平面自由度

合集下载

平面机构及其自由度——自由度及其计算

平面机构及其自由度——自由度及其计算

自由度=1
自由度=0
设平面机构中包含有N个构件其中有n=(N-1)个活动构件,PL个低副数和PH个高副 数。
这些活动构件在未用运动副联接之前,其自由度数应为3n,引入的约束总数为(2 PL +PH)。
∴机构的自由度为:
F=3 n- 2 PL -PH 计算下列机构的自由度
N=4 n=3 PL=4 PH=0
F=3 n- 2 PL -PH F≤0,机构不能运动成为刚性桁架 W=F (F>0) 机构具有确定的相对运动 W<F,运动不确定
F=3 n- 2 PL 共有n个活动构件。
❖ 2.F≤0,机构不能运动成为刚性 桁架
❖ 如三杆机构 ❖ 又如图所示:
机构具有确定运动的条件 F≤0,机构不能运动成为刚性桁架
移动副:组成运动副的两构件只能沿某一轴线相对移动。 =3×3-2×5=-1
N若=一4 个平n=面3机此构P共L条=有4n件个活PH讨动=构0 论件。了机构自由度数与原动件的关系
W<F,运动不确定 当用运动副将这些活动构件与机架联接组成机构后,则各活动构件具有的自由度受到约束。
一个低副引入2个约束(失去2个自由度)仅保留1个自由度
转动副: 组成转动副的两构件只能 在一个平面内相对转动。
移动副:组成运动副的两构件 只能沿某一轴线相对移动。
一个高副引入1个约束(失去1个自由度)保留2个自由度
平面机构的自由度计算
平面机构的自由度:机构中各构件相对于机架所具有的 独立运动的数目。
平面机构的自由度
构件的自由度和约束
自由度:
Y
构件作独立运动的数目。
一个作平面运动的自由构件自由度总数为3。 O
S A
X
若一个平面机构共有n个活动构件。在未用运动副联接前,则活动构件自由度总 数为3n。

平面机构的自由度

平面机构的自由度

3.计算机构自由度的几个特殊情况
小结 ◆ 复合铰链
存在于转动副处
正确处理方法:复合铰链处有m个构件 则有(m-1)个转动副
◆局部自由度
常发生在为减小高副磨损而将滑动摩擦 变成滚动摩擦所增加的滚子处。
正确处理方法:计算自由度时将局部自 由度减去。
◆ 虚约束
存在于特定的几何条件或结构条件下。
正确处理方法:将引起虚约束的构件和 运动副除去不计。
分析: 每个平面自由构件:3个自由度 每个平面低副:引入2个约束 每个平面高副:引入1个约束 设平面机构有n个活动构件,
在未用运动副联接之前共有3n 个自由度; 有Pl个低副和Ph个高副:引入 (2 Pl +Ph)约束
平面机构的自由度计算公式:F=3n-(2 pl + ph)=3n-2 pl - ph
B 、 B’有一 处为虚约束
A 、 A’有一 处为虚约束
没有虚约束
3.计算机构自由度的几个特殊情况
4)机构运动过程中, 某 两构件上的两点之间的 距离始终保持不变, 将此 两点以构件相联, 则将带 入1个虚约束。
5)某些不影响机构运动的 对称部分或重复部分所带 入的约束为虚约束。
3.计算机构自由度的几个特殊情况
▲两个构件组成在几处构成转动 副且各转动副的轴线是重合的。
▲两构件在几处接触而
构成移动副且导路互相 平行或重合。
只有一个运动副起约束作 用,其它各处均为虚约束;
3.计算机构自由度的几个特殊情况
3)若两构件在多处相接触构成平面高副,且各接触点 处的公法线重合或平行,则只能算一个平面高副。若 公法线方向相交,将提供2个约束。
实例分析1:计算图示直线机构自由度
解解:FF==33nn-2-2plp–l p–hph ==33××77--22××6-100=-90=1

平面机构自由度的名词解释

平面机构自由度的名词解释

平面机构自由度的名词解释哎呀,你问这个问题可真是让我为难啊!不过,既然是平面机构自由度的名词解释,那我就得好好给你讲讲了。

别着急,我会尽量用简单易懂的语言,让你轻松掌握这个概念。

我们来聊聊什么是平面机构。

平面机构就是一种简单的机械结构,它由一些基本的构件组成,如杆、轴、轮等。

这些构件通过各种方式连接在一起,共同完成某种功能。

在日常生活中,我们经常会遇到各种各样的平面机构,比如自行车、门把手、电梯等等。

那么,什么是自由度呢?自由度就是描述一个物体在运动过程中能够独立改变位置或方向的参数。

在平面机构中,自由度通常用来衡量一个构件相对于其他构件的运动能力。

例如,一个铰链关节就是一个具有两个自由度的构件,因为它可以在两个方向上移动,而另一个方向则受到限制。

好了,现在我们已经知道了平面机构自由度的概念。

接下来,我们来看看它有哪些分类。

首先是旋转自由度,也就是说一个构件可以在一个固定轴周围旋转。

比如我们常见的门把手,它可以绕着门轴旋转一定角度。

其次是平移自由度,也就是说一个构件可以在一个平面内沿着任意方向移动。

比如自行车的前轮,它可以在地面上沿着任何方向滚动。

最后是转动自由度,也就是说一个构件可以在三个相互垂直的方向上旋转。

比如我们的头,它可以在三个相互垂直的方向上转动。

当然了,这些分类并不是绝对的。

在实际应用中,有些构件可能具有多个自由度,而有些则可能没有。

了解平面机构自由度的概念对于理解和设计各种机械设备都是非常重要的。

好了,今天的课就上到这里啦!希望我这次的讲解能让你对平面机构自由度有一个更清晰的认识。

下次再见啦!记得多关注身边的机械设备哦!。

平面机构的自由度

平面机构的自由度

F 3n 2 pl ph 0
表明该运动链中各构件间已无相对运动,只构成了一个 刚性桁架,因而不能成为机构。
5)超静定桁架
图(b)所示的平面 四构件运动链,其自 由度

F 3n 2 pl ph 1
表明该运动链由于约束过多,已成为超静定桁架 了,也不能成为机构。
机构具有确定运动的条件 F=0(或F﹤0),是静定(超静定)桁架。 F>0,当F>主动件数目时,运动不确定。 当F﹤主动件数目时,机构发生破坏。
2
F 3n 2 PL PH 3 2 2 2 1 1
1
凸轮机构
计算图中机构的自由度。
解: n=5, PL=7 , PH=0
F=3n-2PL–PH=3×5-2×7-0=1
二、机构具有确定运动的条件 机构的主要作用是按照设计的要求完成预定的 运动传递或转换功能。 对于机构来说,必须满足以下两点:1、运动的 可能性,2、运动的确定性。 机构有确定运动是指当机构中主动件的位置确 定时,所有从动件的位置也都随之确定。
常见机构的自由度计算 1)四杆机构: n=3 PL=4 PH=0 F=3n-2PL-PH=3×3-2×4-0=1 2)五杆机构: n=4 PL=5 PH=0 F=3n-2PL-PH=3×4-2×5-0=2 3)凸轮机构:
3
n=2 PL=2 PH=1 F=3n-2PL-PH=1
2
1
4)刚性桁架
要使所设计的运动链成为机构,组成运动链的各构件之 间必须具有确定的相对运动。不能产生运动或作无规则运动 的运动链均不能成为机构。 如图(a)所示的平面三构件运动链,其自由度
注意: 法线不重合时, 变成实际约束!
n2 A n1
n1

平面机构的自由度和速度分析

平面机构的自由度和速度分析

R=1, F=2
运动副 自由度数
约束数
回转副
移动副 高副
1(θ) + 2(x,y) = 3 自由构 1(x) + 2(y,θ)= 3 件旳自 2(x,θ)+ 1(y) = 3 由度数
结论:构件自由度 = 3-约束数 =自由构件旳自由度数-约束数19
推广到一般:
活动构件数 构件总自由度 低副约束数 高副约束数
同一构件
9
一般构件旳表达措施
两副构件 三副构件
10
注意事项:
作者:潘存云教授
画构件时应撇开构件旳实际外形, 而只考虑运动副旳性质。
11
常用机构运动简图符号
在 机 架 上 旳 电 机
齿 轮 齿 条 传 动




齿


传 动
12
链 传 动
外啮 合圆 柱齿 轮传 动
圆柱 蜗杆 蜗轮 传动
凸 轮 传 动
P12 P23
∴根据排列组合有 K= N(N-1)/2
构件数 4 5 6
8
瞬心数 6 10 15 28
38
3)机构瞬心位置旳拟定
1. 直接观察法
合用于求经过运动副直接相联旳两构件瞬心位置。
P12
1
2P12 ∞1n12
2
P12 t
1t 2 V12
n
2. 三心定律
定义:三个彼此作平面运动旳构件共有三个瞬心,且它们位 于同一条直线上。尤其合用于两构件不直接相联旳场合。
作者:潘存云教授
E
F
5. 对运动不起作用旳对称 部分。如多种行星轮。
作者:潘存云教授
33
6. 两构件构成高副,两处接触,且法线重叠。 如等宽凸轮

机械设计平面机构自由度及简图

机械设计平面机构自由度及简图

•例3-2: 试求右图平面四杆机构的自由度。
解:机构中共有3个活动构件,4个低副(转动副), 即n=3,PL=4,PH=0,根据式(3-1)求得机构的自由度 F=3n-2PL-PH =3×3-2×4-0=1
2
原动件数=机构自由度
当F=原动件的数目→机构有确定运动 (F=0不动;多于不确定;少于破坏)
4)确定比例尺,
μ
实际尺寸(mm) 图上尺寸(mm)
5)用规定的符号和线条绘制成间图。(从原动件开始画)
例5
§3-3 平面机构的自由度及其具有确定运动的条件
一、 平面机构的自由度的计算 ➢计算机构自由度(设n个活动构件,PL个低副,PH个高副):
F=3n-2PL-PH (3-1)
说明:n个活动构件(不包括机架)共有3n个自由度,当用PL个低副和机架相联组成机构后, 便受到2PL个约束(每个低副提供两个约束,1个自由度); PH个高副受到PH个约束(提供一 个约束,2个自由度)。
解: F 3 7 210 0 1
(2)局部自由度
➢ 与输出件运动无关的自由度称局部自由度。 (无论“滚子3”转与不转,都不影响“推杆2”的运动)。
4
D
2
C
3
B 1
A
4
D
2
B 1
A
F= 3×3−2×3−1=2 F= 3×2−2×2−1=1
(3)虚约束:
➢在特殊的几何条件下,有些约束所起的限制作用是重复的,这种 不起独立限制作用的约束称为虚约束。 (虚约束虽然对运动不起作用,但可以增加构件的刚性) 例3-7:试求下图大筛子机构的自由度。
(三)机构
• 机构是由构件通过运动副连接而成的 • 原动件:按给定运动规律独立运动的构件 • 从动件:其余的活动构件 • 机 架:固定不动的构件

2.3 平面体系的计算自由度

2.3 平面体系的计算自由度
图a是内部没有多余约束的 是内部没有多余约束的 刚片,而图b、 、 则是内 刚片,而图 、c、d则是内 部分别有1、 、 个多余约 部分别有 、2、3个多余约 a) 束的刚片, 束的刚片,它们可以看作 在图a的刚片内部分别附加 在图 的刚片内部分别附加 了一根链杆或一个铰结或 c) 一个刚结。 一个刚结。
All Rights Reserved 重庆大学土木工程学院®
b)
d)
在应用公式时,应注意以下几点: 在应用公式时,应注意以下几点:
(3)刚片与刚片之间的刚结或铰结数目(复刚结或复 刚片与刚片之间的刚结或铰结数目( 刚片与刚片之间的刚结或铰结数目 铰结应折算为单刚结或单铰结数目)计入g和 。 铰结应折算为单刚结或单铰结数目)计入 和h。
(4)刚片与地基之间的固定支座和铰支座不计入 和h, 刚片与地基之间的固定支座和铰支座不计入g和 , 刚片与地基之间的固定支座和铰支座不计入 而应等效代换为三根支杆或两根支杆计入r。 而应等效代换为三根支杆或两根支杆计入 。
All Rights Reserved
重庆大学土木工程学院®
【例2-1】试求图示体系的计算自由度 。 】试求图示体系的计算自由度W。
2.3 平面体系的计算自由度
与计算自由度W的定义 一、体系的实际自由度S与计算自由度 的定义 体系的实际自由度 与计算自由度 1、体系的实际自由度S 、体系的实际自由度 令体系的实际自由度为S,各对象的自由度总和为 , 令体系的实际自由度为 ,各对象的自由度总和为a, 必要约束数为c, 必要约束数为c,则
所示体系的计算自由度。 【例2-2】试求图 】试求图2-11所示体系的计算自由度。 所示体系的计算自由度
m1 (1)g (1)h m2 (2)g m3 (3)r m5 m7 (3)r m4 (1)h (1)g m6 (2)g (1)h m8 m9 (3)r (1)h

平面机构自由度的计算公式

平面机构自由度的计算公式

平面机构自由度的计算公式在机械设计中,平面机构是一种由多个连杆和关节构成的机械系统,它们可以在平面内相对运动。

平面机构的自由度是指其可自由运动的独立运动参数的数量。

通过计算平面机构的自由度,可以帮助工程师理解其运动特性,并为设计和优化提供依据。

平面机构的自由度计算公式如下:f = 3n - 2j - h其中,f表示平面机构的自由度,n表示机构中连杆的数量,j表示机构中的关节数量,h表示机构中的辊子(如滚子、滑块等)数量。

这个公式的推导基于以下原理:连杆的自由度为3(平面机构中的连杆是二维的),关节的自由度为2(关节可以提供两个独立的转动或平动自由度),而辊子的自由度为1(辊子可以提供一个独立的转动或平动自由度)。

通过这个公式,我们可以得出以下结论:1. 当机构中只有连杆和关节,没有辊子时,f = 3n - 2j。

这意味着平面机构的自由度由连杆的数量和关节的数量决定。

如果机构中的连杆和关节数量满足这个公式,那么机构就是可移动的;否则,机构将被限制在某些特定的位置。

2. 当机构中有辊子时,f = 3n - 2j - h。

这意味着辊子的存在会进一步减少平面机构的自由度。

辊子的数量越多,机构的自由度就越少。

3. 当机构的自由度为零时,说明机构是固定的,无法进行任何运动。

通过这个公式,我们可以对平面机构的自由度进行快速计算和分析。

在设计过程中,我们可以根据自由度的要求来选择合适的机构类型和参数,以满足设计需求。

例如,如果我们需要设计一个可以在平面内进行旋转和平移的机构,我们可以使用公式来计算自由度,并根据结果选择合适的连杆数量和关节数量。

如果结果符合要求,我们可以进一步优化机构参数以满足其他设计要求。

总结:平面机构的自由度计算公式为 f = 3n - 2j - h,其中n表示机构中连杆的数量,j表示机构中的关节数量,h表示机构中的辊子数量。

这个公式可以帮助工程师快速计算和分析平面机构的自由度,为机构的设计和优化提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面机构自由度重点知识
本周开讲平面机构的自由度,首先,什么叫做机构:机构是由多个具有确定相对运动的构件
的组合体。机构具有平面机构和空间机构之分,而我们只讲平面机构。 什么叫做运动副:
两构件直接接触并能产生相对运动的活动链接。 运动副按接触特性可分为高副和低副。高
副通过点、线与从动件连接,磨损大,受载荷能力有限;低副通过面与从动件连接。低副又
可分为转动副和移动副;构成运动副的两构件只能在某一平面相对转动,这种运动副叫做转
动副;构成运动副的两构件只能在某一轴线上相对移动的运动副叫做移动副。 自由度:相
对于参考系,构件所具有的独立运动数叫做机构的自由度。 机构具有确定运动的条件是:
机构的自由度大于零,且机构的自由度等于机构的原动件数。在计算机构自由度时,应注意
的事项:1、复合铰链(特别注意有机架参与时) 2、局部自由度(不仅出现在凸轮机构中)
3、虚约束(这并不是说,虚约束没有用) 机构运动简图:表示机构各构件间的相对运动
关系的简化图形。 机构运动简图的作用:1、表明了一部复杂机器动力和运动的传递过程。
2、可用于图解法求取机构上各点的运动轨迹、速度、加速度和位移。 3、可用于对机构进
行受力分析。 瞬心:两构件上绝对速度相同的重合点

相关文档
最新文档