支持向量机的实现
支持向量机的基本原理

支持向量机的基本原理
支持向量机(Support Vector Machine, SVM)是一种二分类模型,其基本原理是找到一个最优的超平面来进行数据的划分。
其基本思想是将样本空间映射到高维特征空间,找到一个超平面使得正负样本之间的间隔最大化,从而实现分类。
具体来说,SVM的基本原理包括以下几个步骤:
1. 寻找最优超平面:将样本空间映射到高维特征空间,使得样本在特征空间中线性可分。
然后寻找一个超平面来最大化两个不同类别样本的间隔(也称为“分类间隔”)。
2. 构建优化问题:SVM通过解决一个凸二次规划问题来求解最优超平面。
该优化问题的目标是最大化分类间隔,同时限制样本的分类正确性。
3. 核函数技巧:在实际应用中,数据通常是非线性可分的。
通过引入核函数的技巧,可以将非线性问题转化为高维或无限维的线性问题。
常用的核函数有线性核、多项式核、高斯核等。
4. 寻找支持向量:在求解优化问题时,只有一部分样本点对于最优超平面的确定起到决定性作用,这些样本点被称为“支持向量”。
支持向量决定了超平面的位置。
5. 分类决策函数:在得到最优超平面后,可以通过计算样本点到超平面的距离来进行分类。
对于新的样本点,根据其距离超平面的远近来判断其所属类别。
支持向量机的基本原理可以简单概括为在高维特征空间中找到一个最优超平面,使得样本的分类间隔最大化。
通过引入核函数的技巧,SVM也可以处理非线性可分的问题。
支持向量机具有理论基础牢固、分类效果好等优点,在实际应用中得到了广泛的应用。
SVM的原理和代码实现

SVM的原理和代码实现SVM(Support Vector Machine,支持向量机)是一种常用的机器学习算法,用于二分类和回归问题。
SVM的核心思想是找到一个最优的超平面,将不同类别的数据样本分开。
这个超平面由支持向量(样本)确定,使得支持向量到超平面的距离最大化。
本文将介绍SVM的原理及其代码实现。
一、SVM原理:1.线性可分情况:对于线性可分的数据集,SVM的目标是找到一个超平面,使得所有正例样本都位于超平面的一侧,负例样本都位于另一侧。
超平面的方程可以表示为:w^T*x+b=0,其中w是一个向量,表示法向量,b是偏置。
2.间隔最大化:SVM的关键是最大化两个不同类别样本之间的几何间隔。
间隔是沿着超平面的宽度,因此离分类超平面最近的实例点,即两个最靠近超平面的支持向量(x1和x2),满足w^T*x1+b=1和w^T*x2+b=-1、它们满足w^T*(x1-x2)=2/(,w,)。
因此,SVM的优化问题转化为求解最大化2/(,w,)的最小化问题。
也就是求解以下优化问题:minimize ,w,^2/2,其中y_i*(w^T*x_i + b) >= 13.引入松弛变量:当数据不是完全线性可分时,引入松弛变量xi,使得一些样本可以处于错误的一侧。
此时优化问题转化为:minimize ,w,^2/2 + C*Σξ_i,其中y_i*(w^T*x_i + b) >= 1 - ξ_i,ξ_i >= 0。
C是一个超参数,用于控制错误样本的惩罚程度。
当C越大,对错误样本的惩罚越重;C越小,则对错误样本的惩罚越轻。
4.对偶问题:为了方便求解SVM的优化问题,引入拉格朗日乘子,将SVM的原始问题转化为对偶问题。
通过求解对偶问题,可以得到最优解。
对偶问题如下:maximize Σα_i - 1/2*ΣΣ α_i*α_j*y_i*y_j*x_i*x_j,其中Σα_i*y_i = 0,0 <= α_i <= C。
支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。
支持向量机原理与应用

支持向量机原理与应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法,其基本思想是通过寻找最优超平面将数据分成两类。
在这篇文章中,我们将深入探讨支持向量机的原理和应用。
一、支持向量机的原理支持向量机通过最大化间隔超平面来分类数据。
间隔是定义为支持向量(也就是最靠近分类边界的数据点)之间的距离。
因此,我们的目标是找到一个最优的超平面使得此间隔最大。
在二维空间中,最大间隔超平面是一条直线。
在高维空间中,最大间隔超平面是一个超平面。
这个超平面定义为:w\cdot x-b=0其中,w是一个向量,x是样本空间中的向量,b是偏差。
支持向量机的目标是找到一个可以将训练样本分成两个类别的最大间隔超平面,并且使得间隔为M(M是最大间隔)。
二、支持向量机的应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法。
这里我们将讨论支持向量机在分类问题中的应用。
1. 图像分类支持向量机在图像分类中的应用非常广泛。
通过将图像转换为特征向量,可以用支持向量机实现图像分类。
支持向量机特别适用于图像分类,因为它可以处理高维特征空间。
2. 自然语言处理支持向量机可以通过文本分类实现在自然语言处理中的应用。
支持向量机可以学习在给定文本语料库中的所有文档的特定类别的模式(如“金融”或“体育”)。
3. 生物信息学支持向量机在生物信息学中的应用非常广泛。
生物信息学家可以使用支持向量机分类DNA,RNA和蛋白质序列。
4. 金融支持向量机在金融中的应用也很广泛。
通过识别是否存在欺诈行为,可以使用支持向量机实现信用评估。
三、总结在这篇文章中,我们深入探讨了支持向量机的原理和应用。
通过理解支持向量机的原理,我们可以更好地了解如何使用它解决分类问题。
在应用方面,支持向量机广泛应用于各种领域,包括图像分类、自然语言处理、生物信息学和金融等。
因此,支持向量机是一种非常有用的机器学习算法,对于了解它的原理和应用非常重要。
机器学习中的支持向量机算法应用案例分析

机器学习中的支持向量机算法应用案例分析支持向量机算法(Support Vector Machine,SVM)是一种强大的机器学习算法,它可以用于分类和回归问题。
SVM通过找到一个最优超平面,将数据集分割成不同的类别,从而实现有效的分类。
本文将探讨支持向量机在实际中的应用案例,以展示其在解决实际问题中的优异表现。
1. 垃圾邮件过滤垃圾邮件过滤是支持向量机算法应用广泛的领域之一。
在垃圾邮件分类中,我们面临的任务是将收到的电子邮件分为垃圾邮件和非垃圾邮件。
支持向量机通过学习已标记的邮件,找到一个最优超平面来划分这两个类别。
通过使用支持向量机算法,我们可以高效地过滤掉大部分垃圾邮件,提供良好的信箱管理体验。
2. 图像分类支持向量机也可以应用于图像分类问题。
在图像分类中,我们希望通过训练一个模型,将输入的图像分为不同的类别,例如猫、狗、汽车等。
支持向量机可以通过学习训练集中的图像特征,并找到一个最优的决策边界。
这个边界可以将不同的图像分类分开,从而对新的图像进行准确分类。
3. 手写数字识别手写数字识别是机器学习中的一个经典问题,支持向量机也可以被用于解决这个问题。
通过给算法提供标记好的手写数字图像,支持向量机可以学习到一种模型,可以准确地识别新的手写数字。
这在许多领域中都有重要的应用,例如邮政服务、银行等需要处理手写数字的业务场景。
4. 股票预测支持向量机在金融领域的应用也非常广泛,其中之一就是股票预测。
通过收集历史的股票价格数据和相关的变量,支持向量机可以学习到一个模型,通过分析和预测股票走势。
这可以帮助投资者做出更明智的投资决策,提高投资回报率。
5. 疾病诊断支持向量机在医学领域中有着广泛的应用,特别是在疾病诊断方面。
通过使用合适的特征和已经标记好的患者数据,支持向量机可以学习到一个模型,对新的患者进行准确的疾病分类。
这对于早期发现疾病、制定治疗方案以及改善患者生活质量非常重要。
总结:支持向量机是一种强大而灵活的机器学习算法,可以在各种领域中应用。
支持向量机原理及应用

支持向量机原理及应用支持向量机(Support Vector Machine,SVM)是机器学习中一种强大的分类和回归方法。
它的原理是通过将数据映射到高维空间中,找到一个最优的超平面来实现分类或回归任务。
SVM在许多领域都有广泛的应用,例如图像分类、文本分类、生物信息学和金融等。
SVM的核心思想是找到一个能够最大化分类边界的超平面。
超平面是一个能够将分类样本分开的线性空间。
SVM通过将输入样本映射到高维空间中,使得线性可分问题变为了线性可分的问题。
在高维空间中,SVM选择一个能够最大化样本间距的超平面,这就是SVM的原理之一SVM的另一个重要原理是核技巧。
在非线性可分问题中,SVM使用核函数将数据映射到高维空间中,通过在高维空间中找到一个超平面来实现分类。
核函数可以将原始空间中的非线性问题转化为高维空间中的线性问题,从而大大提高了SVM的分类准确率。
SVM的应用非常广泛,其中最经典的应用之一是图像分类。
图像分类是指根据图像的内容将其归入特定的类别。
SVM可以利用其强大的分类能力来将图像分为属于不同类别的准确性高。
在图像分类中,SVM通常使用特征向量作为输入来训练模型,然后使用该模型将新的图像分类为预定义的类别。
SVM在文本分类中也有广泛的应用。
文本分类是指将文本归类为不同的类别,例如将电子邮件分类为垃圾邮件或非垃圾邮件。
SVM可以利用其在高维空间中找到超平面的能力,找出文字特征与类别之间的关系,从而实现文本分类。
SVM在文本分类中的应用有助于提高准确性和效率,特别是在大规模数据集上。
此外,SVM还在生物信息学中发挥重要作用。
生物信息学包括生物学、计算机科学和统计学等领域,用于研究和解释生物学数据。
SVM可以用于分析和预测生物学数据,如基因表达数据和蛋白质序列。
SVM在生物信息学中的应用有助于揭示生物学的内在规律,提高疾病诊断和治疗方法的准确性。
此外,SVM还被广泛应用于金融领域。
金融领域需要对股票市场、外汇市场和其他金融市场进行预测和分析。
支持向量机算法的原理

支持向量机算法的原理支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。
它的原理基于统计学习理论中的结构风险最小化原则,通过寻找一个最优的超平面来实现数据的分类。
在SVM中,数据被看作是高维空间中的点,每个点都有一个与之对应的特征向量。
这些特征向量的维度取决于特征的数量。
SVM的目标是找到一个超平面,使得其能够尽可能地将不同类别的数据点分隔开。
超平面是一个d维空间中的d-1维子空间,其中d为特征向量的维度。
在二维空间中,超平面即为一条直线,可以完全将两类数据点分开。
在更高维的空间中,超平面可以是一个曲面或者是一个超平面的组合。
为了找到最优的超平面,SVM引入了支持向量的概念。
支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。
通过最大化支持向量到超平面的距离,SVM能够找到一个最优的超平面,使得分类误差最小化。
SVM的核心思想是将低维空间中的数据映射到高维空间中,使得原本线性不可分的数据变得线性可分。
这一映射是通过核函数实现的。
核函数能够计算两个数据点在高维空间中的内积,从而避免了显式地进行高维空间的计算。
常用的核函数有线性核、多项式核和高斯核等。
SVM的训练过程可以简化为一个凸优化问题。
通过最小化结构风险函数,SVM能够找到一个最优的超平面,使得分类误差最小化。
结构风险函数由经验风险项和正则化项组成。
经验风险项衡量了分类器在训练集上的错误率,正则化项则防止过拟合。
SVM的优点是具有较好的泛化性能和较强的鲁棒性。
由于最大化支持向量到超平面的距离,SVM对异常值不敏感,能够有效地处理噪声数据。
此外,SVM还可以通过引入松弛变量来处理非线性可分的问题。
然而,SVM也存在一些限制。
首先,SVM对于大规模数据集的训练时间较长,且对内存消耗较大。
其次,选择合适的核函数和参数是一个挑战性的问题,不同的核函数和参数可能会导致不同的分类结果。
支持向量机算法原理

支持向量机算法原理支持向量机(SupportVectorMachine,SVM)是一种经典的机器学习算法,是指对二类分类问题,它可以确定一个最佳的线性决策边界,以最大限度地提高分类的准确率。
它将分类任务转换为一个凸二次规划问题,然后使用核函数扩展到非线性情况。
它被广泛应用于许多类型的学习任务,包括分类和回归。
1.持向量机的概念所谓支持向量机,是指一种经典的机器学习算法,用于解决二分类问题。
该算法总是朝着最大限度地改善结果的方向迭代,并将给定的数据集呈现为一个映射,以实现最佳的分类结果。
支持向量机算法的主要思想是,在样本空间中,将数据用线性分割法分为两个独立的子空间,从而获得较高的分类准确率。
2.持向量机的数学原理支持向量机的数学基础乃在于凸优化,它是在线性可分的情况下,使分类器的准确率最大化。
支持向量机算法可以将分类问题转换为一个凸二次规划问题,以求得最优解。
在这个规划问题中,我们要求最小化一个函数,使得能够将样本以最佳方式分开,以确定决策边界。
它需要求解最优化问题中的最大间隔,故而也被称之为最大间隔分类器,把这个问题的最优解称为支持向量(Support Vector)。
3.持向量机的分类a.性可分支持向量机:是用于解决线性可分的二分类问题的支持向量机,其中只有两个分类器,我们可以使用给定的数据集来找到一个线性分类器,这样就可以将样本点映射到不同的类。
b.性不可分支持向量机:是针对线性不可分的二分类问题的支持向量机,我们可以使用核函数将线性不可分的问题扩展到高维来获得线性可分的形式,这种类型的支持向量机也是使用类似的求解方法来构建的,但是通过将线性不可分的问题扩展到高维,它可以更好地描述数据。
c.分类支持向量机:是一种多类支持向量机,它可以用于解决多个分类问题,它可以用于分类要素的多分类以及多个分类分量的情况,这是一种非常有用的技术,在主机器学习任务中得到了广泛应用。
4.持向量机的优势a.持向量机算法不仅可以实现高准确率,而且运行时间短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式识别课程大作业报告——支持向量机(SVM)的实现姓名:学号:专业:任课教师:研究生导师:内容摘要支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。
现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。
本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。
本报告的组织结构主要分为3大部分。
第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。
一、支持向量机原理概述在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。
两类样本中离分类面最近的样本到分类面的距离称为分类间隔。
最优超平面指的是分类间隔最大的超平面。
支持向量机实质上提供了一种利用最优超平面进行分类的方法。
由最优分类面可以确定两个与其平行的边界超平面。
通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。
这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。
支持向量如图1所示。
图1图1中,H是最优分类面,H1和H2别是两个边界超平面。
实心样本就是支持向量。
由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。
以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。
这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。
这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。
对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。
但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。
为了避免高维空间中的计算,可以引入核函数的概念。
这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。
常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。
二、支持向量机的实现OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。
OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。
OpenCV中比较经典的机器学习示例是“手写字母分类”。
OpenCV 中给出了用支持向量机实现该示例的代码。
本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。
本实验中使用的OpenCV版本是,实验平台为VisualStudio 2010软件平台。
OpenCV读取的输入数据格式为“.data”文件。
该文件记录了所有数据样本的特征向量和标签。
OpenCV自带的“letter-recognition”数据集是手写字母数据集。
其中共包含20000个样本,前16000个用来训练,后4000个用来测试。
样本是16维的特征向量。
每条样本在文件中按行存放。
每行共有17个字段,第1个字段是样本的标签,以字符形式给出;后面16个字段分别是样本的16个特征,以数字形式给出。
所有字段之间均以逗号分隔。
图2图2中展示了“.data”文件中样本的存储样式。
自行生成“.data”文件的过程十分简单。
只需要新建一个“.txt”文件,对其内容进行修改之后,直接把后缀改为“.data”即可。
在OpenCV给出的支持向量机示例程序中,可调参数大约有十多个,这些参数的调整比较复杂。
为了方便使用该程序,可以将其中重要的参数从程序段中挑选出来,并制作宏定义。
这些重要参数包括:总样本个数、用于训练的样本个数(总样本个数-训练样本个数=测试样本个数)、特征向量的维数、选取的核函数类型。
可调参数如图3所示:图3在更换新的数据集时,只需要在宏定义部分修改“PATH”后的路径即可,其他参数的修改也都在这里进行,无需再到代码段内进行修改。
其中,宏定义“KERNEL”用来确定SVM采用何种核函数。
执行程序后,可以显示出训练样本和测试样本的识别率。
通过将程序中分类数组的值输出,还可以在原有程序基础上添加显示测试样本标签的功能。
对“letter-recognition”数据集进行分类得到的结果如图4所示:图4图4展示了4000个测试样本标签和训练样本识别率以及测试样本识别率。
可以观察到训练样本的识别率为%,测试样本的识别率为%。
将图4中展示的测试样本标签与“.data”文件中的标签对比,可以直观地观察到哪个数据判断错误。
图5展示了程序输出的测试样本标签与“.data”文件中标签的对应关系。
(a) (b)图5观察图5可以发现,第一行字母P的识别是正确的,而第三行的预测出现了错误。
样本集中的数据为“O”,但支持向量机将其错分为“B”。
按上述方法可以一一对照测试样本的预测结果是否正确。
接下来,采用其他核函数进行分类。
图6展示的是径向基函数的分类效果。
图6观察图6可以看出,采用径向基函数可以获得极高的样本识别率,可达100%。
但是测试样本的识别率为%,比起线性基函数有所下降,说明其泛化能力(即推广能力)有限。
测试表明,对于“letter-recognition”,采用多项式基函数和Sigmoid基函数分类的识别率更低,因此对此数据集的分类应该采用线性核函数。
三、标准数据集测试前一部分展示了OpenCV自带的“letter-recognition”数据集的测试效果。
为了测试编写的程序的通用性,接下来对其他标准数据集进行测试。
数据集可以从“下载,这个网址上提供了上万个用于机器学习的数据集。
接下来分别展示“iris”数据集和“wine”数据集上的测试结果。
(1)“iris”数据集“iris”数据集是鸢尾花数据集。
其中共包含150个样本,每个样本是一个4维的特征向量,这4个特征分别是萼片长度、萼片宽度、花瓣长度和花瓣宽度。
数据的标签总共有三类:“S”代表刺芒野古草,“E”代表杂色鸢尾花,“I”代表维尔吉尼卡。
它们分别是三种不同的鸢尾花品种。
该数据集如图7所示:图7在本实验中,用前130个数据作为训练样本,后20个数据作为测试样本。
选定相应的参数如图8所示:图8图8中,选取核函数为线性核函数。
按照图8所示的参数执行程序,得到的结果如图9所示:图9由图9可知,对于“iris”数据集,训练样本的识别率为%,测试样本的识别率为%。
由数据可以看出,支持向量机对“iris”数据集的分类效果显然要优于“letter-recognition”数据集。
这可能和数据集本身有关,“iris”数据集特征的可分性更好。
接下来,变换核函数来观察分类效果。
图10是采用径向基核函数得到的结果。
图10图10中,训练样本的识别率比采用线性核函数时略有提升,但测试样本的识别率没有变化,因此可以认为采用径向基核函数与线性核函数的分类效果是基本相同的。
当采用Sigmoid函数进行分类时,分类效果显然要差很多。
该分类效果如图11所示。
图11图11中,训练样本和测试样本的识别率都很低,因此“iris”数据集显然不适合用Sigmoid函数进行分类。
以上实验结果表明,核函数的选取对于支持向量机的分类效果有至关重要的影响。
(2)“wine”数据集“wine”数据集是红酒数据集。
其中共包含178个样本,每个样本是一个13维的特征向量,其中包含酒精度、年份等特征。
数据的标签总共有三类:“M”、“H”、“L”。
它们分别代表三类不同的红酒。
该数据集如图12所示:图12本实验用前125个数据作为训练样本,后53个数据作为测试样本。
选定相应的参数如图13所示:2图13图13中,核函数选定为线性核函数。
按照上述参数设置执行程序,得到的结果如图14所示:图14由图14可得,对于“wine”数据集,训练样本的识别率为%,测试样本的识别率为%。
训练样本的识别率较高,但测试样本的识别率却较低。
这说明该学习过程的泛化能力较差。
这可能由于样本数量有限,支持向量机方法很难从这么有限的样本中训练出较为理想的分类器。
接下来,尝试采用其他核函数的分类效果。
结果发现,其他和函数的分类效果并没有线性核函数的分类效果好。
当采用径向基核函数时,训练样本的识别率可达100%,但测试样本的识别率变得非常低。
该结果如图15所示。
图15可见,对于“wine”数据集来讲,采用径向基核函数虽然能使训练样本识别率最高,但其泛化能力最差,因此对解决实际问题没有任何帮助。
综合比较上述结果,可以发现径向基函数在大多数情况下都可以获得较高的训练样本识别率,即经验风险很小。
但是,测试样本的识别率无法保证,对于某些数据集的泛化能力有限。
致谢今后,我会从事机器学习方向的研究。
模式识别课程的内容对我的专业方向有很大帮助,令我受益匪浅。
尤其是在本次大作业过程中,支持向量机的编程实现工作大大加深了我对支持向量机原理的理解,为我今后的研究工作打下了坚实基础。
模式识别课程的学习是我研究道路上的一个良好开端,具有十分重要的意义。
本学期的模式识别课程令我受益颇多。
在此,诚挚地感谢李建更老师的辛勤付出!附录:源程序代码#include "opencv2/core/"#include "opencv2/ml/"#include <cstdio>#include <vector>/*******************设置文件路径********************/#define PATH "./"/*******************设置样本个数********************/#define SAMPLE 20000/*****************设置训练样本个数******************/#define TRAIN 16000/*****************设置特征向量维数******************/#define VECTOR 16/**************************************************//********************读取数据***********************/ static intread_num_class_data( const char* filename, int var_count, CvMat** data, CvMat** responses ){const int M = 1024;FILE* f = fopen( filename, "rt" );CvMemStorage* storage;CvSeq* seq;char buf[M+2];float* el_ptr;CvSeqReader reader;int i, j;if( !f )return 0;el_ptr = new float[var_count+1];storage = cvCreateMemStorage();seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );for(;;){char* ptr;if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )break;el_ptr[0] = buf[0];ptr = buf+2;for( i = 1; i <= var_count; i++ ){int n = 0;sscanf( ptr, "%f%n", el_ptr + i, &n );ptr += n + 1;}if( i <= var_count )break;cvSeqPush( seq, el_ptr );}fclose(f);*data = cvCreateMat( seq->total, var_count, CV_32F );*responses = cvCreateMat( seq->total, 1, CV_32F );cvStartReadSeq( seq, &reader );for( i = 0; i < seq->total; i++ ){const float* sdata = (float*) + 1;float* ddata = data[0]-> + var_count*i;float* dr = responses[0]-> + i;for( j = 0; j < var_count; j++ )ddata[j] = sdata[j];*dr = sdata[-1];CV_NEXT_SEQ_ELEM( seq->elem_size, reader );}cvReleaseMemStorage( &storage );delete[] el_ptr;return 1;}/*********************支持向量机分类器*************************/ staticint build_svm_classifier( char* data_filename ){CvMat* data = 0;CvMat* responses = 0;CvMat train_data;int nsamples_all = 0, ntrain_samples = 0;int var_count;CvSVM svm;int ok = read_num_class_data( data_filename, VECTOR, &data, &responses ); if( !ok ){printf( "无法读取数据库 %s\n", data_filename );return -1;}/************************ SVM 参数 ***************************/CvSVMParams param;=CvSVM::LINEAR;=CvSVM::C_SVC;=1;/**************************************************************/printf( "数据库 %s 已经被加载\n", data_filename );nsamples_all = SAMPLE;ntrain_samples = TRAIN;var_count = data->cols;/************************训练分类器****************************/printf( "正在训练SVM分类器...\n");cvGetRows( data, &train_data, 0, ntrain_samples );CvMat* train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1);for (int i = 0; i < ntrain_samples; i++)train_resp->[i] = responses->[i];(&train_data, train_resp, 0, 0, param);/**************************开始对测试样本分类***************************/ std::vector<float> _sample(var_count * (nsamples_all));CvMat sample = cvMat( nsamples_all , VECTOR, CV_32FC1, &_sample[0] ); std::vector<float> true_results(nsamples_all );for (int j = 0; j < nsamples_all; j++){float *s = data-> + j * var_count;for (int i = 0; i < var_count; i++){* var_count + i] = s[i];}true_results[j] = responses->[j];}CvMat *result = cvCreateMat(1, nsamples_all, CV_32FC1);printf("分类中...\n");(&sample, result);/**************************显示测试样本的标签**************************/ printf("测试样本的标签预测结果如下:\n");for (int i = ntrain_samples; i < nsamples_all ; i++){printf("测试样本%d=%c\n",i-ntrain_samples+1,char(result->[i]));}/**************************计算识别率**************************/printf("/****显示识别率****/\n");f%%\n", (float)true_resp / (ntrain_samples) * 100);f%%\n", (float)true_resp / (nsamples_all-ntrain_samples) * 100);cvReleaseMat( &train_resp );cvReleaseMat( &result );cvReleaseMat( &data );cvReleaseMat( &responses );return 0;}int main( int argc, char *argv[] ){char* filename_to_save = 0;char* filename_to_load = 0;char default_data_filename[] = PATH;char* data_filename = default_data_filename;int i;for( i = 1; i < argc; i++ ){if( strcmp(argv[i],"-data") == 0 ){i++;data_filename = argv[i];}else if( strcmp(argv[i],"-save") == 0 ){i++;filename_to_save = argv[i];}else if( strcmp(argv[i],"-load") == 0) {i++;filename_to_load = argv[i];}elsebreak;}build_svm_classifier( data_filename );return 0;}。