利用三角代换法求函数的值域
求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.1 配方分析法如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.例1求函数y=2cos2x+5sinx-4的值域.解原函数可化为当sinx=1时,y max=1;当sinx=-1时,y min=-9,∴原函数的值域是y∈[-9,1].注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.“cosx”,再求已知函数的最值例2求下列函数的最值,并求出相应的x值.y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=3 求反函数法如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.∴原函数的值域是4 应用函数的有界性上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.解由原式可得(3y-1)sinx+(2y-2)cosx=3-y,则上式即为利用函数的有界性有∴原函数的值域是5 部分分式分析法例5求下列函数的值域:当sinx=-1时,y有极小值,y极小=2;∴原函数的值域是(2)原函数化为部分分式为:∴原函数的值域是6 应用平均值定理求最值例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.7 换元法例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为y=1+sinx+cosx+sinxcosx,∴原函数即为8 应用二次函数的判别式求最值9 几何法求函数的最值两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)=-12k2+32k-12.10 应用函数的单调性。
求函数值域(最值)的方法大全

一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,ac b ⎡⎫-+∞⎢,当0a <时的值1. 例1、 例2、 故函数的值域是:[ -∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 例 A 例解:21x x ++222x x x x -=++当2y -=当20y -≠时,x R ∈时,方程根.()()221420y y ∴=+-⨯-≥15y ∴≤≤且2y ≠.∴原函数的值域为[]1,5.例6、求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1)x ∈R ,∴△=4(y+1)2-8y≥0解得:1-2≤y≤1+2但此时的函数的定义域由x (2-x )≥0,得:0≤x≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[1,3]。
可以采取如下方法进一步确定原函数的值域。
4例y 5 、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
三角函数的值域与解析式

三角函数的值域与解析式三角函数是高中数学中的重要概念,它们在几何学和物理学等领域有广泛的应用。
在学习三角函数时,我们需要了解它们的值域和解析式,以便能够正确地运用它们。
本文将重点探讨正弦函数和余弦函数的值域与解析式。
一、正弦函数的值域与解析式正弦函数的解析式为:y = sin(x)正弦函数的值域是[-1, 1],即其取值范围在-1与1之间。
正弦函数的图像是一条连续的波浪线,它在x轴上是周期性的,在y轴上取值介于-1到1之间。
当x为0、π、2π及其整数倍时,正弦函数的值为0;当x为π/2、3π/2及其奇数倍时,正弦函数的值为1或-1;当x为π/4、3π/4及其奇数倍时,正弦函数的值介于0和1之间;当x为5π/4、7π/4及其奇数倍时,正弦函数的值介于-1和0之间。
根据这些特点,我们可以绘制出正弦函数的图像,并正确理解其值域。
二、余弦函数的值域与解析式余弦函数的解析式为:y = cos(x)余弦函数的值域也是[-1, 1],与正弦函数相同。
余弦函数的图像也是一条连续波浪线,但与正弦函数的图像相位差π/2,即余弦函数的图像在x轴上是正弦函数图像向左平移π/2个单位。
余弦函数的值域与正弦函数相同,当x为0、2π、4π及其整数倍时,余弦函数的值为1;当x为π、3π、5π及其奇数倍时,余弦函数的值为-1;当x为π/2、5π/2及其奇数倍时,余弦函数的值介于0和-1之间;当x为3π/2、7π/2及其奇数倍时,余弦函数的值介于-1和0之间。
理解余弦函数的值域有助于正确应用该函数解决问题。
综上所述,正弦函数和余弦函数的值域都是[-1, 1],但在特定的x取值时,它们的值会有所不同。
熟练掌握它们的值域和解析式是理解三角函数的重要一步,为应用三角函数解决实际问题打下基础。
我们可以通过反复练习和实际运用来加深对三角函数值域和解析式的理解,提高数学应用的能力。
常见的三种三角函数值域的求法

常见的三种三角函数值域的求法三角函数是高中数学中常见的一个概念,它是指正弦函数、余弦函数和正切函数,这三个函数在计算中十分常用,下面将详细介绍三种三角函数值域的求法。
一、正弦函数值域的求法正弦函数的值域在[-1, 1]之间。
具体求法如下:1. 代数法:由正弦函数的定义可知,y=sin x,其中-1≤y≤1。
即y 的取值范围为[-1, 1]。
2. 图像法:正弦函数的图像在[-π/2,π/2]内单调递增,且满足y的取值范围为[-1, 1]。
3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的正弦值等于这段弧上点的y坐标。
而当角度为0和π时,y坐标分别为0和1,因此正弦函数的值域为[-1,1]。
二、余弦函数值域的求法余弦函数的值域在[-1,1]之间。
具体求法如下:1. 代数法:由余弦函数的定义可知,y=cos x,其中-1≤y≤1。
即y 的取值范围为[-1, 1]。
2. 图像法:余弦函数的图像在[0,π]内单调递减,且满足y的取值范围为[-1, 1]。
3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的余弦值等于这段弧上点的x坐标。
而当角度为0和π/2时,x坐标分别为1和0,因此余弦函数的值域为[-1,1]。
三、正切函数值域的求法正切函数的值域为实数集。
具体求法如下:1. 代数法:由正切函数的定义可知,y=tan x,其中y可取遍所有实数。
因此,正切函数的值域为实数集。
2. 图像法:正切函数的图像在(π/2n,π/2n+1)(n∈Z)上有无限个垂直渐近线。
这说明正切函数可以取遍所有实数,因此正切函数的值域为实数集。
3. 应用法:正切函数在实际应用中十分重要,比如在三角定位中,我们经常需要根据已知的两条边求第三条边的长度,这时就需要用到正切函数。
正切函数值域为实数集,可以表示所有可能的长度。
综上所述,正弦函数的值域为[-1,1],余弦函数的值域为[-1,1],正切函数的值域为实数集。
值域的表示方法

值域的表示方法值域,数学名词,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
在实数分析中,函数的值域是实数,而在复数域中,值域是复数。
常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为y≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R图像法根据函数图象,观察最高点和最低点的纵坐标。
配方法利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
判别式法判别式法即利用二次函数的判别式求值域。
复合函数法设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
三角代换法利用基本的三角关系式,进行简化求值。
例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦用三角代换法比较简单:做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。
不等式法基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
干货高中数学三角函数代换公式大集锦!

干货高中数学三角函数代换公式大集锦!三角函数一直是高中数学的重难点,也是很多同学的痛点,今天小编给大家送来了专门针对三角函数的代换公式,一定要牢记啊!基本公式公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tanA = sinA/cosA两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB ? cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式 tan2A = 2tanA/(1-tan?? A) Sin2A=2SinA??cosA三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} ? tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式 a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a·sin(a)-b·cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2 1-sin(a) = [sin(a/2)-cos(a/2)]^2其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)。
三角代换求函数最值问题

巧用三角代换求无理函数的最值上海市第五十四中学(邮编200030)裴华明求无理函数的最值问题,是中学数学中常见的问题之一,若用常规方法求解,对于有些题目来说就显得较为繁杂,计算量也较大,但若根据问题的特点巧妙的用三角代换来求解,则可把求无理函数的最值问题转化为求三角函数的最值问题,使问题得已简化,达到事半功倍的效果。
下面就介绍几类可用三角代换法来求无理函数最值的题型,仅供参考。
一、当函数的定义域为 x0, a a 0 时,可设x a sin2,0,2例 1、求函数y 1 x x 的最大值和最小值。
解:∵函数的定义域为则原函数可化为x 0,1 ,∴可设x sin 2,0,2 y sin cos 2 sin4又∵ 0则34424∴2sin1即 1y2 24故当0 或2时,ym i n1当时,ymax24例 2、求函数y3x x1的最值。
解:∵函数的定义域为x0,3,∴设 x3sin 2,0,2则原函数可化为y 3 cos 3 sin1 6 sin14∵ 02则444∴2sin2即31y 3 1 242故当4即0 时,y m a x 3 14当4即2时,ymin314二、 当 函 数 的 定 义 域 为 xa,a a 0 时 , 则 可 设 x a sin ,2 ,2例 3、 求函数 yx 24 x 2 的最大值和最小值。
解:∵函数的定义域为 x2,2 ,∴可设 x 2 sin,2 ,2 则原函数可化为 y2 sin2 2 cos2 2 sin4 2∵则322444∴2 sin1 即4 y 22 224故当 42 即时,ymax2 224当4 即2 时,ymin44三、 当 函 数 的 定 义 域 为 xa, b , 可 设 xa b a cos 2,0,或者设 xa b bacos ,0,222例 4、 求函数 yx 2 21 3x 的最值。
解:∵函数的定义域为 x 2,7 ,∴可设 x2 7 2 cos 22 5 cos 2,0,2则原函数可化为y5 cos15 sin2 5 sin6∵ 02 则3 66∴3sin1即15 y5226故当6 即0 时,ymax56当即 时,ymin15632例 5、 求函数 y8 2x x 23x 的最大值或最小值。
三角函数值域的常见求法

三角函数值域的常见求法
函数值域的求法:
1、配方法:转化为二次函数,利用二次函数的特征来求值。
2、逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围。
3、换元法:通过变量代换转化为能求值域的函数,化归思想。
4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域。
5、基本不等式法:利用平均值不等式公式来求值域。
6、单调性法:函数为单调函数,可根据函数的单调性求值域。
7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。