17.1勾股定理1
2023-2024学年人教版八年级数学下册课件17.1 勾股定理第1课时 勾股定理

( D ) .
A.6
32
B.
5
18
C.
5
24
D.
5
图17.1-3
5.如图17.1-4,在Rt △ 中,∠ = 90∘ ,
∠ = 30∘ ,垂直平分斜边,交于点,是
垂足,连接.若 = 2,则的长是( C ) .
A.4
B.8
C.4 3
D.2 3
图17.1-4
6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是
我国古代数学的骄傲.如图17.1-5所示的“赵爽弦图”是由
四个全等直角三角形和一个小正方形拼成的一个大正
方形,设直角三角形较长直角边长为,较短直角边长
为,若 +
2
图17.1-5
= 21,小正方形的面积为5,则大正
2 41或6
9.已知直角三角形的两边长分别为8,10,则第三边长为_________.
10.如图17.1-7,已知△ 和△ 都是等腰直角
三角形,∠ = ∠ = 90∘ ,为边上一点,
求证:22 = 2 + 2 .
提示:证明△ ≌△ SAS ,得 = .证
学习过程中,我们已经学会了运
用如图17.1-9所示的图形,验证
著名的勾股定理,这种根据图形
直观推论或验证数学规律和公式
图17.1-9
的方法,简称为“无字证明”.实际
上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规
律,它体现的数学思想是 ( C ) .
A.统计思想
B.分类思想
C.数形结合思想
轻松达标
1.在△ 中,∠,∠,∠的对应边分别是,,,若∠ = 90∘ ,
《勾股定理》PPT(第1课时)

命题1 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
ac
b
课程讲授
1 勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c b a
b-a
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4S三角形+S小正方形,
课程讲授 2 勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及 正多边形、圆都具有相同的结论:两直角边上图 形面积的和等于斜边上图形的面积.本例考查了 勾股定理及半圆面积的求法,解答此类题目的关 键是仔细观察所给图形,面积与边长、直径有平 方关系,就很容易联想到勾股定理.
课程讲授Biblioteka 2 勾股定理与图形面积定有a2+b2=c2.
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
课程讲授
1 勾股定理
几何语言: ∵在Rt△ABC中 ,∠C=90°,
B ac
∟
∴a2+b2=c2(勾股定理).
C
勾股定理揭示了直角三角形三边之间的关系.
bA
课程讲授 1 勾股定理
例 在Rt△ABC中,∠C=90°,AB=10 cm, BC=8 cm,求AC的长.
(1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米; (3)正方形R的面积是 2 平方厘米.
AR P
CQ B
上面三个正方形的面积之间有什么关系? SP+SQ=SR
(图中每一格代表一平方厘米)
课程讲授 1 勾股定理
直角三角形ABC三边长度之间存在什么关系吗? SP=AC2 SQ=BC2 SR=AB2 AC2+BC2=AB2
2023-2024学年人教版八年级数学下册17.1勾股定理 勾股定理的应用(1) 课件

知识点❷ 勾股定理之风吹荷花模型
典例2 (教材P29习题T10·改编)如图,有一个水池,水面是一
个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水
面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到
达池边的水面,则水池里水的深度是多少尺?
解:设水池里水的深度是x尺,
由题意,得x2+
∵BO=0.7 m,BC=0.8 m,
∴CO=1.5 m.
在Rt△DOC中,DO= - = . -. =2(m).
∴AD=AO-DO=2.4-2=0.4(m).
答:梯子的顶端沿墙下滑了0某社区要在如图所示AB所在的
直线上建一图书室,本社区有两所学校,分别在点C和点D处,
∴AB= + = + = ≈43.4.
答:两孔中心的距离约为43.4 mm.
3.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从
C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB
是4米.求竹子折断处与根部的距离CB.
解:由题意知CB+AC=8,∠CBA=90°,
△ABC恰好为直角三角形(∠ABC=90°).通过测量,得到AC
=130 m,BC=120 m,则A,B之间的距离是多少?
解:在Rt△ABC中,根据勾股定理,
得AB2=AC2-BC2=1302-1202=2 500.
∴AB=50 m.
答:A,B之间的距离是50 m.
3.小刚欲从点A出发划船横渡一条河,由于水流的影响,
课堂检测
1.(教材P25例1·改编)如图所示的是一个长为2
m,宽为1.5 m的长方形门框,光头强有一些薄
木板要通过门框搬进屋内.在不能破坏门框,
17.1勾股定理第一课时教学设计

17。
1《勾股定理》教学设计【教学内容解析】本节课是人教版八年级下册第十八章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛。
本节课我从学生实际出发,创设有助于学生自主学习的问题情境,引导学生自主地经历一条由观察猜想到实践验证到推理论证的科学探索之路.我期望通过本节课达成四个一,为此我确定本节课教学目标为:【教学目标】知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题.过程与方法:1、经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力.2、体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性.情感与态度:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感. 在探究活动中,培养学生的合作交流意识和探索精神.【学生学情】八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.【教学重点】勾股定理的证明与运用.【教学难点】用拼图法证明勾股定理。
【教学策略】本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.【教学过程】问题情境师生活动设计意图教师出示情景图片提出问题,学生实践思考、探索交流等。
一、设置情景引发思考从A地到B地有两条路,并且AC垂直于BC.问题一:哪条路近?为什么?问题二:你能知道走第一条比走第二条近几米吗?为什么?那么在Rt△ABC中,已知AC=8,BC=6,能否求出AB的长呢?带着这个问题我们开始第十八章《勾股定理》的学习.本章我们将探索直角三角形三边之间特有的数量关系,并运用所得的结论解决问题.今天我们学习第十八章第一节-—勾股定理。
新人教版17.1勾股定理1课件

c a
b
大正方形的面积可以表示为:
1 (2). ab 4 (a b) 2 2 2 所以:c 2ab (a b) 2
(1).c 2
化简得: a 2
b c
2
2
2002年在北京召开的国际数学家大会(ICM-2002)的会标,其图 本网站版权所有 案正是“弦图”,它标志着中国古代的数学成就.
17.1勾股定理
藤县太平四中 莫素芳
毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、
天文学家。相传2500多年前,有一次他在朋友家做客时,发现朋 友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系, 进而发现直角三角形三边的某种数量关系.
正方形A、B、C面积之间有 什么数量关系吗?
a b c
b
即 直角三角形两直角边的平方和等 于斜边的平方。 弦 c 勾a 在西方又称毕达 哥拉斯定理耶! b
股
勾股定理的运用
已知直角三角形的任意两条边长,求第 三条边长.
2 2 2 c =a +b 2 2 2 a =c -b 2 2 2 b =c -a
A
b c
C
a
B
本网站版权所有
用四个全等三角形拼图证明。
证法一: 用 拼 图 法 证 明b
.a、b、c 之间的关系 2 a 2 +b 2 =c
a c b
∵S大正方形 =(a+b)2=a2+b2+2ab
bS大正方形=4S直角三角形+ S小正方形 c a=4·1 ab+c2
c a
=c2+2ab b ∴a2+b2+2ab=c2+2ab 2 2 2 ∴a +b =c
17.1.1勾股定理(教案)

1.培养学生的逻辑推理能力,通过勾股定理的证明过程,让学生体会数学的严谨性和逻辑性;
2.提高学生的空间想象力,通过直角三角形的实际操作,使学生在直观感知的基础上形成对勾股定理的理解;
3.培养学生的数据分析能力,学会运用勾股定理解决实际问题,并能够从数据中找出规律;
4.增强学生的数学应用意识,将勾股定理应用于生活实际,培养学生学以致用的学习态度;
-理解勾股定理在实际问题中的应用,如测量、建筑等领域。
举例解释:通过具体的直角三角形实例,让学生明确勾股定理的表达式,并在解决实际问题时,如计算斜边长度,能够熟练运用此定理。
2.教学难点
-理解并掌握勾股定理的证明过程,特别是对于证明过程中的逻辑推理和几何直观;
-理解勾股定理逆定理的应用,即如何从三条边的长度关系判断一个三角形是否为直角三角形;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,测量墙角、搭建模型等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
5.培养学生的团队合作精神,通过小组讨论、合作探究,提高学生的沟通与协作能力。
人教版勾股定理(第1课时)

二、观察思考,探究新知
毕达哥拉斯(公元前572----前492年),古希 腊著名的哲学家、数学家、天文学家。
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋友家 的用砖铺成的地面中反映了直角三 角形三边的某种数量关系.
1.问题:A、B、C的面积有什么关系?
A
B
C
AB C
SA+SB=SC 对于等腰直角三角形三边有这样的关系:
两条直边的平方和等于斜边的平方
2.问题:观察图甲、图乙,小方格的 边长为1.正方形A、B、C的面积有什么 关系?
C
A ac
B
b
B
图甲
A
图乙
a bc
C
49 4 16 8 25
SA+SB=SC
a2+b2=c2
3.探究总结,提出猜想
a
c
b
命题1:如果直角三角形的两直角边 长分别为a、b,斜边长为c,那么a2+b2=c2
新人教版八年级下册 17.1 勾股定理
(第1课时)
一、创设情境,复习引入
国际数学家大会是最高水平的全球性数学学科学术会议,被誉为 数学界的“奥运会”.2002年在北京召开了第24届国际数学家大会.
为什么选用这个图 案做为2002年国际数学
家大会的会徽呢?
它由哪些我们学过 的基本图形组成?这些 图形的边之间有哪些关 系,面积怎样计算?
2.编题目游戏,考一考你的同学
游戏要求:每一位同学画一个直角三角形, 给出任意两条边的长,求第三条边 x.然后小组 之间每两个同学交换解答,再交换回来批改, 看看你的同学是否会学会运用勾股定理,如果 他(她)不会,请你教教他(她).最后由各小 组长汇报游戏情况.
人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。
人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。
通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。
但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。
因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.勾股定理的证明过程。
2.勾股定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。
2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。
3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。
4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。
2.几何画板:用于展示勾股定理的证明过程。
3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。
让学生感受到勾股定理在现实生活中的重要性。
2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。
首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。
最后,给出勾股定理的数学表达式。
3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。