最新八年级下数学压轴题及答案
【常考压轴题】勾股定理常考压轴题汇总—2023-2024学年八年级数学下册(人教版)(解析版)

勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得:a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠F AB=∠AFG=∠ACB=90°,∴∠F AC+∠BAC=∠F AC+∠ABC=90°,∴∠F AC=∠ABC,在△F AM与△ABN中,,∴△F AM≌△ABN(ASA),∴S△F AM=S△ABN,∴S△ABC=S四边形FNCM,∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=10.5,∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得:AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4=S Rt△ABC+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,则S△BMF+S△MBF=S△BEF,即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,∴S△EMF=S△EF A'=m,∴,∴a m,∴a=∴EF=5a=,∴S正方形EFCH=EF=,故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当P A=PB时,如图:设BP=P A=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【答案】.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.故答案为:.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,P A2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵P A2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠P AC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠F AE=∠F AD+∠DAE=∠F AD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠F AE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。
人教版八年级下册数学期末压轴题专题训练(含答案)

人教版八年级下册数学期末压轴题专题训练1.如图,已知长方形的边AD =8,AB =4,动点M 从点A 出发,以每秒2个单位长度的速度沿A →D →A 的路径匀速运动,同时,动点N 从点C 出发,沿C →B 方向以每秒1个单位长度的速度匀速运动,当其中一个动点到达终点时,另一点也随之停止运动,设运动时间为t 秒.(1)如(图一),当运动时间为1秒时,求MN 的长度;(2)当0≤t ≤4时,直接写出AMN 为直角三角形时的运动时间t 的值; (3)如(图二),当4<t <8时,判断AMN 的形状,并说明理由.2.(1)感知:如图①,在正方形ABCD 中,E 为边AB 上一点(点E 不与点AB 重合),连接DE ,过点A 作AF DE ⊥,交BC 于点F ,证明:DE AF =.(2)探究:如图②,在正方形ABCD 中,E ,F 分别为边AB ,CD 上的点(点E ,F 不与正方形的顶点重合),连接EF ,作EF 的垂线分别交边AD ,BC 于点G ,H ,垂足为O .若E 为AB 中点,1DF =,4AB =,求GH 的长.(3)应用:如图③,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,BF ,AE 相交于点G .若3AB =,图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则ABG 的面积为______,ABG 的周长为______.3.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.4.图1、图2分别是65的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段AB为一边的菱形(非正方形),所画菱形各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形各顶点必须在小正方形的顶点上,且所画等腰三角形的面积为52.5.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.⊥,垂6.如图,在ABCD中,E,F分别为AD,BC的中点,AG BD⊥,CH BD足分别为G,H,连接EG,EH,FG,FH.(1)求证:四边形GEHF是平行四边形;BC=,当BD=______时,GEHF是矩形.(2)若2AB=,37.如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.8.下面是小东设计的“作平行四边形ABCD,使∠B=45°,AB=2cm,BC=3cm”的作图过程.作法:如图,①画∠B=45°;②在∠B的两边上分别截取BA=2cm,BC=3cm.③以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧相交于点D;则四边形ABCD为所求的平行四边形.根据小东设计的作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴四边形ABCD为所求的平行四边形()(填推理的依据).9.如图,已知菱形ABCD中,分别以C、D为圆心,大于1CD的长为半径作弧,两弧2分别相交于M、N两点,直线MN交CD于点F,交对角线AC于点E,连接BE、DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.10.如图,四边形ABCD是一个正方形,E、F分别在AD、DC边上,且DE=CF,AF、BE交于O点,请说出线段AF和BE的关系,并证明你的结论.11.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)在网格中画出平行四边形ABCD;(2)线段AC的长为,CD的长为,AD的长为,△ACD为三角形,平行四边形ABCD的面积为.12.两个不全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图(1),△DEF 沿线段AB 向右平移(D 点在线段AB 内移动),连接DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积;(2)如图(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.13.如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值.14.在正方形ABCD 中,点E 是CD 边上任意一点.连接AE ,过点B 作BF ⊥AE 于F .交AD 于H .(1)如图1,过点D 作DG ⊥AE 于G ,求证:△AFB ≌△DGA ;(2)如图2,点E 为CD 的中点,连接DF ,求证:FH +FE ;(3)如图3,AB =1,连接EH ,点P 为EH 的中点,在点E 从点D 运动到点C 的过程中,点P 随之运动,请直接写出点P 运动的路径长.15.已知如图,四边形ABCD 是平行四边形.(1)尺规作图:作∠ABC 的角平分线交CD 的延长线于E ,交AD 于F (不写作法和证明,但要保留作图痕迹).(2)请在(1)的情况下,求证:DE =DF .16.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,1AC CD ==,求直角边BC 的长.17.如图:正方形ABCD 中,点E 、F 分别在边BC 、CD 上,BE =CF ,连接AE ,BF 交于点O ,点M 为AB 中点,连接OM ,求证:12OM AB =.18.如图,在四边形ABCD 中,90ABD ACD ∠=∠=︒,E ,F 分别是BC 、AD 的中点.(1)若10AD =,求BF 的长; (2)求证:EF BC ⊥.19.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.(1)求证:BG =CE ; (2)求证:CE ⊥BG ; (3)求:∠AME 的度数.20.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE//AB交DF 的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC ,求AB的长.21.如图,△ABC中,∠C=90°.(1)尺规作图:作边BC的垂直平分线,与边BC,AB分别交于点D和点E;(保留作图痕迹,不要求写作法)(2)若点E是边AB的中点,AC=BE,求证:△ACE是等边三角形.22.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,四边形ABCD 是平行四边形.(1)尺规作图(不写作法,保留作图痕迹);作出ABC ∠的角平分线BE ,交AD 于点E ;在线段BC 上截取BF BA =,连接EF ;(2)在(1)所作图中,请判断四边形ABFE 的形状,并说明理由.24.如图,矩形ABCD 中,E 、F 分别为边AD 和BC 上的点,BE =DF ,求证:DE =BF .25.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图①,当点D 在线段BC 上时, ①求证:ABD △≌ACF ; ②ACF ∠的大小=______°;③若8BC =,2CD =,则CF 的长=______;(2)如图②,当点D 在线段BC 的延长线上时,其它条件不变,则CF 、BC 、CD 三条线段之间的关系是:CF =______;其它条件不变:①CF、BC、CD三条线段之间的关系是:CF ______;△的形状,并说明②若连接正方形的对角线AE、DF,交点为O,连接OC,探究AOC理由.26.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.参考答案:1.解:过点N作NR⊥AD于R.∵四边形ABCD是矩形,∴∠C=∠D=∠DRN=90°,∴四边形CDRN是矩形,∴RN=CD=4,CN=DR=1,∵AM=2,AD=8,∴RM=AD-AM-DR=8-2-1=5,∵∠MRN=90°,∴MN=(2)解:当0≤t≤4时,如果AM=BN,则△AMN是直角三角形,∴2t=8-t,∴t=83,当t=4时,点M与D重合,点N位于BC的中点,此时△AMN是等腰直角三角形,综上所述,当△AMN是直角三角形时,t的值为83或4.(3)解:∵当t=4时,△AMN是等腰直角三角形,∵点M的运动速度大于点N的运动速度,且M,N同时到达终点,即点M在点N的右侧,∴当4<t<8时,△AMN是锐角三角形.2.证明:∵四边形ABCD是正方形,∴AD AB =,90DAE ABF ∠=∠=︒,∵AF DE ⊥,∴90DAF BAF ∠+∠=︒,90DAF ADE ∠+∠=︒, ∴ADE BAF ∠=∠,在DAE △和ABF 中,ADE BAF AD AB DAE ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DAE △≌ABF (ASA ),∴DE AF =.探究:解:分别过点A 、D 作AN GH ∥,DM EF ∥,分别交BC 、AB 于点N 、M ,如图②所示:∵四边形ABCD 是正方形,∴AB CD ∥,AB CD =,90DAB B ∠=∠=︒,∴四边形DMEF 是平行四边形,∴1ME DF ==,DM EF =, ∵AN GH ∥,GH EF ⊥,∴DM GH ⊥,同理,四边形AGHN 是平行四边形,∴GH AN =,∵DM EF ∥,GH EF ⊥,∴AN DM ⊥,∴90DAN ADM ∠+∠=︒,∵90DAN BAN ∠+∠=︒,∴ADM BAN ∠=∠,在ADM △和BAN 中,90ADM BAN AD AB DAM ABN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADM △≌BAN (ASA ),∴DM AN =,∴EF GH DM AN ===,∵E 为AB 中点,∴122AE AB ==, ∴211AM AE ME =-=-=,∴DM ==∴GH =应用:解:∵AB =3,∴S 正方形ABCD =3×3=9,∵阴影部分的面积与正方形ABCD 的面积之比为2:3,∴阴影部分的面积为:23×9=6, ∴空白部分的面积为:9﹣6=3,在△ABE 和△BCF 中,90BECF ABE BCF AB BC ,∴△ABE ≌△BCF (SAS ),∴∠BEA =∠BFC ,S △ABG =S 四边形CEGF ,∴S △ABG =12×3=32,∠FBC +∠BEA =90°, ∴∠BGE =90°,∴∠AGB =90°,设AG =a ,BG =b , 则12ab =32, ∴2ab =6,∵a 2+b 2=AB 2=32,∴a 2+2ab +b 2=32+6=15,即(a +b )2=15,而0,a b +>∴a +bBG +AG∴△ABG, 故答案为:323. 3.解:所作图形如图所示:结论:CE =OF .理由:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC ,AD ∥BC ,∵AE ⊥BC ,OF ⊥AD ,∴AE ⊥AD ,∴∠AEC =∠DAE =∠AOD =∠DFO =90°,∴∠EAC +∠DAO =90°,∠FDO +∠DAO =90°,∴∠CAE =∠ODF ,∵OD =2AO ,AC =2AO ,∴AC =OD ,在△AEC 和△DFO 中,AEC DFO CAE ODF AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△DFO (AAS ),∴CE =OF .4.解:所画菱形如图所示;(答案不唯一)(2)解根据勾股定理,AB = 所画等腰三角形的面积为52, ∴作以线段AB 为直角边的等腰直角三角形即可,所画三角形如图所示.5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB CD ∥,OB =OD ,OA =OC ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴12BE OB =,12DF OD =, ∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF(SAS).(2)解:当AC =2AB 时,可使四边形EGCF 为矩形;理由如下:∵△ABE ≌△CDF ,∴∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE CF ∥,∵EA =EG ,OA =OC ,∴EO 是△AGC 的中位线,∴EO GC ∥,∴四边形EGCF 是平行四边形,∵AC =2AB ,AC =2AO ,∴AB =AO ,∵E 是OB 的中点,∴AE ⊥OB ,∴∠OEG =90°,∴平行四边形EGCF 是矩形.6.解:∵AG BD ⊥于G ,∴90AGD ∠=︒.∵在Rt AGD 中,E 为AD 的中点, ∴12EG ED AD ==,同理12HF BF BC ==. ∵在ABCD 中,AD BC =,∴EG FH =.∵在EGD 中,EG ED =,∴EDG EGD ∠=∠,同理在BFH △中,HBF FHB ∠=∠.∵在ABCD 中,AD BC ∥,∴EDG HBF ∠=∠.∴EGD FHB ∠=∠.∴EG FH ∥.又∵EG FH =,∴四边形GEHF 是平行四边形.(2)连接EF ,则EF =AB =CD =2,若四边形GEHF 是矩形,则EF =GH =2,在RtAGD 和Rt ΔCHB 中,41AGD CHB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ΔAGD ≅ΔCHB (AAS ),∴DG =BH ;∴DG -GH =BH -GH ,即BG =DH ,设BG =DH =x ,在Rt △ABG 中,AG 2=AB 2-BG 2=4-x 2,在Rt △AGD 中,AG 2=AD 2-DG 2=9-DG 2=9-(2+x )2,∴4-x 2=9-(2+x )2,解得x =14, ∴BD =BG +GH +HD =14+2+1452= . 7.解:如图1,∵在Rt △ABC 中,∠ACB =90°,∠A =30°,∴∠ABC =60°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =12∠ABC =30°,∴∠ABD =∠A ,∠CDB =90°-∠CBD =60°,∴AD =BD ,又DE ⊥AB ,∴AE =BE =12AB ,又∠ACB =90°,∴CE =12AB =BE ,又∠ABC =60°,∴△BCE 是等边三角形,故答案为:等边三角形,60;(2)解:AD =DQ +DP ,理由为:在线段BD 上截取点H ,使DH =DP ,如图2,∵∠CDB =60°,∴△DPH 为等边三角形,∴DP =PH ,∠DPH =∠DHP =60°,又∠BPQ =60°,∴∠DPQ +∠QPH =∠HPB +∠QPH =60°,∠BHP =120°,∴∠DPQ =∠HPB ,∵∠A =30°,DE ⊥AB ,∴∠QDP =∠A +∠AED =30°+90°=120°,∴∠QDP =∠BHP ,在△PDQ ≌△PHB 中, DPQ HPB PD PHQDP BHP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PDQ ≌△PHB (ASA ),∴DQ =BH ,PQ =PB ,∵AD =BD ,∠BPQ =60°,∴△BPQ 为等边三角形,AD =BD =BH +DH =DQ +DP ,即AD =DQ +DP ;(3)解:①△BPQ 为等边三角形,理由为:延长BD 至F ,使DF =DP ,连接PF ,设DQ 和BP 相交于O ,如图3, ∵∠PDF =∠CDB =60°,∴△PDF 为等边三角形,∴PF =DP ,∠F =∠PDF =∠DPF =60°,∵∠A =30°,DE ⊥AB ,∴∠PDQ =90°-∠A =60°,∴∠F =∠PDQ =60°,∵∠DPF +∠DPB =∠BPQ +∠DPB ,又∠BPQ =60°,∴∠BPF =∠QPD ,在△PBF 和△PQD 中,F PDQ PF DPBPF QPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PBF ≌△PQD (ASA ),∴PB =PQ ,BF =DQ ,又∠BPQ =60°,∴△BPQ 为等边三角形;②∵ DF =DP ,BF =DQ ,AD =BD ,∴DQ =BF =BD +DF =AD +DP ,∵AD =2, AP =x ,DQ =y ,∴y =2+2-x ,即y =-x +4.8.(1)补全图形如下,.(2)∵AB =CD ,CB =AD∴四边形ABCD 为所求的平行四边形(两组对边分别相等的四边形是平行四边形). 故答案为:CD ,AD ,两组对边分别相等的四边形是平行四边形.9.证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴EC =ED ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE =∠ABC ﹣∠EBC =18°.10.解:AF⊥BE,AF=BE,证明如下:证明:∵正方形ABCD∴AB=AD=DC,∠D=∠BAD=90°∵CF=DE∴AE=AD-DE,DF=DC-CF∴AE=DF在△AEB和△AFD中AB=AD, ∠D=∠BAD, AE=DF∴△ABE≌△DAF(SAS)∴∠ABE=∠F AD,AF=BE∵∠BAD=90°∴∠ABE+∠AEB=90°∴∠F AD +∠AEB=90°∴∠AOE=90°,AF⊥BE.∴AF=BE,AF⊥BE.11.解:如图所示:平行四边形ABCD即为所求;(2)解:AC,CD =,5=AD ,∴222AC CD AD += ,∴△ACD 是直角三角形,∴平行四边形ABCD 的面积为122102ACD S=⨯ . 12.解:过点C 作CG AE ⊥,垂足是点G .由题可知,//CF AE ,CF AD BE ==,则四边形CDBF 是梯形.在直角ABC ∆中,90ACB ∠=︒,60A ∠=︒,1AC =,22AB AC ∴==, 在直角ACG ∆中,90CGA ∠=︒,60A ∠=︒,1AC =,30ACG ∴∠=︒,1111222AG AC ==⨯=,CG ∴=.()()111122222CDBF S CE DB CG AD DB CG AB CG ∴=+⋅=+⋅=⋅=⨯=梯形; (2)证明:四边形CDBF 是菱形. 理由如下:在直角ABC ∆中,D 是AB 的中点,AD DB CD ∴==,由(1)CF AD =,CF DB CD ∴==,又//CF AE ,∴四边形CDBF 是平行四边形.CD BD =,∴四边形CDBF 是菱形.13.证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC =.∴AD BC ==(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n==. 14.证明:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°∵DG ⊥AE ,BF ⊥AE∴∠AFB =∠DGA =90°∵∠F AB +∠DAG =90°,∠DAG +∠ADG =90°∴∠BAF =∠ADG在△AFB 和△DGA 中∵AFB DGABAF ADG AB AD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFB≌△DGA(AAS).(2)证明:如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J由题意知∠BAH=∠ADE=90°,AB=AD=CD∵BF⊥AE∴∠AFB=90°∵∠DAE+∠EAB=90°,∠EAB+∠ABH=90°∴∠DAE=∠ABH在△ABH和△DAE中∵BAH ADE AB ADABH DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABH≌△DAE(ASA)∴AH=DE∵点E为CD的中点∴DE=EC=12CD∴AH=DH∴DE=DH∵DJ⊥BJ,DK⊥AE∴∠J=∠DKE=∠KFJ=90°∴四边形DKFJ是矩形∴∠JDK =∠ADC =90°∴∠JDH =∠KDE在△DJH 和△DKE 中∵J DKE JDH KDE DH DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DJH ≌△DKE (AAS )∴DJ =DK ,JH =EK∴四边形DKFJ 是正方形∴FK =FJ =DK =DJ∴DFFJ2FJ =∴FH +FE =FJ ﹣HJ +FK +KE =2FJDF .(3)解:如图3,取AD 的中点Q ,连接PQ ,延长QP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K ,设PT =b由(2)得△ABH ≌△DAE (ASA )∴AH =DE∵∠EDH =90°,点P 为EH 的中点∴PD =12EH =PH =PE∵PK ⊥DH ,PT ⊥DE∴∠PKD=∠KDT=∠PTD=90°∴四边形PTDK是矩形∴PT=DK=b,PK=DT∵PH=PD=PE,PK⊥DH,PT⊥DE ∴PT是△DEH的中位线∴DH=2DK=2b,DE=2DT∴AH=DE=1﹣2b∴PK=12DE=12﹣b,QK=DQ﹣DK=12﹣b∴PK=QK∵∠PKQ=90°∴△PKQ是等腰直角三角形∴∠KQP=45°∴点P在线段QR上运动,△DQR是等腰直角三角形∴QR DQ∴点P.15.解:(1)尺规作图如下:(2)四边形ABCD是平行四边形,,AB CE AD BC∴,,ABE E CBE DFE∴∠=∠∠=∠,BE平分ABC∠,ABE CBE∴∠=∠,E DFE ∴∠=∠,DE DF ∴=.16.解:在Rt △ABC 中,CD 是斜边AB 上的中线, ∴AB =2CD =2,由勾股定理得,BC . 17.证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,又BE =CF ,∴△ABE ≌△BCF (SAS ).∴∠BAE =∠CBF .∵∠ABO +∠CBF =90°,∴∠ABO +∠BAO =90°,即∠AOB =90°. 在Rt △ABO 中,M 点是斜边AB 中点, ∴12OM AB =. 18.(1) 解: 90ABD ∠=︒, F 为AD 的中点,10,AD = 1 5.2BFAD (2) 证明:如图,连接,CF90ABD ACD ∠=∠=︒, F 是AD 的中点,11,,22CF AD BF AD ,CF BF ∴=E 是BC 的中点,.EF BC19.解:证明:在正方形ABDE 和ACFG 中,AB AE =,AC AG =,90BAE CAG ∠=∠=︒, BAE BAC CAG BAC ∴∠+∠=∠+∠,即CAE BAG ∠=∠,在ABG ∆和AEC ∆中,{AB AECAE BAG AC AG=∠=∠=,()ABG AEC SAS ∴∆≅∆,BG CE ∴=;(2)解:证明:设BG 、CE 相交于点N ,ABG AEC ∆≅∆,ACE AGB ∴∠=∠,9090180NCF NGF ACF AGF ∠+∠=∠+∠=︒+︒=︒,360()360(18090)90CNG NCF NGF F ∴∠=︒-∠+∠+∠=︒-︒+︒=︒, BG CE ∴⊥;(3)解:过A 作BG,CE 的垂线段交于点P ,Q ,ABG AEC ∆≅∆,,ABP AEQ AB AE ∴∠=∠=,90APB AQE ∠=∠=︒,()ΔΔABP AEQ AAS ∴≅,∴=AP AQ ,AM ∴是角平分线,45AMC ∴∠=︒,135AME .20.证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G ,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵AC=∴CG=AG=1,∵∠B=30°,∴12CG BC=,∴2BC=,在Rt△BCG中,BG==,∴1AB AG BG=+=.21.解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB=90°,点E是边AB的中点,∴AE=BE=CE=12 AB,∵AC=BE,∴AC=AE=CE,∴△ACE是等边三角形.22.证明:E是AD的中点,AE DE∴=,//AF BC∴,FAE BDE∴∠=∠,AFE DBE∠=∠.在AFE∆和DBE∆中,FAE BDEAFE DBE AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆,AF BD ∴=.AF DC =,BD DC ∴=.即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:AF DC =,//AF DC ,∴四边形ADCF 是平行四边形,AB AC =,BD DC =,AD BC ∴⊥即90ADC ∠=︒,∴平行四边形ADCF 是矩形.23.(1)如图所示,BE 就是所求的ABC ∠的角平分线.BF BA =,(2)四边形ABFE 为菱形.理由如下:∵BE 是ABC ∠的平分线,∴∠ABE =∠FBE∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠EBF ,∴∠ABE =∠AEB∴AB =AE∵BF BA =∴AE =BF∴四边形ABFE 为平行四边形,∵BF BA =,∴四边形ABFE 为菱形.24.证明:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠D =90°,在Rt △ABE 和Rt △CDF 中,BE CF AB CD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴DE =BF .25.(1)①证明:∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∵90BAC ∠=︒,∴BAD CAF ∠=∠,在ABD △和ACF 中,{AB ACBAD CAF AD AF=∠=∠=,∴ABD △≌ACF (SAS ).②∵ABD △≌ACF ,∴ABD ACF ∠=∠,∵90BAC ∠=︒,AB AC =,∴45ABD ACB ∠=∠=︒,∴45ACF ∠=︒.故答案为:45.③∵ABD △≌ACF ,∴=CF BD ,∵826BD BC CD =-=-=.∴CF =6,故答案为:6.(2)(2)CF BC CD =+,由(1)同理可证ABD △≌ACF 得:CF BD BC CD ==+. 故答案为:BC CD +.(3)(3)①由(1)同理可证ABD △≌ACF 得:CF BD CD BC ==-. 故答案为:CD BC -.②AOC △为等腰三角形,理由如下:∵90BAC ∠=︒,AB AC =,∴18045135ABD ∠=︒-︒=︒,∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∴BAD CAF ∠=∠,同理可证BAD ≌CAF ,∴135ACF ABD ∠=∠=︒,∴90FCD ACF ACB ∠=∠-∠=︒,∴FCD 为直角三角形,∵正方形ADEF 中,O 为DF 的中点, ∴12OC DF =,12OA AE =,AE DF =, ∴OC OA =,∴AOC △是等腰三角形.26.证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD//BC,∴∠DAE=∠E,∵CE=BC,∴CE=AD,又∵∠AOD=∠COE,∴△AOD≌△EOC(AAS),∴CO=DO;(2)解:当CO=EO,∠COE=90°时,四边形AOCF是正方形;理由如下:∵CO=DO,∴CO=1CD,2又∵F是AB的中点,∴AF=1AB,2∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴AF=CO,AF//CO,∴四边形AFCO是平行四边形,∵△AOD≌△EOC,∴AO=EO,∵CO=EO,∴AO=CO,∴平行四边形AFCO是菱形,∵∠COE=90°,∴菱形AFCO是正方形.。
填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。
最新北师大版八年级下册数学期末复习压轴题练习试题以及答案

最新北师大版八年级下册数学期末复习压轴题练习试题以及答案八年级下册数学期末压轴题1.在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.1) 证明四边形ABCD是平行四边形;2) 若AB=3cm,BC=5cm,AE=1/3 AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,使△BEP为等腰三角形?2.△XXX的XXX在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与XXX重合,且DF=EF.1) 观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;2) 将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△XXX能否通过旋转重合?请证明你的猜想.3.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.1) 观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;2) 当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;3) 当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)4.图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.1) 操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连结AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;2) 操作:若将图1中的△C′DE绕点C按顺时针方向任意旋转一个角度,连结AD,BE,如图3;在图3中,线段BE 与AD之间具有怎样的大小关系?证明你的结论;3) 根据上面的操作过程,请你猜想当为多少度时,线段AD的长度最大?是多少?当为多少度时,线段AD的长度最小?是多少?(不要求证明)之间的数量关系,并说明理由;2)证明你所得到的猜想;3)若平行四边形ABCD的周长为20且a+b+c+d=10求平行四边形ABCD的面积.5、在△ACB和△AED中,已知AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE。
初二数学压轴试题及答案

初二数学压轴试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = a(x - h)^2 + kC. y = a(x - h) + kD. y = ax + b答案:A2. 如果一个角是直角三角形的内角,那么这个角的大小可能是:A. 0°B. 90°C. 180°D. 45°答案:B3. 在平面直角坐标系中,点(3,-4)关于x轴的对称点坐标是:A. (3, 4)B. (-3, -4)C. (-3, 4)D. (3, -4)答案:A4. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 2答案:A5. 一个数的绝对值是它本身的数是:A. 0B. 正数C. 负数D. 所有实数答案:B6. 一个数的平方是它本身的数是:A. 0B. 1C. -1D. 所有实数答案:A, B7. 一个数的立方是它本身的数是:A. 0B. 1C. -1D. 所有实数答案:A, B, C8. 下列哪个选项是不等式的解集?A. x > 5B. x < 5C. x = 5D. x ≠ 5答案:A, B, D9. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 所有实数答案:A, B, C10. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 所有实数答案:A, B二、填空题(每题4分,共20分)11. 一个数的平方是25,那么这个数是______。
答案:±512. 一个数的立方是-8,那么这个数是______。
答案:-213. 一个数的绝对值是5,那么这个数是______。
答案:±514. 一个数的相反数是-3,那么这个数是______。
答案:315. 如果一个角是直角三角形的内角,且这个角的余角是30°,那么这个角的大小是______。
期中选择填空必刷(压轴18考点53题)—2023-2024学年八年级数学下册(人教版)(解析版)

期中选择填空必刷(压轴18考点53题)一.二次根式有意义的条件(共2小题)1.已知a、b满足,则=( )A.4B.8C.2024D.4048【答案】A【解答】解:∵a、b满足,∴,∴c=2025,∴|2023﹣a|+(2024﹣b)=0,∴2023﹣a=0,2024﹣b=0,∴a=2023,b=2024,则===4,故选:A.2.若|2017﹣m|+=m,则m﹣20172= .【答案】见试题解答内容z【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:2018.二.二次根式的性质与化简(共6小题)3.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)( )A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.z4.实数a,b表示的点在数轴上的位置如图,则将化简的结果是( )A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.z故选:A . 5.已知T 1===,T 2===,T 3===,…T n =,其中n 为正整数.设S n =T 1+T 2+T 3+…+T n ,则S 2021值是( ) A .2021 B .2022 C .2021D .2022【答案】A【解答】解:由T 1、T 2、T 3…的规律可得, T 1==1+(1﹣), T 2==1+(﹣), T 3==1+(﹣),…… T 2021==1+(﹣),所以S 2021=T 1+T 2+T 3+…+T 2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+ =2021,故选:A . 6.化简﹣a 的结果是( ) A .﹣2aB .﹣2aC .0D .2a【答案】Cz【解答】解:﹣a=﹣a ﹣a 2•=﹣a +a=0. 故选:C .7.已知实数a ,b 在数轴上的位置如图所示,则=( )A .2b ﹣2aB .﹣2aC .﹣2b ﹣2aD .2a【答案】D【解答】解:观察数轴可知:a <0,b >0,|b |>|a |, ∴a +b >0,a ﹣b <0, ∴=a +b ﹣(b ﹣a ) =a +b ﹣b +a =2a , 故选:D .8.实数a 在数轴上的位置如图所示,化简:|a ﹣2|+= 1 .【答案】1.【解答】解:由数轴可知:a ﹣2<0,a ﹣1>0, 原式=|a ﹣2|+=|a ﹣2|+|a ﹣1|=﹣(a ﹣2)+(a ﹣1) =﹣a +2+a ﹣1 =1,故答案为:1.9.已知a为实数,且与都是整数,则a的值是 .【答案】见试题解答内容【解答】解:∵是正整数,∴a是含有﹣2的代数式;∵是整数,∴化简后为含有2的代数式,∴a=或.故答案为:或.10.利用平方与开平方互为逆运算的关系,可以将某些无理数进行如下操作:当a=+1时,移项得a﹣1=,两边平方得,所以a2﹣2a+1=3,即得到整系数方程:a2﹣2a﹣2=0.仿照上述操作方法,完成下面的问题:当a=时,(1)得到的整系数方程为;(2)计算:a3﹣2a+2024= .【答案】(1)a2+a﹣1=0;z(2)2023.【解答】解:(1)∵a=,∴2a+1=,∴(2a+1)2=5,即4a2+4a+1=5,∴a2+a﹣1=0;故答案为:a2+a﹣1=0;(2)∵a2+a﹣1=0,∴a2=﹣a+1,∴a3=a(﹣a+1)=﹣a2+a=﹣(﹣a+1)+a=2a﹣1,∴a3﹣2a+2024=2a﹣1﹣2a+2024=2023.故答案为:2023.11.因为,所以,的整数部分为2,小数部分为;设的小数部分为x,的整数部分为y,则= .【答案】6.【解答】解:∵,∴得小数部分为,∴的小数部分为,即∵,∴的整数部分为3,即:y=3,∴,故答案为:6.五.二次根式的应用(共1小题)12.已知三角形的三边长分别为a、b、c,求其面积.对此问题,中外数学家曾经进行过深入研究.古希腊几何学家海伦(Heron,约公元50年),给出了求其面积的海伦公式:S=,其中p=.①我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式:zS=.②若一个三角形的三边长依次为,,,请选用适当的公式求出这个三角形的面积为( )A.B.C.D.【答案】B【解答】解:S==,故选:B.六.勾股定理(共8小题)13.如图,网格中的每个小正方形的边长为1,△ABC的顶点A、B、C均在网格的格点上,BD⊥AC于点D,则BD的长为( )zA .B .C .D .【答案】C【解答】解:如图所示:S △ABC =×BC ×AE =×BD ×AC , ∵AE =2,AC =,BC =2,即×2×2=××BD ,解得:BD =.故选:C .14.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4.分别以AB 、AC 、BC 为边在AB的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1+S 2+S 3+S 4等于( )A .16B .18C .20D .22【答案】B【解答】解:连接PF ,过点F 作FD ⊥AM 于点D ,z∵AB =EB ,∠ACB =∠ENB =90°, 而∠CBA +∠CBE =∠EBN +∠CBE =90°, ∴∠CBA =∠EBN , ∴△CBA ≌△NBE (AAS ), 故S 4=S △ABC ;又∵F A =AB ,∠FDA =∠ACB =90°, 而∠F AD +∠CAB =∠CAB +∠ABC =90°, ∴∠F AD =∠ABC , ∴△F AD ≌△ABC (AAS ), 同理可证△ACT ≌△FDK , ∴S 2=S △FDA =S △ABC ,同理可证△TPF ≌△KME ,△AQF ≌△ABC ,∴S 1+S 3=S △ADF =S △ABC ,综上所证:S 1+S 2+S 3+S 4=3S △ABC =3×=18.故选:B .15.如图,已知Rt △ABC 中,∠ACB =90°.AC =3,BC =4.以AB 、BC 、AC 为直径作半圆围成两月形,则阴影部分的面积为( )A .5B .6C .7D .8【答案】B【解答】解:∵∠ACB =90°, ∴AB 2=AC 2+CB 2,zS阴影=直径为AC 的半圆的面积+直径为BC 的半圆的面积+S △ABC ﹣直径为AB 的半圆的面积, =π×+π×+AC ×CB ﹣π×()2=π(AC 2+BC 2﹣AB 2)+AC ×BC =×3×4 =6. 故选:B .16.如图,在△ABC 中,∠ABC =90°,BC =4,AB =8,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当∠CBP =∠BAD 时,线段CD 的最小值是( )A .B .2C .D .【答案】D【解答】解:∵∠ABC =90°, ∴∠ABP +∠CBP =90°, ∵∠CBP =∠BAD , ∴∠ABD +∠BAD =90°, ∴∠ADB =90°,取AB 的中点E ,连接DE ,CE ,z∴DE =AB =4, ∴EC =EB =4,∵CD ≥CE ﹣DE , ∴CD 的最小值为4﹣4,故选:D .17.图1叫做一个基本的“勾股树”,也叫做第一代勾股树.让图1中两个小正方形各自长出一个新的勾股树(如图2),叫做第二代勾股树.从第二代勾股树出发,又可以长出第三代勾股树(如图3).这样一生二、二生四、四生八,继续生长下去,则第四代勾股树图形中正方形的个数为 .【答案】31.【解答】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),∴第四代勾股树图形中正方形的个数有1+2+22+23+24=31(个). 故答案为:31.18.如图,在△ABC 中,∠ACB =90°,AC =9,BC =5,点P 为△ABC 内一动点.过点P 作PD ⊥AC 于点D ,交AB 于点E .若△BCP 为等腰三角形,且S △PBC =,则PD 的长为 .【答案】1或.【解答】解:∵S,∴CD=3,∴AD=AC﹣CD=6,∵∠ACB=90°,PD⊥AC,∴DE∥BC,∴△ADE∽△ACB,∴,∴,∴DE=,过点P作PF⊥BC于点F,①当PB=BC时,如图,z∴PF=CD=3,PB=BC=5,在Rt△PBF中,BF==4,∴DP=CF=BC﹣BF=1,∵DP<DE,∴点P在线段DE上,符合题意;②当PC=PB时,如图,∴DP=CF=,∵DP<DE,∴点P在线段DE上,符合题意;③当PC=BC时,如图,∴PF=CD=3,PC=BC=5,在Rt△CDP中,DP==4,∵DP>DE,∴点P不在线段DE上,舍去,综上,PD的长为1或,故答案为:1或.19.如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方z形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是.【答案】.【解答】解:如图,∵四边形ABGF是正方形,∴∠F AB=∠AFG=∠ACB=90°,∴∠F AC+∠BAC=∠F AC+∠ABC=90°,∴∠F AC=∠ABC,∴△F AH≌△ABN(ASA),∴S△F AH=S△ABN,∴S△ABC=S四边形FNCH,在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=7,∴(AC+BC)2=AC2+BC2+2AC•BC=49,∴AB2+2AC•BC=49,z∵AB2﹣S△ABC=16,∴AB2﹣AC•BC=16,∴BC•AC=,AB2=,∴AC2+BC2=,∴阴影部分的面积和=AC2+BC2+2S△ABC﹣S白=+2××﹣16=.故答案为:.20.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4= .z【答案】2.5.【解答】解:∵△ABD 、△ACE 、△BCF 均是等腰直角三角形, ∴AB =BD ,AC =CE ,BC =CF ,设AB =BD =a ,AC =CE =b ,BC =CF =c ,S △ABG =m ,S △ACH =n , ∵a 2+b 2=c 2,∴S △ABD +S △ACE =S △BCF , ∴S 1+m +n +S 4=S 2+S 3+m +n , ∴S 4=3.5+5.5﹣6.5=2.5 故答案为:2.5.七.勾股定理的证明(共6小题)21.如图,四个全等的直角三角形拼成“赵爽弦图”,其中四边形ABCD 与四边形EFGH 都是正方形.连结DG 并延长,交BC 于点P ,点P 为BC 的中点.若EF =2,则AE 的长为( )A .4B .C .D .【答案】C【解答】解:由题意,EF =HG =FG =2,AD ∥BC ,BG ⊥HC ,DH ⊥HG ,∠ADE =∠GBP ,z∴∠ADG =∠GPC . ∵点P 为BC 的中点, ∴PB =PG =PC .∴∠BGP =∠GBP ,∠GPC =2∠GBP .∴∠GPC ﹣∠ADE =2∠GBP ﹣∠ADE ,即∠GDH =∠GBP . ∴△GDH ∽△CBG . ∴=,即=.设AE =BF =HD =x , ∴=.∴x =1+或x =1﹣(舍去).故选:C .22.如图,在四边形ABDE 中,AB ∥DE ,AB ⊥BD ,点C 是边BD 上一点,BC =DE =a ,CD =AB =b ,AC =CE =c .下列结论:①△ABC ≌△CDE ;②∠ACE =90°;③ab ;④该图可以验证勾股定理.其中正确的结论个数是( )A .4B .3C .2D .1【答案】A【解答】解:在△ABC 和△CDE 中,,∴△ABC ≌△CDE (SSS ), 故①正确; ∵△ABC ≌△CDE , ∴∠BAC =∠DCE , ∵AB ⊥BD , ∴∠B =90°,∴∠BAC +∠ACB =90°,z∴∠ACB +∠DCE =90°, ∴∠ACE =90°, 故②正确;∵AB ∥DE ,AB ⊥BD ,∠ACE =90°, ∴S 四边形ABDE =(a +b )(a +b )=(a +b )2, S △ACE =c 2, S △ABC =S △CDE =ab , ∴ab ,故③正确; ∵ab ,整理,得a 2+b 2=c 2, 故④正确.正确的结论①②③④. 故选:A .23.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S 1,右图中空白部分的面积为S 2,则下列表示S 1,S 2的等式成立的是( )A .S 1=a 2+b 2+2abB .S 1=a 2+b 2+abC .S 2=c 2D .S 2=c 2+ab【答案】B【解答】解:观察图象可知:S 1=S 2=a 2+b 2+ab =c 2+ab , 故选:B .z24.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是( )A .76B .57C .38D .19【答案】A【解答】解:设AC =AD =x ,则BD =30﹣5﹣2x =25﹣2x , ∵BD 2=BC 2+CD 2,∴52+(2x )2=(25﹣2x )2, ∴x =6,∴BD =25﹣2x =13,AD =6,∴这个风车的外围周长是:(13+6)×4=76. 故选:A .25.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC =90°,AB =3,AC =4,点D 、E 、F 、G 、H 、I 都在矩形KLMJ 的边上,则矩形的边LM 的长为( )A .10B .11C .110D .121【答案】B【解答】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P , 则四边形OALP 是矩形.z∵∠CBF =90°, ∴∠ABC +∠OBF =90°,又∵直角△ABC 中,∠ABC +∠ACB =90°, ∴∠OBF =∠ACB , 在△OBF 和△ACB 中,,∴△OBF ≌△ACB (AAS ), ∴AC =OB ,同理:△ACB ≌△PGC , ∴PC =AB , ∴OA =AP ,∴矩形AOLP 是正方形, 边长AO =AB +AC =3+4=7, ∴LM =4+7=11, 故选:B .26.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为25,小正方形的面积为4,若x ,y 表示直角三角形的两直角边长(x >y ),给出下列四个结论:①x 2+y 2=25;②x ﹣y =2;③2xy =21;④x +y =7.其中正确的结论有 .【答案】①②③.z【解答】解:给图形注上字母如下:①∵△ABC 为直角三角形, ∴根据勾股定理:x 2+y 2=AB 2=25, 故选项①正确; ②由图可知,x ﹣y =CE ==2,故选项②正确;③由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为4××xy +4=25, 即2xy =21; 故选项③正确; ④由2xy =21①, 又∵x 2+y 2=25②,∴①+②得,x 2+2xy +y 2=25+21, 整理得,(x +y )2=46, x +y =≠7,故选项④错误. ∴正确结论有①②③. 故答案为:①②③.八.勾股定理的应用(共3小题)27.如图,高速公路上有A 、B 两点相距10km ,C 、D 为两村庄,已知DA =4km ,CB =6km .DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个服务站E ,使得C 、D 两村庄到E 站的距离相等,则EA 的长是( )km .zA .4B .5C .6D .【答案】C【解答】解:设BE =x ,则AE =(10﹣x )km , 由勾股定理得: 在Rt △ADE 中,DE 2=AD 2+AE 2=42+(10﹣x )2, 在Rt △BCE 中, CE 2=BC 2+BE 2=62+x 2, 由题意可知:DE =CE , 所以:62+x 2=42+(10﹣x )2, 解得:x =4km . 所以,EB 的长是4km . 所以,EA =10﹣4=6(km ). 故选:C .28.如图,Rt △ABC 中,∠ABC =90°,AB =8,D 在BC 边上,且BD =2,P 为三角形内一点,满足AP ⊥BP ,直线DP 交AC 于点E ,当AE 最大时,AP 的长是( )A .B .C .D .6z【答案】C【解答】解:∵P 为三角形内一点,满足AP ⊥BP , ∴P 为动点,∠APB 始终为直角,∴点P 在以AB 为直径的圆上,取AB 的中点O ,连接OP 和OD , 当AE 最大时,线段DP 与⊙O 相切, ∵∠ABC =90°,OP =OD ,∴BD =PD ,∠BDP =∠BOP =180°, ∵∠AOP +∠BOP =180°, ∴∠BDP =∠AOP , ∵BD =2,AB =8,∴BD =PD =2,OA =OP =4, ∴△DBP ~△OAP ,∴PD :OP =BP :AP =2:4, ∴AP =2BP ,在Rt △ABP 中,BP 2+AP 2=AB 2, ∴BP 2+(2BP )2=AB 2, 解得:BP =, ∴AP =2BP =.故选:C .29.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),可以计算出两图孔中心B 和C 的距离为( )mm .zA .120B .135C .30D .150【答案】D【解答】解:如图,在Rt △ABC 中,AC =180﹣60=120(mm ),AB =150﹣60=90(mm ), ∴BC ==150(mm ), ∴两圆孔中心B 和C 的距离为150mm . 故选:D .九.平面展开-最短路径问题(共1小题)30.如图,长方体的高为9dm ,底面是边长为6dm 的正方形.一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10dmB .12dmC .15dmD .20dm【答案】C【解答】解:①如图,将长方体的正面和上面展开在同一平面内,AD =6,BD =6+9=15, AB ==(dm );z②如图,将长方体的正面和右面展开在同一平面内,AC =6+6=12,BC =9, AB ==15(dm ),③将长方体的正面和左面展开在同一平面内,同理可得AB ==15(dm ),由于15<3,所以蚂蚁爬行的最短路程为15dm . 故选:C .十.三角形中位线定理(共1小题)31.如图,△ABC 中,∠A =60°,AC >AB >6,点D ,E 分别在边AB ,AC 上,且BD =CE =6,连接DE ,点M 是DE 的中点,点N 是BC 的中点,线段MN 的长为 .【答案】3.【解答】解:如图,作CH ∥AB ,连接DN ,延长DN 交CH 于H ,连接EH ,作CJ ⊥EH 于J .∵BD ∥CH , ∴∠B =∠NCH ,∵BN =CN ,∠DNB =∠KNC , ∵△DNB ≌△HNC (ASA ), ∴BD =CH ,DN =NH ,z∴EC =CH =6,∵∠A +∠ACH =180°,∠A =60°, ∴∠ECH =120°, ∵CJ ⊥EH ,∴EJ =JH =EC •cos30°=3,∴EH =2EJ =6,∵DM =ME ,DN =NH , ∴MN =EH =3.故答案为:3.十一.平行四边形的性质(共2小题)32.如图,▱ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,,连接OE ,下列结论:①∠CAD =30°;②S ▱ABCD =AB •AC ;③OB =AB ;④;⑤∠AEO =60°.其中成立的个数是( )A .1个B .2个C .3个D .4个【答案】D【解答】解:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠DAE =∠BEA , ∵AE 平分∠BAD , ∴∠DAE =∠BAE , ∴∠BEA =∠BAE , ∴AB =EB ,∵∠ABE =∠ADC =60°, ∴△ABE 是等边三角形,∵AB=BC,∴BE=BC,∴BE=CE=AE,∴∠EAC=∠ECA,∴∠AEB=∠EAC+∠ECA=2∠ECA=60°,∴∠ECA=30°,∴∠CAD=∠ECA=30°,故①正确;∵∠EAC=∠ECA=30°,∠BAE=60°,∴∠BAC=∠EAC+∠BAE=30°+60°=90°,∴AC⊥AB,∴S▱ABCD=AB•AC,故②正确;AB⊥OA,∴OB>AB,∴OB≠AB,z故③错误;∵∠CAD=30°,∠AEB=60°,AD//BC,∴∠EAC=∠ACE=30°,∴AE=CE,∴BE=CE,∵OA=OC,∴OE=AB=BC,故④正确;∵△ABE是等边三角形,∴∠AEB=60°,∴∠AEC=120°,∵CE=AE,OA=OC,z∴∠AEO =∠CEO =∠AEC =60°, 故⑤正确. 故选:D .33.如图,▱ABCD 中,AB =22cm ,BC =8cm ,∠A =45°,动点E 从A 出发,以2cm /s的速度沿AB 向点B 运动,动点F 从点C 出发,以1cm /s 的速度沿着CD 向D 运动,当点E 到达点B 时,两个点同时停止.则EF 的长为10cm 时点E 的运动时间是( )A .6sB .6s 或10sC .8sD .8s 或12s【答案】C【解答】解:在▱ABCD 中,CD =AB =22cm ,AD =BC =8cm ,如图,过点D 作DG ⊥AB 于点G , ∵∠A =45°,∴△ADG 是等腰直角三角形, ∴AG =DG =AD =8,过点F 作FH ⊥AB 于点H , 得矩形DGHF ,∴DG =FH =8cm ,DF =GH , ∵EF =10cm , ∴EH ==6cm ,由题意可知:AE =2t cm ,CF =t cm ,∴GE =AE =AG =(2t ﹣8)cm ,DF =CD ﹣CF =(22﹣t )cm , ∴GH =GE +EH =(2t ﹣8)+6=(2t ﹣2)cm , ∴2t ﹣2=22﹣t , 解得t =8,当F 点在E 点左侧时,z由题意可知:AE =2t cm ,CF =t cm ,∴GE =AE ﹣AG =(2t ﹣8)cm ,DF =CD ﹣CF =(22﹣t )cm , ∴GH =GE ﹣EH =(2t ﹣8)﹣6=(2t ﹣14)cm , ∴2t ﹣14=22﹣t , 解得t =12,∵点E 到达点B 时,两点同时停止运动, ∴2t ≤22,解得t ≤11. ∴t =12不符合题意,舍去,∴EF 的长为10cm 时点E 的运动时间是8s , 故选:C .十二.平行四边形的判定与性质(共1小题)34.如图,已知△ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD =1,以AD 为边作等边△ADE ,过点E 作EF ∥BC ,交AC 于点F ,连接BF ,则下列结论中①△ABD ≌△BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF =;④S △AEF =.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解答】解:连接EC ,作CH ⊥EF 于H . ∵△ABC ,△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠ABC =∠ACB =60°, ∴∠BAD =∠CAE , ∴△BAD ≌△CAE ,z∴BD =EC =1,∠ACE =∠ABD =60°, ∵EF ∥BC ,∴∠EFC =∠ACB =60°, ∴△EFC 是等边三角形,CH =,∴EF =EC =BD ,∵EF ∥BD ,∴四边形BDEF 是平行四边形,故②正确, ∵BD =CF =1,BA =BC ,∠ABD =∠BCF , ∴△ABD ≌△BCF ,故①正确, ∵S 平行四边形BDEF =BD •CH =,故③正确,∵CD =2BD ,AF =2CF . ∴S △AEF =S △AEC =•S △ABD =, 故④错误, 故选:C .十三.菱形的性质(共2小题)35.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,OH =4,若菱形ABCD 的面积为32,则CD 的长为( )A .4B .4C .8D .8【答案】Cz【解答】解:∵DH ⊥AB , ∴∠BHD =90°, ∵四边形ABCD 是菱形, ∴OB =OD ,OC =OA =,AC ⊥BD ,∴OH =OB =OD =(直角三角形斜边上中线等于斜边的一半),∴OD =4,BD =8, 由得:=32,∴AC =8, ∴OC ==4, ∴CD ==8, 故选C .36.如图,已知菱形ABCD 的边长为6,点M 是对角线AC 上的一动点,且∠ABC =120°,则MA +MB +MD 的最小值是( )A .B .3+3C .6+D .【答案】D【解答】解:如图,过点D 作DE ⊥AB 于点E ,连接BD ,∵菱形ABCD 中,∠ABC =120°, ∴∠DAB =60°,AD =AB =DC =BC , ∴△ADB 是等边三角形, ∴∠MAE =30°, ∴AM =2ME ,z∵MD =MB ,∴MA +MB +MD =2ME +2DM =2DE ,根据垂线段最短,此时DE 最短,即MA +MB +MD 最小, ∵菱形ABCD 的边长为6, ∴DE ===3,∴2DE =6.∴MA +MB +MD 的最小值是6.故选:D .十四.矩形的性质(共4小题)37.如图,∠MON =90°,矩形ABCD 在∠MON 的内部,顶点A ,B 分别在射线OM ,ON 上,AB =4,BC =2,则点D 到点O 的最大距离是( )A .B .C .D .【答案】A【解答】解:如图,取AB 中点E ,连接OE 、DE 、OD ,∵∠MON =90°, ∴OE =AB =2. ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC =2,z∵点E 是AB 的中点, ∴AE =AB =2, 在Rt △DAE 中,DE ===2,在△ODE 中,根据三角形三边关系可知DE +OE >OD , ∴当O 、E 、D 三点共线时,OD 最大为OE +DE =2+2.故选:A .38.如图,在矩形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,若AB =6,BC =10,则GH 的长度为( )A .B .C .D .2【答案】C【解答】解:连接CH 并延长交AD 于P ,连接PE , ∵四边形ABCD 是矩形, ∴∠A =90°,AD ∥BC ,∵E ,F 分别是边AB ,BC 的中点,AB =6,BC =10, ∴AE =AB =×6=3,CF =BC =10=5,∵AD ∥BC , ∴∠DHP =∠FHC , 在△PDH 与△CFH 中,,∴△PDH ≌△CFH (AAS ), ∴PD =CF =5,CH =PH , ∴AP =AD ﹣PD =5, ∴PE ===, ∵点G 是EC 的中点,z∴GH =EP =,故选:C .39.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(30,0)(0,12),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为15的等腰三角形时,点P 的坐标为 .【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP 是腰长为15的等腰三角形时,有三种情况: (1)如答图①所示,PD =OD =15,点P 在点D 的左侧.过点P 作PE ⊥x 轴于点E ,则PE =12. 在Rt △PDE 中,由勾股定理得:DE ===9,∴OE =OD ﹣DE =15﹣9=6, ∴此时点P 坐标为(6,12);z(2)如答图②所示,OP =OD =15.过点P 作PE ⊥x 轴于点E ,则PE =4. 在Rt △POE 中,由勾股定理得:OE ===9,∴此时点P 坐标为(9,12);(3)如答图③所示,PD =OD =5,点P 在点D 的右侧.过点P 作PE ⊥x 轴于点E ,则PE =4.在Rt △PDE 中,由勾股定理得:DE ===9,∴OE =OD +DE =15+9=24, ∴此时点P 坐标为(24,12).综上所述,点P 的坐标为:(9,12)或(6,12)或(24,12); 故答案为:(9,12)或(6,12)或(24,12).40.如图,在矩形ABCD 中,AB =2,AD =4,E 为AD 的中点,F 为线段EC 上一动点,P 为BF 中点,连接PD ,则线段PD 长的取值范围是 .【答案】2≤PD ≤.【解答】解:如图:当点F与点C重合时,点P在点P1处,CP1=BP1,当点F与点E重合时,点P在点P2处,EP2=BP2,∴P1P2∥EC且P1P2=CE,当点F在EC上除点C、E的位置处时,有BP=FP,由中位线定理可知:P1P∥CF且P1P=CF,∴点P的运动轨迹是线段P1P2,∵矩形ABCD中,AB=2,AD=4,E为AD的中点,∴△ABE,△BEC、△DCP1为等腰直角三角形,∴∠ECB=45°,∠DP1C=45°,∵P1P2∥EC,∴∠P2P1B=∠ECB=45°,∴∠P2P1D=90°,z∴DP的长DP1最小,DP2最大,∵CD=CP1=DE=2,∴DP1=2,CE=2,∴P1P2=,∴DP2==,故答案为:2≤PD≤.十五.矩形的判定与性质(共1小题)41.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为( )zA .5B .4C .D .3【答案】C【解答】解:连接AP ,∵AB =6,AC =8,BC =10,∴AB 2+AC 2=62+82=100,BC 2=102=100, ∴AB 2+AC 2=BC 2, ∴△ABC 是直角三角形, ∴∠BAC =90°, ∵PE ⊥AB ,PF ⊥AC , ∴∠PEA =∠PF A =90°, ∴四边形AEPF 是矩形, ∴AP =EF ,∴当AP ⊥BC 时,AP 有最小值,即EF 有最小值, ∵△ABC 的面积=BC •AP =AB •AC , ∴BC •AP =AB •AC , ∴10AP =6×8, ∴AP =,∴AP =EF =,∴EF 的最小值为,故选:C .z十六.正方形的性质(共10小题)42.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了( )A .方程思想B .分类讨论思想C .模型思想D .数形结合思想【答案】D【解答】解:将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了数形结合思想, 故选:D .43.如图所示,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 的长为( )A .3B .4C .5D .6【答案】C【解答】解:∵四边形ABCD 是正方形, ∴OB =OC ,∠OBE =∠OCF =45°,AC ⊥BD ,z又∵OE ⊥OF ,∴∠EOB +∠BOF =90°=∠BOF +∠COF , ∴∠EOB =∠COF , ∴△BEO ≌△CFO (ASA ), ∴BE =CF =3, 又∵AB =BC , ∴AE =BF =4, ∴Rt △BEF 中,EF ===5.故选:C .44.如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,CE 交DF 于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠EAG =30°;④∠AGE =∠CDF .其中正确的是( )A .①②B .①③C .①②④D .①②③【答案】C【解答】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =90°, ∵E ,F 分别是AB ,BC 的中点, ∴BE =AB ,CF =BC , ∴BE =CF ,在△CBE 与△DCF 中,,∴△CBE ≌△DCF (SAS ),∴∠ECB =∠CDF ,CE =DF ,故①正确; ∵∠BCE +∠ECD =90°, ∴∠ECD +∠CDF =90°,z∴∠CGD =90°, ∴CE ⊥DF ,故②正确; ∵CF =BC =CD , ∴∠CDF ≠30°, ∴∠ADG ≠60°, ∵AD =AG ,∴△ADG 不是等边三角形, ∴∠EAG ≠30°,故③错误; ∵CE ⊥DF , ∴∠EGD =90°,延长CE 交DA 的延长线于H ,如图,∵点E 是AB 的中点, ∴AE =BE ,∵∠AHE =∠BCE ,∠AEH =∠CEB ,AE =BE , ∴△AEH ≌△BEC (AAS ), ∴BC =AH =AD , ∵AG 是斜边的中线, ∴AG =DH =AD , ∴∠ADG =∠AGD ,∵∠AGE +∠AGD =90°,∠CDF +∠ADG =90°, ∴∠AGE =∠CDF .故④正确; 故选:C .45.如图.正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是4,则AB 的长为( )zA .4B .2C .D .【答案】A【解答】解:过点O 作OE ⊥AD 于点E ,OF ⊥CD 于点F , 则:∠OEM =∠OFN =∠OFD =90°,∵正方形ABCD ,∴OA =OD =OC ,∠ADC =90°, ∴,四边形OEDF 为矩形,∴四边形OEDF 为正方形, ∴OE =OF ,∠EOF =90°, ∵ON ⊥OM ,∴∠MON =90°=∠EOF , ∴∠EOM =∠FON , ∴△OEM ≌△OFN (ASA ),∴正方形OFDE 的面积等于四边形MOND 的面积, ∴DE 2=4,∴DE =2(负值已舍掉); ∴AB =AD =2DE =4; 故选:A .46.如图,正方形ABCD 的边长为2,点O 是对角线BD 的中点,点E 、F 分别在AB 、AD 边上运动,且保持BE =AF ,连接OE ,OF ,EF 在此运动过程中,下列结论: ①OE =OF ;z②∠EOF =90°;③四边形AEOF 的面积保持不变; ④当EF ∥BD 时,EF =,其中正确的结论是( )A .①②B .②③C .①②④D .①②③④【答案】D【解答】解:过O 作OG ⊥AB 于G ,OH ⊥AD 于H , ∵四边形ABCD 是正方形, ∴∠A =∠OHA =∠OGA =90°, OH ∥AB ,OG ∥AD , ∵点O 是对角线BD 的中点, ∴AH =DH ,AG =BG , ∴OH =AB ,OG =AD , ∵AD =BA ,∴OG =OH ,BG =AH , ∴四边形AGOH 是正方形, ∴∠GOH =90°, ∵BE =AF , ∴GE =FH ,在△OFH 与△OEG 中,,∴△OFH ≌△OEG (SAS ),∴OE =OF ,故①正确;∠EOG =∠FOH , ∴∠EOG +∠GOF =∠GOF +∠FOH =90°, ∴∠EOF =90°,故②正确; ∵△OFH ≌△OEG ,z∴四边形AEOF 的面积=正方形AOGH 的面积=1×1=2, ∴四边形AEOF 的面积保持不变;故③正确; ∵EF ∥BD ,∴∠AFE =∠ADB =45°,∠AEF =∠ABD =45°, ∴AE =AF , ∵BE =AF , ∴AE =BE ,∴AE =AF =AB =1, ∴EF =,故④正确;故选:D .47.如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .B .C .D .【答案】C【解答】解:连接AE ,如图1, ∵四边形ABCD 是正方形, ∴AB =BC ,∠ABE =∠BCF =90°. 又BE =CF ,∴△ABE ≌△BCF (SAS ). ∴AE =BF .z所以BF+DE 最小值等于AE+DE 最小值. 作点A 关于BC 的对称点H 点,如图2, 连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点. 根据对称性可知AE =HE , 所以AE+DE =DH .在Rt △ADH 中,AD =1,AH =2, ∴DH ==,∴BF+DE 最小值为.故选:C .48.如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF ⊥DE ,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中: ①DE =EF ;②△DAE ≌△DCG ;③AC ⊥CG ;④CE =CF .其中正确的是( )A.②③④B.①②③C.①②④D.①③④【答案】B【解答】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,z在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,故①正确;②∵矩形DEFG为正方形;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),故②正确;z③根据②得AE =CG ,∠DAE =∠DCG =45°, ∴∠ACG =90°, ∴AC ⊥CG ,故③正确;④当DE ⊥AC 时,点C 与点F 重合, ∴CE 不一定等于CF ,故④错误, 综上所述:①②③正确. 故选:B .49.如图,正方形ABCD 边长为12,里面有2个小正方形,各边的顶点都在大正方形的边上的对角线或边上,它们的面积分别是S 1,S 2,则S 1+S 2=( )A .68B .72C .64D .70【答案】A【解答】解:如图,由正方形的性质,∠1=∠2=∠3=∠4=45°,z所以,四个角所在的三角形都是等腰直角三角形, ∵正方形的边长为12, ∴AC =12,∴两个小正方形的边长分别为×12=4,×12=6,∴S 1+S 2=(4)2+62=32+36=68.故选:A .50.如图,在正方形ABCD 中,O 为对角线AC 、BD 的交点,E 、F 分别为边BC 、CD 上一点,且OE ⊥OF ,连接EF .若,则EF 的长为( )A .2B .2+C .+1 D .3【答案】A【解答】解:在正方形ABCD 中,AC 和BD 为对角线, ∴∠AOB =∠BOC =90°,∠OBC =∠OCD =45°,OB =OC , ∵∠AOE =150°, ∴∠BOE =60°; ∵OE ⊥OF ,∴∠EOF =∠BOC =90°, ∴∠BOE =∠COF =60°, ∴△BOE ≌△COF (ASA ), ∴OE =OF ,∴△OEF 是等腰直角三角形;过点F作FG⊥OD,如图,∴∠OGF=∠DGF=90°,∵∠ODC=45°,∴△DGF是等腰直角三角形,∴GF=DG=DF=,∵∠AOE=150°,∴∠BOE=60°,∴∠DOF=30°,∴OF=2GF=,∴EF=OF=2.故选:A.51.如图,E为边长为2的正方形ABCD的对角线BD上的一点,且BE=BC,P为CEz上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是 .【答案】见试题解答内容【解答】解:过E点作EH⊥BC于H点,根据正方形的性质可知△BEH是等腰直角三角形,BE=BC=2,∴EH=2.∴△BEC的面积为×BC×EH=.连接BP,则△BPE面积+△BPC面积=2,z即×BE ×PR +×BC ×PQ =2, ∴×(PR +PQ )=2,解得PR +PQ =2. 故答案为2.十七.正方形的判定与性质(共1小题)52.如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G ,连接AF ,DE .给出下列结论: ①△AOF ≌△DOE ; ②△OBE ≌△OCF ;③四边形CEOF 的面积为正方形ABCD 面积的; ④DF 2+BE 2=EF 2; ⑤AF ⊥DE ,其中正确的为( )A .①②④⑤B .①②③④⑤C .①②③④D .①②③⑤【答案】B【解答】解:①在正方形ABCD中,OC=OD,∠COD=90°,∠ODC=∠OCB=45°,∵∠EOF=90°,∴∠COE=∠EOF﹣∠COF=90°﹣∠COF,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴∠DOF=∠COE,OF=OE,∴∠AOF=∠DOE,∵OA=OD,∴△AOF≌△DOE(SAS),故①正确;②在正方形ABCD中,OC=OB,∠COB=90°,∠OBC=∠OCB=45°,∵∠EOF=90°,∴∠BOE=∠COF,∴△OBE≌△OCF(ASA);故②正确;③由①全等可得四边形CEOF的面积与△OCD面积相等,∴四边形CEOF的面积为正方形ABCD面积的,故③正确;④∵△COE≌△DOF,∴CE=DF,∵四边形ABCD为正方形,∴BC=CD,∴BE=CF,在Rt△ECF中,CE2+CF2=EF2,∴DF2+BE2=EF2,故④正确;∵AD=DC,∠ADF=∠DCE,DF=CE,∴△ADF≌△DCE,(SAS),∴∠DAF=∠CDE,z∵∠ADF +∠CDE =90°, ∴∠ADF +∠DAF =90°, ∴AF ⊥DE , 故⑤正确;综上所述,正确的是①②③④⑤, 故选:B .十八.翻折变换(折叠问题)(共1小题)53.如图,将▱ABCD 纸片折叠(折痕为BE ),使点A 落在BC 上,记作①;展平后再将▱ABCD 折叠(折痕为CF ),使点D 落在BC 上,记作②;展平后继续折叠▱ABCD ,使AD 落在直线BC 上,记作③;重新展平,记作④.若AB =4,BC =7,则图④中线段GH 的长度为( )A .B .C .3D .4【答案】C【解答】解:如图④中,连接EH ,延长EH 交BC 于M .由题意易知:AB=AE=4,CD=DF=4,GH是△EBM的中位线,∵AD=BC=7,∴AF=DE=3,EF=1,∵EH=HM,∠EFH=∠MCH,∠EHF=∠CHM,∴△EFH≌△MCH(AAS),∵EF=CM=1,BM=BC﹣CM=6,∵GH是△EBM的中位线,∴GH=BM=3,故选:C.z。
期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
八年级下数学压轴题与答案

八年级下数学压轴题1 .已知,正方形ABCD中,Z MAN二45 ° , MAN 绕点A顺时针旋转,它的两边分别交CB、DC (或它们的延长线)于点M、N, AH丄MN于点H.(1) 如图①,当Z MAN绕点A旋转到BM=DN 时,请你直接写出AH与AB的数量关系:-------- ;(2) 如图②,当Z MAN绕点A旋转到BM工DN时,(1 )中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3) 如图③,已知Z MAN=45 ° AH丄MN 于点H ,且MH=2 , NH=3 ,求AH的长.(可利用(2)得到的结论)专业资料2. 如图,AABC是等边三角形,点D是边BC±的一点,以AD为边作等边△ ADE ,过点C作CF||DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD ;(2)在(1 )的条件下直接写出△ AEF和AABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.图②专业资料3. (1)如图1,在正方形ABCD屮,E是AB上一点,F是AD延长线上一点,且DF=BE .求证:CE=CF ;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果Z GCE=45 ° ,请你利用(1 )的结论证明:GE二BE+GD •(3)运用(1) (2)解答屮所积累的经验和知识,完成下题:AB上一点,且Z DCE=45BE=,4 , DE=10 ,求直角梯形ABCD的面积.如图3,在直角梯形ABCD 屮,AD BC (BC>AD ) , Z B=90 ° AB二BC , E 是专业资料D F GB C B CDB C團3图1 图2专业资料4. 如图,正方形ABCD中,E为AB边上一点,过点D作DF丄DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1 )若BF=BD= 求BE的长;(2)若ZADE二2 ZBFE,求证:FH=HE+HD专业资料5. 如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为X.(1 )当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3) 当点P在线段AC上滑动时,APCQ是否可能成为等腰三角形?如果可能,指出所有能使△ PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.专业资料6. RtAkBC与Rt舉ED是两块全等的含30 °、60 °角的三角板,按如图(一)所示拼在一起,CB与DE重合.(1 )求证:四边形ABFC为平行四边形;(2)取BC中点O,将AABC绕点O顺时钟方向旋转到如图(二)屮厶A' B‘ C'位置,直线BC,与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)专业资料ABCD )(-)7. 如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长专业资料于点G.(1 )求证:A ADE更GDE;(2)过点C作CMCE,交FG于点H,求证:FH=GH ;(3)W=1 , DF=x,试问是否存在x的值,使A ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明盥B GB G专般8. 在平行四边形ABCD中,ZBAD的平分线交直线BC于点E,交直线DC于点F.(1 )在图1中证明CE=CF ;(2)若Z ABC=90 °G是EF的中点(如图2),直接写出Z BDG的度数;(3)若Z ABC=120 °FG||CE, FG=CE ,分别连接DB、DG (如图3),求ZBDG的度数.专业资料9. 如图,已知ABCD屮,DE1BC于点E, DH丄AB于点H, AF平分zBAD ,分别交DC、DE、DH 于点F、G、M,且DE=AD .(1 )求证:A ADG更FDM •(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.专般10. 如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF ,过点B作专业资料于点M・(1 )求证:ZBFC= zBEA;(2) 求证:AM=BG+GMD C专业资料11 .如图所示,把矩形纸片OABC放入直角坐标系xOy中,使0A、OC分别落在X、/z 0C 1y轴的正半轴上,连接AC,且AC=4 J 5, —(1 )求AC所在直线的解析式;(2) 将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3) 求EF所在的直线的函数解析式.专业资料BF=y,试求y与间的函数关系式,出函数的定义域. x之并写312.已知一次函数y=px+6的图象与坐标轴交于A、B点(如图),AE平分ZBAO , 交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF丄AE,垂足为F,连接OF ,试判断△OFB的形状,并求△ OFB的面积. (4)若将已知条件“ AE平分ZBAO ,交x轴于点E”改变为“点E是线段0B上的一个动点(点E不与点0、B重合)”,过点B作BF丄AE,垂足为F.设0E二x ,(备用图)专业资料13・如图,直线h的解析表达式为:y二- 3x+3 ,且h与x轴交于点D,直线b经过点A, B,直线h, I2交于点C.专业资料(2)求直线b的解析表达式;(3)求AADC的面积;(4)在直线b上存在异于点C的另一点P,使得AADP与AADC的面积相等,请直接写出点P的坐标.专业资料14.如图1,在平面直角坐标系中,0是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知0A=6 , OB=10 •点D为y轴上一点,其坐标为(0, 2), 点P从点A出发以每秒2个单位的速度沿线段AC - CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1) 当点P经过点C时,求直线DP的函数解析式;(2) ①求AOPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B'恰好落在AC边上,求点P的坐标.x(3) 点P在运动过程屮是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;备用图专业资料15.如图,在平面直角坐标系中,已知0为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A ( -5, 1 ) , B ( -2, 4) , C ( 5, 4),点D在第一象限.(1 )写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边A1B1C1D1重叠部分的面积.专业资料第一象限内作等边△ ABC , (1 )求AABC 的面积;1(2)如果在第二彖限内有一点 P (a,三);试用含有a 的代数式表示四边形的面积,并求出当厶ABP 的面积与AABC 的面积相等时a 的值; 专业资料16・如图,一次函数 x+1的图象与X 轴、y 轴交于点A 、B,以线段AB为边在 ABPO的坐标;若不存在,请说明理由.专业资料专业资料参考答案与试题解析一.解答题(16小题)1. 已知,正方形 ABCD 中,乙 MAN=45 °, SN 绕点A 顺时针旋转,它的迪别交CB 、DC (或它们的延长线)于点 M 、N, AH 丄MN 于点H •(1) 如图①,当z MAN 绕点A 旋转到BM=DN 时,请你直接写岀 AH 与AB 的数量 关系: AH 二 AB —;(2) 如图②,当z MAN 绕点A 旋转到BM #DN 时,(1 )屮发観 AH 与AB 的数量 关系还成立吗?如果不成立请写出理由,如果成立请锻【解答】解:(1)如图①AH=AB .ABCD 是正方形,• AB 二AD , zD 二 z ABE=90 °,AB=ADZABE=ZADNBE 二DN '/Rt AEB^Rt^ND ,・AE 二AN , zEAB 二 JMAD ,(2)数量关系成立.如图②,延长 CB 至E,使BE=DN ・(3)如图③,已知zMAN=45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.
14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
2.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.
(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
11.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 ,
(1)求AC所在直线的解析式;
(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.
(3)求EF所在的直线的函数解析式.
12.已知一次函数 的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
9.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.
(1)求证:△ADG≌△FDM.
(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.
10.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)①求△OPD的面积S关于t的函数解析式;
②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.
(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
3.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.
6.Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.
7.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线
于点G.
(1)求证:△ADE≌△CDE;
(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;
(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求
出x的值;若不存在,请说明理由.
8.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)求点B的坐标;
(2)求直线AE的表达式;
(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.
(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.
八年级下数学压轴题
1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(1)若BF=BD= ,求BE的长;
(2)若∠ADE=2∠BFE,求证:FH=HE+HD.
5.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.
探究:设A、P两点间的距离为x.
(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
4.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.