09高数B(2)A卷参考答案
09考研数二真题与答案

2009年全国硕士研究生入学统一考试数学二试题及答案解析(1) 函数nxx x x f sin )(3-=与)1ln()(2bx x x g -=是等价无穷小,则(C )1)(A 2)(B 3)(C )(D 无穷多个【解析】由于()3sin x x f x xπ-=,则当x 取任何整数时,()f x 均无意义.故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故是30x x -=的解1,2,30,1x =±.320032113211131lim lim ,sin cos 132lim lim ,sin cos 132lim lim .sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±.(2) 当0→x 时,ax x x f sin )(-=与)1ln()(2bx x x g -=是等价无穷小,则(A )61,1)(-==b a A 61,1)(==b a B61,1)(-=-=b a C 61,1)(=-=b a D【解析】 22000()sin sin limlim lim ()ln(1)()x x x f x x ax x ax g x x bx x bx →→→--==-⋅- 22002301cos sin lim lim 36sin lim 1,66x x x a ax a ax bx bxa ax ab b axa→→→---==-=-⋅洛洛 36a b ∴=-,故排除,B C .另外,201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →,故 1.a =排除D .所以本题选A .(3) 设函数),(y x f z =的全微分为dy xdx dz +=,则点)0,0((D ) )(A 不是),(y x f 的连续点 )(B 不是),(y x f 的极值点 )(C 是),(y x f 的极大值点 )(D 是),(y x f 的极小值点【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂. 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂,又在()0,0处,0,0z zx y∂∂==∂∂,210AC B -=>, 故()0,0为函数(,)z f x y =的一个极小值点.(4) 设函数 ),(y x f 连续,则222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰=(C ))(A dy y x f dx x⎰⎰-4121),( )(B dy y x f dx xx⎰⎰-421),()(C2411(,)ydy f x y dx -⎰⎰)(D dx y x f dy y⎰⎰221),(【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-,将其写成一块{}(,)12,14D x y y x y =≤≤≤≤-, 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C .(5) 若)(x f ''不变号,且曲线)(x f y =在点)1,1(上的曲率圆为222=+y x 则)(x f 在区间)2,1(内 (B )【解析】由题意可知,()f x 是一个凸函数,即()0f x ''<,且在点(1,1)处的曲率322||(1())y y ρ''=='+,而(1)1f '=-,由此可得,(1)2f ''=-. 在[1,2] 上,()(1)10f x f ''≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)()1(1,2)f f f ξξ'-=<- , ∈ ,(拉格朗日中值定理)(2)0f ∴ <而(1)10f =>,由零点定理知,在[1,2] 上,()f x 有零点.故应选B .(6)设函数)(x f y =在区间]3,1[-上的图形为:则函数dt t f x F x⎰=)()(的图形为(D )【解析】由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减。
高等数学试卷-00023 2009年10月真题及答案

全国2009年10月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________. 9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n n x 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。
2009考研数学(二)真题及参考答案

2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。
2009年全国硕士研究生入学考试数学二真题及答案

y y x 0 。求 y(x)的表达式。
(21)(本题满分 11 分)(I)证明拉格朗日中值定理:若函数 f (x) 在[a,b]上连续,在(a,b)
可导,则存在 (a,b) ,使得 f (b) f (a) f ( )(b a) 。(II)证明:若函数 f (x) 在 x=0
阵
0 B
A 0
的伴随矩阵为()
(A)
0 2 A
3B
0
(B)
0 3 A
2B
0
பைடு நூலகம்(C)
0 2B
3A
0
(D)
0 3B
2 A
0
100
(8)设
A,P
均为
3
阶矩阵,
PT
为
P
的转置矩阵,且
1
x
1
y
A
2
dx
4x f x, y dy
1
1
C
2
dy
4y f x, y dx
1
1
B
2
dx
4x f x, y dy
1
x
D
2
1
2
dyy
f
x,
y dx
【答案】 C
2
2
2
2
【解析】 dx f (x, y)dy dy f (x, y)dx 的积分区域为两部分:
sin x
A 1 B 2 C 3 D 无穷多个
【答案】 C
【解析】由于 f x x x3 ,则当 x 取任何整数时, f x 均无意义.
2009年专升本高数二试卷及答案

------------------------2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷--------------------2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分) 1. 设()f x 的定义域为[]0,1,则函数1144f x f x ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭的定义域是( ).A []0,1 .B 15,44⎡⎤-⎢⎥⎣⎦.C 11,44⎡⎤-⎢⎥⎣⎦.D 13,44⎡⎤⎢⎥⎣⎦.2. 下列极限存在的是 ( ).A limsin x xx →∞ .B 1lim 2x x →∞.C 21lim 1n n n →∞⎛⎫+ ⎪⎝⎭.D 01lim 21x x →-. 3.()1cos d x -=⎰ ( ) .A 1cos x - .B sin x x c -+.C cos x c -+ .D sin x c +.4.下列积分中不能直接使用牛顿-莱布尼兹公式的是 ( ).A 4 0cot xdx π⎰ .B 1 011x dx e +⎰.C 4 0tan xdx π⎰ .D 1201x dx x +⎰.5.下列级数中发散的是( ).A ()1111n n n ∞-=-∑ .B ()111111n n n n ∞-=⎛⎫-+ ⎪+⎝⎭∑.C ()11n n ∞-=-∑ .D 11n n ∞=⎛⎫- ⎪⎝⎭∑.报考学校:______________________报考专业:______________________姓名: 准考证号: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.若lim (n n a k k →∞=为常数),则2lim _______________.n n a →∞=2. 设函数(),,x e f x a x ⎧=⎨+⎩ 00x x ≤>在点0x =处连续,则________________a =.3.曲线arctan y x =在横坐标为1的点处的切线斜率为_______________________.4. 设函数x y xe =,则()''0__________________y =.5. 函数sin y x x =-在区间[]0,π上的最大值是_____________________.6.若2x为()f x 的一个原函数,则()f x =__________________________. 7. sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰ 8.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰9.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x a F x +→=10.微分方程'cot 2sin y y x x x -=的通解是________________________________.三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算202lim .x x x e e x-→+- 解.2.设曲线()y f x =在原点与曲线sin y x =相切,求n . 解.3.设函数y =求.dy解.4.设()y y x =arctany xe =确定的隐函数,求dy dx. 解.5.计算1xxe dx e+⎰. 解.6.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx 解.7.计算2.22dxx x +∞-∞++⎰解.------------------------2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷--------------------8.设(),1,x e f x x -⎧=⎨+⎩1001x x -≤<≤≤ , 求()() 1x x f t dt -Φ=⎰在[]1,1-上的表达式.解.9.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫=⎪⎝⎭的特解. 解.10.求幂级数21113n n n x ∞-=∑的收敛域. 解.报考学校:______________________报考专业:______________________姓名: 准考证号: ------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间. (本题14分)2.已知()() 01cos xx t f t dt x -=-⎰,证明:()2 01f x dx π=⎰. (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)2009年浙江省普通高校“专升本”联考《高等数学(二)》参考答案及评分标准一.选择题 (每小题4分,共20分)1.D ,2.B ,3.C ,4.A ,5.D . 二.填空题(每小题4分,共40分) 1.k , 2.1, 3.12, 4.2, 5.0, 6.2ln 2x, 7.sin14x c π⎛⎫++ ⎪⎝⎭, 8.0, 9.()af a , 10.()2sin x c x +. 三.计算题(每小题6分,共60分) 1.解.原式=0lim 2x x x e e x-→- 3分=0lim 1.2x x x e e -→+= 6分2.解.由条件推得()()'00,11f f ==,2分于是()1220lim lim 220n n f f n n →∞→∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分=6分注:若按下述方法:原式()()112200'lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分.3.解.()3221'1y x ==+,5分()3221+dx dy x =.6分4.解.取对数()221ln arctan 2y x y x+=,2分两边求导数2222122'1'21x y y y x yx y x y x +-⋅=⋅+⎛⎫+ ⎪⎝⎭, 5分整理得'.x yy x y+=- 6分(第1页,共3页)5.解.原式=()11x xd e e++⎰3分()ln 1.x e c =++6分6.解法1.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-4分故2.dyt dx=- 6分7.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分=.π6分8解.当10x -≤<时,() 1;xt x x e dt e e ---Φ==-⎰2分当01x ≤≤时,()()() 0211311.22xt x e dt t dt x e --Φ=++=++-⎰⎰ 5分故()()2,131,22x e e x x e -⎧-⎪Φ=⎨++-⎪⎩100 1.x x -≤<≤≤6分9.解法1. 分离变量,得到c o t .3dyxdx y =-+ 2分积分得到ln 3ln sin y x c +=-+或()3 sin cy c x=-∈R ,4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 33.sin y x=- 6分解法 2. 解法 2.由()()(),p x dx p x dx y e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰其中()()13,tan tan p x q x x x ==-,得到()3 sin cy c x=-∈R 4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为3 3.sin y x =- 6分(第2页,共3页)10. 解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知 收敛半径R ,4分又当x =,对应数项级数的一般项为级数均发散, 故该级数的收敛域为(.6分四.综合题(第1小题14分,第2、3小题各8分, 共30分) 1.解.定义域(),0-∞及()0,+∞ ()34232',",x x y y x x ++=-= 令'0,y =得驻点12x =-,5分 令"0,y =得23x =-,10分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-与()0,.+∞在2x =-处,有极小值14-.其图形的凹区间为()3,0-及()0,+∞,凸区间为(),3.-∞- 14分2.证明.两边对x 求导,得() 0sin ,xf t dt x =⎰4分再对x求导,得()c o s ,f x x =6分从而证得()22 0cos 1.f t dt xdx ππ==⎰⎰8分3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧 PB 所围成. 4分该区域绕x 旋转生成的旋转体的体积() 02218292330V x x dx πππ-=--++=⎰.8分注:若计算由直线PA 与AC 及曲线弧 PC所围成 ,从而 () 222 081362315V x x dx πππ=+-++=⎰者得6分.(第3页,共3页)。
2009年(全国卷II)(含答案)高考理科数学

2009年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题( 本大题共12 题, 共计60 分)1、=( )A.-2+4iB.-2-4iC.2+4iD.2-4i2、设集合A={x|x>3},B={x|},则A∩B=()A. B.(3,4) C.(-2,1) D.(4,+∞)3、已知△ABC中,,则cosA=( )A. B. C. D.4、曲线在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05、已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为( )A. B. C. D.6、已知向量a=(2,1),a·b=10,|a+b|=,则|b|=( )A. B. C.5 D.257、设a=log3π,,,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a8、若将函数y=tan()(ω>0)的图象向右平移个单位长度后,与函数y=tan()的图象重合,则ω的最小值为…()A. B. C. D.9、已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )A. B. C. D.10、甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种11、已知双曲线C:(a>0,b>0)的右焦点为F,过F且斜率为的直线交C于A、B两点.若,则C的离心率为( )A. B. C. D.12、纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“Δ”的面的方位是( )A.南B.北C.西D.下二、填空题( 本大题共 4 题, 共计20 分)13、()4的展开式中x3y3的系数为___________.14、设等差数列{a n}的前n项和为S n,若a5=5a3.则=___________.15、设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C,若圆C的面积等于,则球O的表面积等于______________.16、已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为_____________.三、解答题( 本大题共 6 题, 共计70 分)17、(10分) 设△ABC的内角A,B,C的对边长分别为a,b,c,cos(A-C)+cosB=,b2=ac,求B.18、(12分)如图,直三棱柱ABC—A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.19、(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(Ⅰ)设b n=a n+1-2a n,证明数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项公式.20、(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核. (Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21、(12分)已知椭圆C:(a >b >0)的离心率为,过右焦点F 的直线l与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为.(Ⅰ)求a,b 的值;(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22、(12分)设函数=x 2+aln(1+x)有两个极值点x 1,x 2,且x 1<x 2.(Ⅰ)求a 的取值范围,并讨论的单调性;(Ⅱ)证明: ()21224In f x ->.2009年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析:一、选择题( 本大题共12 题, 共计60 分)1、(5分) A解析:.故选A.2、(5分) B解析:∵(x-1)(x-4)<0,∴1<x<4,即B={x|1<x<4},∴A∩B=(3,4).故选B.3、(5分) D解析:∵,∴A为钝角.又∵,∴.代入sin2A+cos2A=1,求得.故选D.4、(5分) B解析:∵,∴y′|x=1=-1.∴切线的斜率k=-1.∴切线方程为y-1=-(x-1),即x+y-2=0.故选B.5、(5分) C解析:如图所示,连接A1B,因A1D1BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C,则异面直线BE与CD1所成的角即为BE与BA1所成的角. 不妨设AB=1,则AA1=2,设∠ABE=α,∠ABA1=β,则,,,.∴cos(β-α)=cosβcosα+sinβsinα=.故选C. 6、(5分) C解析:设b=(x,y),由得解方程组得或则|b|=.故选C.7、(5分) A解析:∵a=log3π>log33=1,,.∴a>b>c.故选A.8、(5分) D解析:将函数y=tan()(ω>0)的图象向右平移个单位,得y=tan(),又因平移后函数的图象与y=tan()的图象重合,∴(k∈Z),即,∴当k=0时,,即ω的最小值为.故选D.9、(5分) D解析:设A(x1,y1),B(x2,y2),由题意得k2x2+(4k2-8)x+4k2=0,Δ=16(k2-2)2-4k2·4k2>0.得-1<k<1,即0<k<1,,x1x2=4.又∵|FA|=2|FB|,由抛物线定义,知F(2,0),抛物线的准线方程为x=-2,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,即x1=2x2+2.代入x1·x2=4,得x22+x2-2=0,∴x2=1,或x2=-2(舍去,因x2>0).∴x1=2×1+2=4.∴.∴.又0<k<1,∴.故选D.10、(5分) C解析:由题意知甲、乙所选的课程有一门相同的选法为种,甲、乙所选的课程都不相同的选法有种,所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30种.故选C.11、(5分) A解析:设A(x1,y1),B(x2,y2),F(c,0),由, 得(c-x1,-y1)=4(x2-c,y2),∴y1=-4y2.设过F点斜率为的直线方程为, ∴则有∴将y1=-4y2分别代入①②得化简得∴.化简得16c2=9(3a2-b2)=9(3a2-c2+a2).∴25c2=36a2.∴,即.12、(5分) B解析:如右图所示正方体,要展开成要求的平面图,必须剪开棱BC,剪开棱D1C1使正方形DCC1D1向北的方向展平.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展平,则标“Δ”的面的方位则为北.故选B.二、填空题( 本大题共 4 题, 共计20 分)13、(5分) 6解析:设展开式中第r+1项为x3y3项,由展开式中的通项,得=.令,得r=2.∴系数为.14、(5分) 9解析:由a5=5a3,得,.15、(5分) 8π解析:如图所示,设球半径为R,球心O到截面圆的距离为d,在Rt△ONB 中,d2=R2-BN2.①又∵π·BN2=,∴.在△ONM中,d=OM·sin45°=,②将②代入①得,∴R2=2.=4πR2=8π.∴S球16、(5分) 5解析:如图所示,设|ON|=d1,|OP|=d2,则d12+d22=|OM|2=12+()2=3. 在△ONC中,d12=|OC|2-|CN|2=4-|CN|2,∴.同理在△OBP中,.S四边形=S△CAD+S△CAB====.当且仅当d1=d2时取等号,即d1=d2=时取等号.三、解答题( 本大题共 6 题, 共计70 分)17、(10分) 解:由cos(A-C)+cosB=及B=π-(A+C)得cos(A-C)-cos(A+C)=,cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=,.又由b2=ac及正弦定理得sin2B=sinAsinC.故,或(舍去),于是或.又由b2=ac知b≤a或b≤c,所以.18、(12分) 解法一:(Ⅰ)取BC的中点F,连接EF,则EF,从而EF DA.连接AF,则ADEF为平行四边形,从而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC,(Ⅱ)作AG⊥BD,垂足为G,连接CG.由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角.由题设知∠AGC=60°.设AC=2,则.又AB=2,,故.由AB·AD=AG·BD得,解得,故AD=AF.又AD⊥AF,所以四边形ADEF为正方形.因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF. 连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD.连接CH,则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形,,故EH=1,又,所以∠ECH=30°,即B1C与平面BCD所成的角为30°.解法二:(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz,设B(1,0,0),C(0,b,0),D(0,0,c),则B1(1,0,2c),E(,,c).于是=(,,0),=(-1,b,0).由DE⊥平面BCC1知DE⊥BC,·=0,求得b=1,所以AB=AC.(Ⅱ)设平面BCD的法向量=(x,y,z),则·=0,·=0.又=(-1,1,0), =(-1,0,c).故令x=1,则y=1, , =(1,1,).又平面ABD的法向量=(0,1,0).由二面角A-BD-C为60°知,〈〉=60°,故·=||·||·cos60°,求得.于是=(1,1,), =(1,-1,),cos〈,〉=,〈,〉=60°,所以B1C与平面BCD所成的角为30°.19、(12分) 解:(Ⅰ)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3,又a n+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n;于是a n+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{b n}是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ)知等比数列{b n}中b1=3,公比q=2,所以a n+1-2a n=3×2n-1,于是,因此数列{}是首项为,公差为的等差数列,,所以a n=(3n-1)·2n-2.20、(12分) 解:(Ⅰ)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.(Ⅱ)记A表示事件:从甲组抽取的工人中恰有1名女工人,则.(Ⅲ)ξ的可能取值为0,1,2,3.A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.A i与B独立,i=0,1,2.P(ξ=0)=P(A0·)=P(A0)·P()=,P(ξ=1)=P(A0·B+A1·)=P(A0)·P(B)+P(A1)·P()=,P(ξ=3)=P(A2B)=P(A2)·P(B)=,P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=.故ξ的分布列为ξ0 1 2 3PEξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.21、(12分) 解:(Ⅰ)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,c=1.由,得,.(Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(Ⅰ)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(ⅰ)当l不垂直于x轴时,设l的方程为y=k(x-1).C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在C上,即2x12+3y12=6,2x22+3y22=6.故2x1x2+3y1y2+3=0.①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,y1·y2=k2(x1-1)(x2-1)=.代入①解得k2=2,此时,于是y1+y2=k(x1+x2-2)=,即P(,).因此,当时,P(,),l的方程为;当时,P(,),l的方程为.(ⅱ)当l垂直于x轴时,由=(2,0)知,C上不存在点P使成立,综上,C上存在点P(,)使成立,此时l的方程.22、(12分) 解:(Ⅰ)由题设知,函数的定义域是x>-1,,且f′(x)=0有两个不同的根x1,x2,故2x2+2x+a=0的判别式Δ=4-8a>0,即,且,.①又x1>-1,故a>0.因此a的取值范围是(0,).当x变化时,与f′(x)的变化情况如下表:x (-1,x1) x1(x1,x2) x2(x2,+∞) f′(x)+ 0 - 0 +极大值极小值因此在区间(-1,x1)和(x2,+∞)上是增函数,在区间(x1,x2)上是减函数. (Ⅱ)由题设和①知<x2<0,a=-2x2(1+x2),于是f(x2)=x22-2x2(1+x2)ln(1+x2).设函数g(t)=t2-2t(1+t)ln(1+t),则g′(t)=-2(1+2t)ln(1+t).当时,g′(t)=0;当t∈(,0)时,g′(t)>0,故g(t)在区间[,0)上是增函数.于是,当t∈(,0)时,.因此.。
09年高考数学卷(辽宁.理)含详解.doc

2009年普通高等学校招生全国统一考试(辽宁卷)数学(理工农医类)一- 选择题(每小题5分,共60分)分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N= (A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5} 【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B (2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i -【答案】D (3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B (4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++=(C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B (5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A (6)设等比数列{ n a }的前n 项和为n S ,若,若63S S =3 ,则,则 69S S=(A ) 2 (B )73 (C ) 83 (D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 Þ q 3=2 于是63693112471123S q q S q ++++===++【答案】B (7)曲线y= 2x x -在点(1,-1)处的切线方程为)处的切线方程为(A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x xx x ---=--,当x =1时切线斜率为k =-2 【答案】D (8)已知函数()f x =Acos(x w j +)的图象如图所示,2()23f p=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称对称所以f(2π3)=-f(π2)=23【答案】B (9)已知偶函数()f x 在区间[0,)+¥单调增加,则满足(21)f x -<1()3f 的x 取值范围是取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23)【解析】由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(13),再根据f(x)的单调性的单调性 得|2x -1|<13 解得13<x <23【答案】A 10)某店一个月的收入和支出总共记录了)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2009高考数学全国卷及答案理

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
(10 分)
广东工业大学试卷参考答案及评分标准,共 3 页,第 3 页
三.计算题(每小题 10 分,共 5 小题 50 分) 1.解:原式= lim
x 0
x2 y
x 3 y 2 (1 x 2 y 1) y 0
sin( xy ) xy 1 x2 y 1 1
sin( xy )
4分
lim
x 0 y 0
8分
1 2
x 2
10 分
2.解:令 F ( x, y, z) z x yz
Fx z x ln z 2 xyz Fz xz x 1 x 2 y
(4 分) (8 分)
zx
z x ln z 2 xyz xz x 1 x 2 y
(10 分)
3.解: z x f xf u
sin x sin y 1 xf v sin y x cos x
级数 n 2t n 1 的收敛域为: t 1
n 1
原级数
n2 的收敛域为: x 1 n 1 n 1 x
(3 分)
设 s(t ) n2t n1 ,积分得:
n 1
t 0
s(t )dt n 2t n 1dt nt n t nt n 1 t (t n )
t n 1 0 n 1 n 1 n 1
t t t( ) 1 t (1 t ) 2
(6分)
广东工业大学试卷参考答案及评分标准,共 3 页,第 2 页
所以: ) (1 t )3
(8 分)
1 2 1 n x x ( x 1) 原级数 n1 的和函数为: s( ) 1 x ( x 1)3 n 1 x (1 )3 x
e ( e
x
x)
x
[ e e d (e x ) c ] e x
(8 分)
2
ce ( e
x)
代入 y xln2 1 解得: C e 所求特解为: y e(e 四.解:令
x
x 2)
e x
(10 分)
1 n2 t ,则 n1 n2t n1 x n 1 x n 1
0
1
5.解:
4 3
把 y e x 代入方程,有 xe x p( x)e x x ,
解得 p( x) x(e x 1) 于是原方程为: y (e x 1) y 1 通解:为:
(e ye
x
(4 分)
1) dx
[ e
x
( e x 1) dx
c]
广东工业大学试卷参考答案及评分标准 (
课程名称: 考试时间:
1.B 2.A 3.A
)
高等数学 B(2) 年
4.C
。 (第 周 星期 )
月
日
5.C
一、选择题: (每小题 4 分,共 5 小题 20 分) 二.填空题: (每小题 4 分,共 5 小题 20 分)
1. axe b
x
2.收敛 3.4 4.2 f x ( a , b ) 5.30
(10 分)
f x tan x f u x sin yx sin y 1 f v
广东工业大学试卷参考答案及评分标准,共 3 页,第 1 页
4.解:
I dx (2 x y)dy dx ( y 2 x)dy
0 0 0 2x
1
2x
1
2
(4 x 2 4 x 2)dx