第二章 有理数及其运算 海南实验中学单元测试题
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
E测试1 《有理数及其运算》单元测试题(含答案)

第二章《有理数及其运算》单元测试题时间45分钟,满分100分 学号 姓名一、填空题(每小题4分,共32分) 1.如果a,b 都是有理数(a ·b ≠0),那么bbaa +=________. 2.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…… 用你所发现的规律写出32004的末位数字是_______.3.如果|x|=|y|,那么x 与y 的关系是________;如果-|x|=|-x|那么x=_______.4.有一种"二十四点"的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如1,2,3,4可作运算:(1+2+3)×4=24.(注意上述运算与4×(1+2+3)应视作相同方法的运算)现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(1) ,(2) ,(3)___________.另有四个数3,-5,7,-13,可通过运算式(4) 使其结果等于24. 5.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________. 6.要比较两个数a,b 的大小,有时可以通过比较a-b 与0的大小来解决.请你探索解决:(1)如果a-b >0,则a__b;(2)如果a-b=0,则a__b;(3)如果a-b <0,则a__b. 7.若a >0,b <0,则a-b_____0. 8.观察下列各等式,并回答问题:211211-=⨯;3121321-=⨯;4131431-=⨯;5141541-=⨯;…⑴填空:)1(1+n n = (n 是正整数)⑵计算:211⨯+321⨯+431⨯+541⨯+…+200520041⨯= . 二、选择题(每小题5分,共30分)1.离太阳最远的冥王星和海王星是非常寒冷的世界。
第二章有理数及其运算单元测试试卷

七年级数学上册教学质量检测(二) 有理数及其运算(时间45分钟,满分100分)班级:______ 姓名:______ 学号:_______ 组别:______ 姓名:_________一、选择题(每小题4分,共40分)1、-2的相反数是( )A .2B .-2C . 21D . 21- 2、如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作( )A .+3mB .-3mC .+13D .13- 3、根据媒体报道,我国因环境污染造成的巨大经济损失,每年高达68000万元,这个数用科学记数法表示正确的是( )A. 31068⨯元B. 4108.6⨯元C. 51068.0⨯元D. 8108.6⨯元4、算式-3-(-5)+(-2)写成省略括号和的式子,正确的是( )A .253-+-B .253++-C .253---D .253-+5、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( )A.0个B.1个C.2个D.3个6、下列各组的两个数中,运算后结果相等的是( ) A.32和23 B.33-和3)3(- C.22-和2)2(- D. 323-和3)32(- 7、下列各对数中,互为相反数的是 ( )A .)2.5(-+与2.5- B. )2.5(++与2.5-C .)2.5(--与2.5 D.)2.5(-+与()2.5+-8、把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”写成算式是( )A.4)1()3(-=+--B.2)1()3(-=++-C.2)1()3(+=-++D.4)1()3(+=+++9、有理数a 、b 在数轴上的表示如图所示,那么( )A. -b >aB. -a <bC. b >aD. ∣a ∣>∣b ∣10、某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成( )A.4个B.8个C.16个D.32个二、填空题(每题4分,共20分)11.52-的绝对值是 ,相反数是 ,倒数是 . 12.某水库的水位下降1米,记作 -1米,那么 +1.2米表示 .13.比较大小:(填“>” 或“<” )(1) |1|___|1|+---; (2) 31____21--; (3)43-_______54- 14、在332⎪⎭⎫ ⎝⎛-中,指数是 ,底数是 ,幂是 . 15、将下面的四张扑克牌凑成24点,结果所列的式子是 =24.三、解答题(共40分)16、(5分)在数轴上表示下列各数,并比较它们的大小.3,-1.5,213-,0,2.5,-4.17、(16分)计算下列各题(1) 13)18()14(20+---+- (2) (–143) - (+31)-2.25+310(3))24()436583(-⨯+--(4)18.0)35()5(124-+-⨯-÷-18、(6分)某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:(1)最高分和最低分各是多少?(2)求他们的平均成绩。
七年级上册第二章有理数及其运算单元同步测试卷含答案

七年级上册第二章《有理数及其运算》单元检测试题(A)一.选择题(每题3分,共18分)1. 下面的说法错误的是(A ).A .0是最小的整数B .1是最小的正整数C .0是最小的自然数D .自然数就是非负整数2.陕西省元月份某一天的天气预报中,延安市的最低气温为-6℃,西安市的最低气温为2℃,这一天延安市的最低气温比西安市的最低气温低( )A .8℃B .-8℃C .6℃D .2℃3.算式(-343)×4可以化为( )。
A. -3×4-43×4 B. -3×4+3 C. -3×4+43×4 D. -3×3-3 4.下列说法中正确的是( )①同号两数相乘,积必为正 ②1乘以任何有理数都等于这个数本身 ③ 0乘以任何数的积均为0 ④-1乘以任何有理数都等于这个数的相反数A.①②③B. ①②④C. ①②③④D. ①③④5.计算2-(-1)2等于( )A .1B .0C .-1D .36.若n a >0(n 取正偶数),则下列说法正确的是( )A .a 一定是负数B .a 一定是正数C .a 可能是正数也可能是负数D .a 可能是任何数7、a 为有理数,下列说法中,正确的是( )。
.A .(a+12)2是正数B .a 2+12是正数 C .-(a -12)2是负数 D .-a 2+的值不小于128.已知两个有理数的和比其中任何一个加数都小 ,那么一定是 ( )A .这两个有理数同为正数 B. 这两个有理数同为负数C. 这两个有理数异号D. 这两个有理数中有一个为零9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂为两个),且原细菌死亡。
若这种细菌由1个分裂为16个,那么这个过程中要经过( )A.1小时B.2小时C.3小时D.4小时10.四个各不相等的整数a,b,c,d,它们的积9a b c d ⋅⋅⋅=,那么a b c d +++的值为() A.0 B.8 C.-8 D.8±二.填空题(每题3分,共12分)11.52-的绝对值是 ,相反数是 ,倒数是 .12.数轴上点A 表示数-1,若|AB|=3,则点B 所表示的数为__________________。13.若a<0,b<0,│a │<│b │,则a -b________0。
数学七年级上册第二章《有理数及其运算》同步训练 及 答案

第二章《有理数及其运算》同步训练答案一、选择题(本大题共有10个小题,每小题3分,共30分)1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】A10.【答案】A二、填空题(本大题共有6个小题,每小题3分,共18分)11.【答案】>12.【答案】4−−13.【答案】314.【答案】1−15.【答案】-1016.【答案】12− 三、解答题(本大题共有6个小题,共52分)17.解:(1)正数集合:{227,2012,1.99,(6)−−,}; (2)负数集合:{-5,34−,-3.14,|12|−−}; (3)整数集合:{-5,0,2012,(6)−−,|12|−−};(4)分数集合:{ 34− ,-3.14,227,1.99,} 18.解:﹣|412|=﹣412,|﹣3|=3,﹣(﹣5)=5, 用数轴表示为:.故它们的大小关系为﹣6<﹣|412|<﹣122<﹣1<0<|﹣3|<3.5<﹣(﹣5). 19.解:(1)()()()18318315−−−=−+=−;(2)12(18)(7)151218(7)(15)30(22)8−−+−−=++−+−=+−=;20 .(1)解:()()()()111216151810+−+−++−+−30=−,∵300−<,∴仓库里的货品是减少了;(2)解:()27030300−−=(吨),答:6天前仓库里有货品300吨;(3)解:111216151810+−+−++−+−82=(吨),825410⨯=(元);答:要付410元装卸费.21.解:(1)11112 4612⎛⎫−+⨯ ⎪⎝⎭111=121212 4612⨯−⨯+⨯=321−+=2.(2)772(6) 483÷−⨯−78=447⨯+=6.22.解:(1)∵1⊙3=1×4+3=7 3⊙1=3×4+1=13 5⊙4=5×4+4=24 ,a⊙b=4a+b;故答案为4a+b;(2)若a≠b,a⊙b=4a+b,b⊙a=4b+a,∵(4a+b)﹣(4b+a),=3a﹣3b,≠0,∴a ⊙b ≠b ⊙a .故答案为≠;(3)﹣5⊙(4⊙﹣3),=﹣5⊙(4×4﹣3),=﹣5⊙13,=﹣5×4+13,=﹣20+13,=﹣7.23.解:(1)根据题意可得:到终点前,车上有1815312471051129+−+−+−+−=,即29人; 故到终点下车29人.故答案为29;(2)根据图表可知各站之间车上人数分别是: 起点A →站,车上有18人,A 站B →站,车上有1815330+−=人, B 站C →站,车上有3012438+−=人, C 站D →站,车上有3871035+−=人, D 站→终点,车上有3551129+−=人, 易知B 站和C 站之间人数最多.故答案为B ;C ;(3)根据题意可知:起点A →站,车上有18人, A 站B →站,车上有1815330+−=人, B 站C →站,车上有3012438+−=人, C 站D →站,车上有3871035+−=人, D 站→终点,车上有3551129+−=人, 则()18303835291150++++⨯=(元). 答:该车出车一次能收入150元.24.解:(1)点B 向右移动5个单位长度后,点B 表示的数为1; 三个点所表示的数中最小的数是点A ,为1−.(2)点D 到A ,C 两点的距离相等;故点D 为AC 的中点.D 表示的数为:0.5.(3)当点E 在A 、B 之间时,2=EA EB ,从图上可以看出点E 为3−, ∴点E 表示的数为3−;当点E 在点B 的左侧时,根据题意可知点B 是AE 的中点, ∴点E 表示的数是7−.综上:点E 表示的数为3−或7−.。
七年级(上)数学 第二章 有理数及其运算 单元测试 (含答案)

第二章有理数及其运算单元测试一.选择题(共10小题).1.下列运算中正确的个数有()①(﹣5)+5=0,②﹣3+2=﹣1,⑧﹣6÷3×=﹣6,④74﹣22÷70=1A.1个B.2个C.3个D.4个2.下列计算结果为负数的是()A.﹣2﹣(﹣3)B.(﹣3)2C.﹣12D.﹣5×(﹣7)3.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2017+2018b+c2019的值为()A.2017 B.2018 C.2019 D.04.一块长方形菜地,长20米,宽是长的,下面求长方形菜地面积的算式正确的是()A.20×B.20×+20C.20×(20×)D.(20×+20)×25.下列计算中,错误的是()A.﹣62=﹣36 B.C.(﹣4)3=﹣64 D.(﹣1)100+(﹣1)1000=06.计算22×(﹣2)3+|﹣3|的结果是()A.﹣21 B.35 C.﹣35 D.﹣297.随着全球疫情持续蔓延,中国政府在做好国内疫情防控的基础上,尽己所能为国际社会提供支持和帮助,从海关统计的数据上看,2020年3月1日至4月25日,全国共验放出口主要防疫物资价值550亿元,将550亿用科学记数法表示为()A.5.5×1010 B. 5.5×1011 C.5.5×1012 D.5.5×1019 8.|a|+|b|=|a+b|,则a,b关系是()A.a,b的绝对值相等B.a,b异号C.a+b的和是非负数D.a,b同号或其中至少一个为零9.如图,四个有理数在数轴上的对应点分别为点M,P,N,Q,若点P,Q表示的有理数互为相反数,则图中表示绝对值最大的有理数的点是()A.点M B.点P C.点N D.点Q10.定义a*b=3a﹣b,a⊕b=b﹣a2,则下列结论正确的有()个.①3*2=11.②2⊕(﹣1)=﹣5.③(*)⊕(⊕)=﹣.④若a*b=b*a,则a=b.A.1个B.2个C.3个D.4个二.填空题(共8小题).11.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.12.A、B、C、D、E是数轴上的五个点,点A、B、C所表示的数分别为﹣、3、,将数轴沿着点D折叠后,点A与点E重合,此时点C到点E和点B的距离相等,那么点D 所表示的数是.13.如图,化简代数式|a+b|﹣|a﹣1|+|b﹣2|的结果是.14.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=.15.使用科学计算器开机后进行如下按键操作:则输出结果是.16.计算:20212﹣4×1010×1011=.17.若a是最大的负整数,b是绝对值最小的有理数,数c在数轴上对应的点与原点的距离为1,则a+b2+|c|=.18.计算=.三.解答题19.现有15箱苹果,以每箱25kg为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:标准质量的差(单位:kg)﹣2 ﹣﹣1 0 2 2.5 31.5箱数 1 3 2 2 2 4 1(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?20.在单位长度为1的数轴上,点A表示的数为﹣2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.21.已知有理数a、b、c在数轴上的位置如图所示:(1)判断正负,用“>”、“<”或“=”填空:a+b0,a﹣b0,a+b+c0;(2)化简:|a+c|﹣|a+b+c|+|a﹣b|.22.王红有2000元钱,打算存入银行两年,有两种储蓄方式:一种是存两年期的,年利率是2.25%;另一种是先存一年期的,年利率是1.75%,第一年到期后连本带息继续存入一年.两年后,哪种储蓄方式得到的利息多一些?23.计算:(1);(2)4+(﹣2)2×5﹣|﹣2.5÷5|.24.计算(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7;(2);(3);(4).25.发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352;例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(﹣11)=.探究:一个两位数,十位上的数字是m,个位上的数字是n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出计算结果中十位上的数字.参考答案1.B2.C3.D4.C5.D6.D7.A8.D9.A10.B11.﹣412.2或13.314.015.1716.117.018.202019.解:(1)3﹣(﹣2)=5(千克).答:最重的一箱比最轻的一箱重5千克;(2)﹣2+(﹣1.5×3)+(﹣1×2)+0×2+(0×2)+2×2+2.5×4+3×1=8.5(千克).答:与标准质量相比,15箱苹果的总重量共计超过8.5千克;(3)25×15+8.5=383.5(千克)383.5×8=3068(元).答:这15箱苹果全部售出共可获利3068元.20.解:(1)AB=4﹣(﹣2.5)=6.5(2)若把数轴的单位长度扩大30倍⇒点A所表示的数为30×(﹣2.5)=﹣75,点B所表示的数为30×4=120⇒线段AB上靠近A的三等分点所表示的数为+(﹣75)=﹣10,线段AB上靠近B的三等分点所表示的数为120﹣=55∴点M所表示的数为﹣10或55答:(1)AB的长度为6.5(2)点M所表示的数为﹣10或5521.解:(1)根据数轴可知:0<a<1,﹣1<b<0,c<﹣1,且|a|<|b|,则a+b<0,a﹣b>0,a+b+c<0;故答案为:<,>,<.(2)|a+c|﹣|a+b+c|+|a﹣b|=﹣a﹣c+a+b+c+a﹣b=a.22.解:第一种2000×2.25%×2=90(元),第二种2000×1.75%×1=35(元),(2000+35)×1.75%×1≈35.61(元),35+35.61=70.61(元),则90元>70.61元,答:存两年期的得到的利息多一些.23.解:(1)原式=×﹣×=﹣=﹣6;(2)原式=4+4×5﹣|﹣|=4+20﹣0.5=23.5.24.解:(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7=﹣4﹣13﹣5+9+7=﹣22+16=﹣6;(2)=(6+3)+(﹣3.3+3.3)+(6+4)=10+0+10=20;(3)=﹣81×(﹣)××(﹣)=﹣1;(4)=﹣33﹣56+18=﹣71.25.解:尝试:(1)43×11=473;(2)69×11=759;(3)98×(﹣11)=﹣1078;探究:(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是m,m+n,n,验证:这个两位数为10m+n,根据题意得:(10m+n)×11=(10m+n)(10+1)=100m+10(m+n)+n,则若m+n<10,百位、十位、个位上的数字分别是m,m+n,n;(2)若m+n≥10,十位上数字为m+n﹣10.答案为:尝试:(1)473;(2)759;(3)﹣1078.。
初一数学 第二章《有理数及其运算》测试题

初一数学 第二章《有理数及其运算》测试题一、选择题:1、如果一个数的平方与这个数的差等于0,那么这个数只能是( ) A 0B -1C 1D 0或12、两数相加,其和小于每一个加数,那么( ). A 、这两个数相加一定有一个为零. B 、这两个加数一定都是负数.C 、这两个加数的符号一定相同.D 、这两个加数一正一负且负数的绝对值大. 3、底数是-5,指数是2的幂可以表示为( ). A 、-5×2. B 、-52 . C 、(-5)2 D 、2-5 4、在数轴上与-3的距离等于4的点表示的数是( ).A 、1.B 、-7C 、1或-7.D 、无数个.5、某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ). A 、0.8㎏ B 、0.6㎏C 、0.5㎏D 、0.4㎏6、有理数a、b在数轴上的位置如图,那么abba 的值是( ). A 、负数B 、正数C 、0D 、正数或0.7、设a=-3,那么a,-a,a ,-a 的大小关系是( ). A 、a>a 1>-a 1 >-a B 、a>a 1>-a >-a 1C 、a<a 1<- a 1<-aD 、a 1<a<-a <-a1.8、若a+b<0,ab<0,则( ).A 、a>0,b >0.B 、a<0. b<0.C 、a>0,b<0. ∣a∣ >∣b∣D 、a>0,b<0. ∣a∣ <∣b∣ 9.如果|a|-b=0,则a 、b 的关系是( ) A) 互为相反数; B ) a=±b,且b≥0; C )相等且都不小于0; D )a 是b 的绝对值. 10、若(m+1)2+∣n -1∣=0,则m 2007+n2008的值是( )A 、2008B 、-2007C 、1D 、0二、填空:11、有理数-3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,正整数有 个,非负数有 个。
七年级(上)第二章有理数及其运算单元测试

第二章 有理数及其运算单元测试一、选择题(本大题共10小题,共30分):1、在–1,–2,1,2四个数中,最大的一个数是( )(A )–1 (B )–2 (C )1 (D )22、有理数31的相反数是( ) (A )31 (B )31- (C )3 (D ) –3 3、计算|2|-的值是( )(A )–2 (D )21- (C ) 21 (D )2 4、有理数–3的倒数是( )(A )–3 (B )31- (C )3 (D )31 5、计算:(+1)+(–2)等于( )(A )–l (B ) 1 (C )–3 (D )36、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦7.下列各数中互为相反数的是( )A .12-与0.2B .13与-0.33C .-2.25与124D .5与-(-5) 8、一个数的平方等于16,则这个数为( )A 、8B 、-8C 、256D 、8±9.下列计算正确的是( )A 、-34=81B 、-(-6)2=36C 、43232-=- D 、1251)51(3=- 10、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( )A 、0个B 、1个C 、2个D 、3个二、填空题:(本大题共10小题,共30分)11、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。
12、比较大小(填=,>,<号):-2_____0;98- _____109- ;–π________–3.14 13、一个数的倒数等于它的本身,这个数是_____________。
14、 在数轴上,若点A 与表示-2的点相距5个单位, 则点A 表示的数是15、某地某天的最高气温为5℃,最低气温为-3℃,这天的温差是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数及其运算测试题
一、填空题(每小题3分,共30分)
1、如果盈余15万元记作+15万元,那么-3万元表示
2、某地某天的最高气温为5℃,最低气温为-3℃,这天的温差是 ℃。
3、在数轴上与表示-1的点相距4个单位长度的点表示的数是 。
4、观察下列数:-2,-1,2,1,-2,-1……,从左边第一个数算起,第99个数是 。
5、若|a-2|+|b+3|=0,则3a+2b= .
6、水池中的水位在某天8个时间测得的数据记录如下(规定上升为正,单位:cm ):+3、-6、-1、+5、-4、+2、-3、-2,那么这天中水池水位最终的变化情况是 。
7、已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月 日 点。
8、若a<0,b<0,则a-(-b)一定是 (填负数,0或正数)
9、比较大小:76
_6
5
_
,-100 0.01,99a 100a (a<0)
10、写出一个分数,比41_小且比3
1
_大,则这个分数是 。
二、选择题(每小题3分,共30分)
11、如图所示,A 、B 两点所对的数分别为a 、b ,则AB 的距离为( ) A 、a-b
B 、a+b
C 、b-a
D 、-a-b
12、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( ) A 、0个
B 、1个
C 、2个
D 、3个
13、一个数的平方是81,这个数是( ) A 、9
B 、-9
C 、+9
D 、81
14、若b<0,则a+b,a,a -b 的大小关系为( )
A 、a+b>a>a -b
B 、a-b>a>a+b
C 、a>a-b>a+b
D 、a-b>a+b>a 15、如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0
B 、1
C 、-1
D 、1或-1
16、 a ,b ,c 在数轴上的位置如图所示,则a+b+c 为 ( ) A.负数 B.正数 C.非负数 D.非正数 17、下列说法正确的是( )
A .有理数的绝对值为正数
B .只有正数或负数才有相反数
C .如果两数之和为0,则这两个数的绝对值相等
D .如果两个数的绝对值相等,则这两个数之和为0 18、如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0
B 、1
C 、-1
D 、1或-1
19、数6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( ) A 、-5 B 、-4 C 、-3 D 、-1
20、点M 、N 是数轴上的两点,m 、n 分别表示点M 、N 到原点O 的距离.如果
n >m ,那么下列说法中正确的有( ).
① 点M 表示的数比点N 表示的数小; ② 点M 表示的数比点N 表示的数大;③ 点M 、N 表示的数肯定不相等. A 、3个
B 、2个
C 、1个
D 、0个
三、计算题(20题3分,21题4分、 22题5分,共12分)
20、(-2)-(-5)+(-9)-(-7) 21、∣-97∣÷(32-51)-3
1
×(-4)
2
22、求1-2+3-4+5-6+……-2008+2009-2010的值。
四、(本大题9分,24题4分、25题5分)
24、有四个有理数3,4,-6,10,运用“二十四点”游戏规则,写出两种不同的方法的运算式,使其结果等于24。
25、某天,小明和小亮利用温差法测量紫金山一个山峰的高度,小明测得山顶温度为-1.1℃,同时,小亮测得山脚温度是1.6℃,已知该地区高度每增加100m,气温大约降低0.6℃,问这个山峰的高度大约是多少米?
五、(本大题共12分,每小题6分)
26、观察下列算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
……………
按规律填空:
(1)1+3+5+7+9=
(2)1+3+5+ (2005)
(3)1+3+5+…+(2n-1)= 27、小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家。
(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?
(3)小明一共跑了多少千米?
六、(本大题共7分)
28、小红爸爸上星期五买进某公司股票1000股,每股27元,下表为本周内
(1)通过上表你认为星期三收盘时,每股是多少?
(2)本周内每股最高是多少?最低是多少元?
(3)已知小红爸爸买进股票时付了1.5‟的手续费,卖出时还需付成交额,1.5‟的手续费和1‟的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?
中心广场
第二章 有理数及其运算参考答案
一、填空题: 1、亏损3万元 2、8℃
3、-5、3
4、2
5、0
6、下降6cm
7、20、18 8、负数
9、>、<、>
10、24
7
-
(答案不唯一) 二、11、C 12、D 13、C 14、B
15、B
16、D
三、17、1
18、17
19、-22
四、20、3+[10+(4-6)]、(10-4)+[-3×(-6)]等
21、
)(4501006
.0)
1.1(6.1米=⨯--
22、略
五、23、(1)25 (2)10032
24、(1)略
(2)3千米 (3)9千米 六、25、(1)34.5元
(2)35.5元,26元 (3)亏损1095.5元
试题评价
这是一份以七年级《数学》(北师大版)上册第二章《有理数及其运算》为内容的试题,虽然只是一章的内容,但试题的结构、分值分布类似中考的要求来进行的。
具体表现为填空题10题,每题3分;选择题6题,每题2分;解答题6题68分;滿分110分。
这份试题具有这样的特点:
第一.注重基础知识的考查,如:第1、2、6、8、9、11、13、17、18、19、22题,注重基本技能的题目有:第3、4、6、14、20题。
第二.注重考查数学思想有:第23题考查化归思想;第24题考查的是分类思想等等。
第三.有一定量的开放题如:第10题。
第四.运算的分量不是很大。
第五.注重考查知识的应用如:第21、24、25题
当然这份题也有不足之处:如新的题型较少;与社会热点问题的有关问题太少。