如图8,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB =45°,BC ∥AD ,CD ∥AB 。
O 的位置关系,并说明理由;
(2)若⊙O 的半径为1,求图中阴影部分的面积(结果保留 )
21. (本小题满分8分)
在如图9的方格纸中,每个小正方形的边长都为l.
(1)画出将△A 1B 1C 1,沿直线DE 方向向上平移5格得到的△A 2B 2C 2;
(2)要使△A 2B 2C 2与△CC 1C 2重合,则△
A 2
B 2
C 2绕点C 2顺时针方向旋转,至少要旋转多少度?(直接写出答案)
A 图8
22. (本小题满分10分) 某中学为促进课堂教学,提高教学
质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”
的问卷调查.根据收回的问卷,学校绘制了如下图表,请你(1)请把三个图表中的空缺部分都补充完整;
(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说
23. (本小题满分10分)
已知图10中的曲线函数
5
m
y
x
-
=(m为常数)图象的一支.
(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数2
y x
=图象在第一象限的
交点为A(2,n),求点A的坐标及反比例函数的解析式
25%
编号4
10%
编号1
x
24. (本小题满分10分)
广西某楼盘准备以每平方米5000元的均价对外销售,由于
国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优
惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?
25. (本小题满分10分)
如图11,已知四边形ABCD,E是CD上的一点,连接AE、BE.
(1)给出四个条件: ①AE平分∠BAD,②BE平分∠ABC,③
AE⊥EB,④AB =AD +BC.
请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明;
(2)请你判断命题“AE平分∠BAD,BE平分∠ABC,E是CD的中点,则AD∥BC”是否正确,并说明理由.
A
B C
D
E
图11
26. (本小题满分12分)
如图12,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与
直线2=x 交于点P ,顶点M 到A 点时停止移动. (1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,
①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短; (3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.。