有关地铁ATC介绍(参考Word)

有关地铁ATC介绍(参考Word)
有关地铁ATC介绍(参考Word)

一.地铁信号系统的构成

地铁信号系统是保证列车安全、准点、高密度运行的重要技术装备。世界各大城市的地铁信号设备大多采用列车自动控制系统(简称ATC,Automatic Train Control)。通常ATC系统由三个子系统组成:

(1)列车自动监控子系统(简称ATS,Automatic Train Supervision);

(2)列车自动防护子系统(简称ATP,Automatic Train Protection);

(3)列车自动运行子系统(简称ATO,Automatic Train Operation)。

二、ATC各子系统的功能

1.列车自动监控子系统(ATS)

(1)列车自动识别、列车运行自动跟踪和显示。

(2)运行时刻表或运行图的编制及管理。

(3)自动和人工排列进路。

(4)列车运行自动调整。

(5)列车运行和信号设备状态自动监视。

(6)列车运行数据统计、列车运行实绩记录。

(7)操作与数据记录、输出及统计处理。

(8)列车运行、监控模拟及培训。

(9)系统故障和故障恢复处理。

2.列车自动防护子系统(ATP)

(1)检测列车位置,实现列车间隔控制和进路的正确排列。

(2)监督列车运行速度,实现列车超速防护控制。

(3)防止列车误退行等非预期的移动。

(4)为列车车门、站台屏蔽门或安全门的开闭提供安全监控信息。

(5)实现车载信号设备的日检。

(6)记录司机操作和设备运行状况。

3.列车自动运行子系统(ATO)

(1)启动列车并实现站间自动运行。

(2)控制列车实现车站定点停车、车站通过和折返作业。

(3)与行车指挥监控系统相结合,实现列车运行自动调整。

(4)车门、站台屏蔽门或安全门的开、闭监控。

(5)列车运行节能控制。

三、ATC系统制式

ATC系统分为固定闭塞式ATC系统,准移动闭塞式ATC系统,移动闭塞式ATC系统。

(1)固定闭塞式ATC系统(fixed block)

国内早期建设的地铁信号系统采用固定闭塞式ATC系统,如北京地铁1号线和上海地铁1号线。

控制列车的信息,由轨道电路传输,列车以固定闭塞分区轨道电路长度为最小行车间隔,以闭塞分区为保护区段,轨道电路一般采用音频无绝缘轨道电路,传输信息量少,对应每个闭塞分区同时只能传送一个信息代码,即该区段所规定的最大速度命令码。对列车运行速度采用阶梯式速度曲线控制控制方式。

(2)准移动闭塞式ATC系统(quasi-moving block)

国内上世纪90年代建设的地铁和本世纪建设的部分地铁采用了准移动闭塞式ATC 系统。如上海地铁2、3、4号线,广州地铁1、2号线,深圳地铁1、4号线,天津地铁1、9号线等。

准移动闭塞式ATC系统一般是采用音频无绝缘数字轨道电路,具有较大的信息传输量。列车车载设备根据数字轨道电路传来的信息,对列车追踪运行以及折返作业进行连续的速度监督,实现超速防护。音频数字轨道电路可向车载设备提供目标速度、目标距离、线路状态(坡道、弯道数据等)、轨道电路标号及长度等信息,可使ATP车载设备结合车辆性能数据计算出适合于本列车运行速度曲线,保证列车在速度曲线下运行。采用一段速度曲线的列控方式,地铁里称为目标距离(distance to go)控制模式。此模式减少了司机频繁的制动、牵引,既可以达到较好的节能效果,又降低了司机的劳动强度,增强了列车运行的舒适度。

(3)移动闭塞式ATC系统(moving block)

国内的武汉轻轨、广州地铁3、4、5号线采用了移动闭塞式ATC系统。

移动闭塞式ATC系统是采用地面交叉感应环线、无线通信、波导等介质,向列控车载设备传递信息。移动闭塞不需将线路划分成为固定长度的闭塞分区,列车间的间隔是动态的,列车和列控中心进行实时的双向通信,不间断的对列车的速度进行监控。可方便实现完全防护列车的双向运行模式,与固定闭塞相比,相对较少的轨旁及车载子系统设备。

CBTC的显著特性是系统可决定列车的位置,高準确度以及不受轨道电路支配。CBTC 系统以它在地理方面的连续式列车到轨道边与轨道边到列车的数据通讯网路為特色,准许转换比传统式系拥有更多的控制与状况资讯。

CBTC系统的数据传输将通过无线局域网WLAN实现,非信号相关的数据(如CCTV)的传输也将通过同一网络实现。这一技术将减少硬件的数量,减少接口,并为用户降低了成本。

Trainguard MT在中国的应用还包括广州地铁4、5号线以及最近获得的北京地铁10号线和奥运支线项目

在无线通讯世界里,面对数据通讯市场的庞大发展潜力,两种类型的数据网络技术正在展开激烈的竞争。尽管两种网络技术之间的结构和运行方式完全不同,但是,其竞争的领域却完全一致,从小容量数据的处理,到大容量文件数据、声音数据乃至流文件影像数据的传输等。如何更好地掌握上述网络技术的运作特点,进而确定究竟哪一类网络技术更加适合“基于通讯的列车控制(CBTC, communication-based train control)”数据通讯网络,可以说是非常关键。

1 两种无线通讯技术

第一种网络通讯类型主要是基于全球移动通讯标准(GSM)的蜂窝式无线移动通讯网络,移动通讯全球标准从最初的模拟移动电话系统发展到第一代网络技术,再发展到全数字式的第二代和第三代通讯技术系统,期间性能明显优化,容量大幅度增加。

另外一种网络通讯系统是一种基于数据传输技术的系统。其发展来源于当今十分普遍的已经沿用了几十年的局域网(LAN),即在两台办公电脑之间进行数据传输。在以太网(Ethernet)的支撑之下,通过互联网协议进行数据的打包传输。

蜂窝式无线移动通讯网络专门用于传输那些相对连续的流数据。如果两个用户之间已经建立了电路联系,那么,声音、音频和影像数据就会连续不断地在两者之间传输。即使双方之间没有数据传输,也会占用通讯资源,十分浪费。于是,技术提供商开始考虑充分利用空余的安静时间和闲置通道时间来留做它用。这种做法适应了目前数据传输市场日益庞大的实际需要。当前,数据传输行业的一个通行做法是对数据进行打包,即将连续的数据流分割成一系列不连续的数据包。简而言之,蜂窝式网络必须学会如何传输IP数据包。

尽管基于LAN的无线网络技术(WLANs)本身就是专门为处理IP数据而设计的,但是并不能保证数据包能够按照正确的顺序及时传输给对方。

两种网络通讯类型之间还有一个不同点。蜂窝式无线移动通讯技术主要基于陆地电话网络,依据各个回路对容量进行分配。每个电话使用者通过铜线连接到本地交换机,然后通过计算机转换开关利用电话号码来建立回路。不过,在两个电话局之间进行通话时,需要共享有限的长途电路。当然只要用户愿意付钱,愿意打多长时间就打多长时间的电话。然而,由于回路数量有限,这种通讯技术一般用于列车与基站之间,或者从基站到列车控制中心的通讯联系。

无线网络技术(WLANs)不存在类似问题,一般来说,以太网比蜂窝式通讯回路有更高的容量,但是许多用户在使用同一回路时,也会出现线路“争用”现象。线路争用主要发生在数据包传输过程中。如果数据包之间发生冲突,那么,在经过一段短暂停顿之后,通话双方就会向对方再发送一遍数据包。这样,每位通话者就会得到自己的数据,只不过时间相对滞后一些。事实上,这种滞后,即所谓的等待时间,相当短暂,只有几毫秒(ms),几乎觉察不到。

总之,两种通讯方式各有千秋。一种有回路转换系统,不会出现等待时间,但服务不一定跟得上;另一种服务跟得上,但可能会有一定的等待时间。

移动的用户适合使用无线通讯技术。在回路转换系统中,需要针对服务对象数量的多少和服务范围的大小设置基站。只要通话者的活动范围没有超越基站的服务范围,就可以不必切换回路。反之,如果进入到另一个基站的覆盖范围,那么通话回路就会通过新的基站进行。所有这一切都会在计算机控制下进行,计算机系统会根据通话信号的强弱确定回路的移交与否,在回路转换过程中,通话质量也不会受到明显的影响。

是否决定将通话回路移交给另外一个基站的原理非常复杂。例如,移动电话使用者若只是处于短暂的无效通话状态(即听不到对方讲话),但并不意味着走出所在基站的服务范围。因此,系统在决定之前必须等待。如果等待时间过长,通话就会断线,数据服务的质量就会受到影响。

在WLAN系统中,需要建立相应的联络点(access points,即无线电接收装置),来服务于覆盖范围内的通话者,不过与基站相比,联络点的覆盖范围要小许多。如果相邻的服务区有另外一个联络点,通话就会移交至新的WLAN无线电接收装置,而不需要对回路进行切换。网络中的通话回路将会自动更新IP地址,并且向新地址发送数据包。这样,由于不需要网络控制,回路移交的速度非常快。

那么,究竟哪一种网络通讯技术适合“基于通讯的列车控制(CBTC, communication-based train control)”呢?阿尔卡特公司CBTC数据通讯系统(DCS)是基于开放标准和兼容性基础之上的。其中,DCS非移动模块的选择是基于IEEE 802.3标准。移动模块则有几个选择,例如,对于蜂窝式系统或者回路转换网络来说,可以选择GSM、Tetra和UMTS。另外,IEEE802.16e标准也是基于回路转换系统,适合移动状态下使用。而IEEE 802.20标准则专门为高速移动状态设计。此外,WLAN网络的标准还有IEEE 802.11系列标准,具体包括之前的802.11标准、802.11a标准、802.11 b和g 标准(俗称WiFi)。

2 网络结构

为了确保机车可以在任何地点进行通讯,数据通讯系统必须沿着线路铺设,在隧道也不例外。诸如GSM-R这样的蜂窝通讯网络,需要设置基站或者联络点,来为覆盖范围内若干平方公里内成千上万的电话使用者提供通讯服务。因此,需要一个强大的中枢站点来为信号较弱的移动用户服务。

在机车数据通讯系统中,需要沿线路设置若干联络点,特别是在隧道内部,因为只有这样才能保证获得足够的信号覆盖范围。一条地铁线路可能会设置100多个联络点,但可服务的列车却屈指可数。

不过,蜂窝式通讯技术在设计上并不是专门考虑沿着线路布局。并且,所需要的配件不是标准的,回路的移交非常困难,速度也慢,这与数据通讯系统开放标准的目标相悖。

与之相比, WLAN系统更加适合为线性分布的设施提供通讯服务。在联络点和移动发射台的配合下,可以很容易实现回路的快速、频繁转换。

目前,由GSM-R系统控制的列车数量还十分有限,主要受制于系统的回路数量。一旦交通流量超过回路数量,就难以处理。而使用WLAN系统,面临过多的交通流量,等待时间困难会稍微长一些,但是总比没有通讯服务要强许多!

3 机动性和回路切换

地铁列车的时速一般为100km/h左右,因此,数据通讯系统的设计至少要能够满足120km/h时速的需要。在轨道沿线,特别是隧道,信号传播条件相对较差,在一定程度上限制了天线之间的距离。例如,如果天线间隔500m,列车时速120km/h,那么移动发射台每隔15秒就要与联络点之间进行转换。如果一次转换(包括重新连接时间)需要

花费2秒或者更长的时间,那么列车就有13%的时间处于通讯中断状态。事实上,蜂窝通讯系统网络之间的切换时间超过10秒。

802.11WLAN标准要求回路切换的时间要少于50ms。这个时间难以保证,但是只要联络点设置合理,实现这一目标的可能性有90%,并且最大时间不会超过1秒。50ms的切换时间意味着仅仅0.4%的时间处于通讯中断状态,这几乎可以忽略不计。

802.20标准的目标是实现时速250km/h以上的无缝切换,当前,这个目标需要许多年才能实现。总之,WLAN对于网络机动性和切换来说是一种很好的选择。

4 网络有效性

任何网络都必须有足够的冗余,以备在设备失灵时仍然能够为任何一位通话者提供高质量的通讯服务。传统的蜂窝电话的覆盖范围由于建筑物或其它障碍物的阻挡而缩小,对于数据传输,特别是列车控制来说,绝对不允许出现上述情况。

因此,为了尽可能避免出现上述问题,需要对基站进行专门布局。即使这样,也难以完全消除上述问题,这是回路系统的一个缺点。

前向纠错(forward error correction)技术非常强大,但是也有局限性。一方面占用传输容量,另一方面,当信噪比很低时,前向纠错技术会失灵,不仅不会纠错,反而会引发更多的错误。

在移动通讯环境下,信噪比偏低的情况十分普遍。因此在使用蜂窝通讯网络技术时,必须引入重发协议(retransmission protocol)进行额外的错误检查。对于“基于通讯的列车控制(CBTC, communication-based train control)”来说,LANs是一个首选。

5 透明度

数据通讯系统(DCS)设计的一个关键就是应用的透明性。透明意味着网络不需要知道应用系统的状况,DCS不需要跟踪列车所在的地点和所处的状态,反之亦然。应用系统不需要知道DCS的状态,系统所要做的就是遵守802.3接口连接标准(interfacing requirements)、分配IP地址、处理等待时间和数据包错误等等。

当然,蜂窝通讯系统并不完全透明。在回路切换过程中,在移动发射台和基站之间会分配一个新回路,上述过程不可能是无缝的。由于切换时间太短,有必要依据设定重新分配回路。沿线的无线发射装置必须能够适应无线回路的分配。

6 ComTrac

阿尔卡特公司的ComTrac数据通讯系统具有开放标准、透明性和兼容性等特点,其设计主要是用于“基于通讯的列车控制(CBTC)”系统各个组成部分(例如中央控制系统、沿线设备和车载设备等等)之间的相互联系。每一个组成部分通过安全网关装置(SD,security gateway device)与数据通讯系统连接,以确保数据的可靠性和机密性。在应用数据通讯系统时,蜂窝技术和WLAN网络技术均按照各自的行业标准,提供现货供应设备,并且从各个供应商获取机会。对于蜂窝技术来说,如果要克服导轨配置(guide way deployment)、吞吐量(throughput capacity)、切换滞后(handover delays)以及回路有效性(circuit availability)等问题,就需要相当数量的额外的非标准部件以及相应的运行软件来支撑。另一方面,所有上述问题都可以在WLAN网络中得到解决。对于ComTrac来说,将WLAN802.11标准内置于802.3标准的以太网,将会是一个明智的选择。

在《都市快轨交通》杂志社2005年理事会年会暨“节约型都市快轨交通与技术创新”学术会议上,北京交通大学唐涛教授作了“基于通信列控系统国产化战略”的主题报告。

首先感谢都市快轨交通杂志社给我这次机会,跟大家交流城市轨道交通运营国产化的理解。我想从这样几个方面,一是从CBTC系统技术特点谈一下体会,从CBTC系统的角度,引申到运行控制系统国产化的考虑,第三方面,介绍一下CBTC从这个角度来讲考虑国产化的发展。

我们国家几年的情况来讲,整个的城市轨道交通是非常好的发展时期,刚才这三个城市的领导都介绍了,发展规模非常大。从国家的角度来讲,国家明确提出来,对于城市轨道交通国产化的要求,尤其是作为国产化的重点之一,运行控制系统给出明确的要求,要求国产化率达到70%。

从技术角度来讲,随着计算机和通信技术在运行控制的应用,也呈现明显的特点,从系统化、网络化、信息化、智能化、通信信号一体化的特点。

从运行控制系统来讲,本身是保证行车安全和提高运行效率的安全控制系统,安全防护、速度控制。

基于通信列车控制系统基于大容量车载设备技术,安全计算机的技术,尽管它本身CBTC采用计算机,但是又不同一般的工业控制和一般的采用计算机,它首先为了安全控制,采用对计算机系统有非常高的要求。

城市轨道交通信号系统ATC、ATS、ATO、ATP介绍

城市轨道交通信号系统ATC、ATS、ATO、ATP介绍 城市轨道交通信号系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。城市轨道交通信号系统通常由列车自动控制系统(Automatic Train Control,简称ATC)组成,ATC系统包括三个子系统:—列车自动监控系统(Automatic Train Supervision,简称ATS)—列车自动防护子系统(Automatic Train Protection,简称ATP)—列车自动运行系统(Automatic Train Operation,简称ATO)三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统。一、列车自动控制系统(ATC)分类1、按闭塞布点方式:可分为固定式和移动式。固定闭塞方式中按控制方式,又可分为速度码模式(台阶式)和目标距离码模式(曲线式)。 2、按机车信号传输方式:可分为连续式和点式。 3、按各系统设备所处地域可分为:控制中心子系统、车站及轨旁子系统、车载设备子系统、车场子系统。二、固定闭塞ATC系统固定闭塞ATC系统是指基于传统轨道电路的自动闭塞方式,闭塞分区按线路条件经牵引计算来确定,一旦划定将固定不变。列车以闭塞分区为最小行车间隔,ATC系统根据这

一特点实现行车指挥和列车运行的自动控制。固定闭塞ATC 系统又可分为速度码模式和目标距离码模式。1、速度码模式(台阶式)如北京地铁和上海地铁1号线分别引进的英国西屋公司和美国GRS公司的ATC系统均属此类ATC系统,该系统属70~80年代的产品,技术成熟、造价较低,但因闭塞分区长度的设计受限于最不利线路条件和最低列车性能,不利于提高线路运输效率。固定闭塞速度码模式ATC 是基于普通音频轨道电路,轨道电路传输信息量少,对应每个闭塞分区只能传送一个信息代码,从控制方式可分成入口控制和出口控制两种,从轨道电路类型划分可分为有绝缘和无绝缘轨道电路两种。以出口防护方式为例,轨道电路传输的信息即该区段所规定的出口速度命令码,当列车运行的出口速度大于本区段的出口命令码所规定的速度时,车载设备便对列车实施惩罚性制动,以保证列车运行的安全。由于列车监控采用出口检查方式,为保证列车安全追踪运行,需要一个完整的闭塞分区作为列车的安全保护距离,限制了线路通过能力的进一步提高和发挥。能提供此类产品的公司有:英国WSL公司、美国GRS公司、法国ALSTOM公司、德国SIEMENZ公司等。2、目标距离码模式(曲线式)目标距离码模式一般采用音频数字轨道电路或音频轨道电路加 电缆环线或音频轨道电路加应答器,具有较大的信息传输量和较强的抗干扰能力。通过音频数字轨道电路发送设备或应

城市轨道交通信号系统ATC

城市轨道交通信号系统ATC 城市轨道交通信号系统 城市轨道交通信号系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。 城市轨道交通信号系统通常由列车自动控制系统(Automatic Train Control,简称ATC)组成,ATC系统包括三个子系统: —列车自动监控系统(Automatic Train Supervision,简称ATS) —列车自动防护子系统(Automatic Train Protection,简称ATP) —列车自动运行系统(Automatic Train Operation,简称ATO) 三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统。 一、列车自动控制系统(ATC)分类 1、按闭塞布点方式:可分为固定式和移动式。固定闭塞方式中按控制方式,又可分为速度码模式(台阶式)和目标距离码模式(曲线式)。 2、按机车信号传输方式:可分为连续式和点式。 3、按各系统设备所处地域可分为:控制中心子系统、车站及轨旁子系统、车载设备子系统、车场子系统。 二、固定闭塞ATC系统 固定闭塞ATC系统是指基于传统轨道电路的自动闭塞方式,闭塞分区按线路条件经牵引计算来确定,一旦划定将固定不变。列车以闭塞分区为最小行车间隔,ATC系统根据这一特点实现行车指挥和列车运行的自动控制。固定闭塞ATC系统又可分为速度码模式和目标距

离码模式。 1、速度码模式(台阶式) 如北京地铁和上海地铁1号线分别引进的英国西屋公司和美国GRS公司的ATC系统均属此类ATC系统,该系统属70~80年代的产品,技术成熟、造价较低,但因闭塞分区长度的设计受限于最不利线路条件和最低列车性能,不利于提高线路运输效率。固定闭塞速度码模式ATC是基于普通音频轨道电路,轨道电路传输信息量少,对应每个闭塞分区只能传送一个信息代码,从控制方式可分成入口控制和出口控制两种,从轨道电路类型划分可分为有绝缘和无绝缘轨道电路两种。 以出口防护方式为例,轨道电路传输的信息即该区段所规定的出口速度命令码,当列车运行的出口速度大于本区段的出口命令码所规定的速度时,车载设备便对列车实施惩罚性制动,以保证列车运行的安全。由于列车监控采用出口检查方式,为保证列车安全追踪运行,需要一个完整的闭塞分区作为列车的安全保护距离,限制了线路通过能力的进一步提高和发挥。能提供此类产品的公司有:英国WSL公司、美国GRS公司、法国ALSTOM公司、德国SIEMENZ公司等。 2、目标距离码模式(曲线式) 目标距离码模式一般采用音频数字轨道电路或音频轨道电路加电缆环线或音频轨道电路加应答器,具有较大的信息传输量和较强的抗干扰能力。通过音频数字轨道电路发送设备或应答器向车载设备提供目标速度、目标距离、线路状态(曲线半径、坡道等数据)等信息,车载设备结合固定的车辆性能数据计算出适合于列车运行的目标距离速度模式曲线(最终形成一段曲线控制方式),保证列车在目标距离速度模式曲线下有序运行。不仅增强了列车运行的舒适度,而且列车追踪运行的最小安全间隔缩短为安全保护距离,有利于提高线路的通过能力。如上海地铁2号线引进美国US&S公司、明珠线引进法国ALSTOM公

有关地铁ATC介绍(参考Word)

一.地铁信号系统的构成 地铁信号系统是保证列车安全、准点、高密度运行的重要技术装备。世界各大城市的地铁信号设备大多采用列车自动控制系统(简称ATC,Automatic Train Control)。通常ATC系统由三个子系统组成: (1)列车自动监控子系统(简称ATS,Automatic Train Supervision); (2)列车自动防护子系统(简称ATP,Automatic Train Protection); (3)列车自动运行子系统(简称ATO,Automatic Train Operation)。 二、ATC各子系统的功能 1.列车自动监控子系统(ATS) (1)列车自动识别、列车运行自动跟踪和显示。 (2)运行时刻表或运行图的编制及管理。 (3)自动和人工排列进路。 (4)列车运行自动调整。 (5)列车运行和信号设备状态自动监视。 (6)列车运行数据统计、列车运行实绩记录。 (7)操作与数据记录、输出及统计处理。 (8)列车运行、监控模拟及培训。 (9)系统故障和故障恢复处理。 2.列车自动防护子系统(ATP) (1)检测列车位置,实现列车间隔控制和进路的正确排列。 (2)监督列车运行速度,实现列车超速防护控制。 (3)防止列车误退行等非预期的移动。 (4)为列车车门、站台屏蔽门或安全门的开闭提供安全监控信息。 (5)实现车载信号设备的日检。 (6)记录司机操作和设备运行状况。 3.列车自动运行子系统(ATO) (1)启动列车并实现站间自动运行。 (2)控制列车实现车站定点停车、车站通过和折返作业。 (3)与行车指挥监控系统相结合,实现列车运行自动调整。 (4)车门、站台屏蔽门或安全门的开、闭监控。

地铁车辆ATC介绍

ATC是Automatic Train Control的简称,ATC系统就是列车自动控制系统(Automatic Train Control,简称ATC)。 ATC系统包括三个子系统: 1. 列车自动监控系统(Automatic Train Supervision,简称ATS) 2. 列车自动防护子系统(Automatic Train Protection,简称ATP) 3. 列车自动运行系统(Automatic Train Operation,简称ATO) 三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统。 一、ATC系统的组成和功能 ATC系统包括五个原理功能:ATS功能、联锁功能、列车检测功能、ATC 功能和PTI(列车识别)功能。 (1) ATS功能:是ATC的核心功能,可自动或由人工控制进路,进行行车调度指挥,并向行车调度员和外部系统提供信息。ATS功能主要由位于OCC(控制中心)内的设备实现。 (2) 联系功能:响应来自ATS功能的命令,在随时满足安全准则的前提下,管理进路、道岔和信号的控制,将进路、轨道电路、道岔和信号和状态信息提供给ATS和ATC功能。联锁功能由分布在轨旁的设备来实现。 (3) 列车检测功能:一般由轨道电路完成。 (4) ATC功能:在联锁功能的约束下,根据ATS的要求实现列车运行的控制。ATC功能有三个子功能:ATP/ATO轨旁功能、ATP/ATO传输功能和ATP/ATO 车载功能。ATP/ATO轨旁功能负责列车间隔和报文生成;ATP/ATO传输功能负责发送感应信号,它包括报文和ATC车载设备所需的其他数据;ATP/ATO车载功能负责列车的安全运营、列车自动驾驶,且给信号系统和司机提供接口。 (5) PTI功能:是通过多种渠道传输和接收各种数据,在特定的位置传给ATS,向ATS报告列车的识别信息、目的号码和乘务组号和列车位置数据,以优化列车运行。 二、ATC系统的水平等级 为确保行车安全和线路最大通过能力,在最大通过能力较低的线路,可采用以调度员人工控制为主的CTC(调度集中)系统。最大通过能力大于30对/h的线路,应采用完整的ATC系统,实现行车指挥和列车运行自动化。 三、ATC系统选用原则

上海轨道交通ATC系统概述

1.ATC系统概述 ATC系统是基于用于列车检测和传送机车信号的无绝缘音频数字轨道电路US&S AF -904产品上的,这种轨旁电路用来进行列车检测和机车信号的传送。使用US&S MICROLOK II产品以安全微处理器和非安全NVLE来实现安全和非安全的轨旁逻辑,使用US&S MicroCab车辆组件来实现车载列车自动控制。 ATC系统由3个基本系统构成: ·ATP—列车自动防护; ·ATO—列车自动运行; ·ATS—列车自动监控。 ATC系统的设备,按地点可划分为三类: ·轨旁—现场设备、信号设备室、信号控制室; ·车载—装在车辆上的设备和单元; ·中央—位于中央控制室和ATS设备室的ATS设备。 西延伸段ATC系统保留既有2号线ATC系统性能指标,不再进行功能的增减。 下面章节提供在三类基本设备地点处的ATP,ATO和ATS的详细说明。 1.1轨旁ATC 本章节说明地铁2号线西延伸段的轨旁信号系统。同时还说明US&S设备及其安装。 1.1.1正线概况 在轨旁指定集中站的信号设备室内,安装轨旁信号系统的控制设备。 由CRCC提供的固定式轨旁色灯信号机被安装在所有列车渡线和道岔(联锁区)范围内,信号机安装在列车运行方向的线路右侧,在SER中的点灯电源是220V交流电流,并且灯丝转换继电器安装在本身的信号机机构内。点灯电路符合铁道部(MOR)标准。 通过正线ATC系统的列车检测电路,正线上所有列车的位置都被自动地监督。列车被显示在位于信号设备室(SER)的NVLE监视器上和车站控制室(SCR)的监视器上。通过数据传输系统(DTS),这类信息还送到控制中心并显示在计算机控制台上。通过这类显示,控制中心调度员可以监视正线上所有列车的运行以及辅助设备、配电设备的状态。

地铁车载ATC系统的研究及分析

地铁车载ATC系统的研究及分析 摘要基于地铁应用的日益广泛,车载ATC系统的应用也逐渐受到人们的关注。本文主要分析了地铁车载ATC系统的有关研究,从主要功能、系统冗余等多个方面对该系统进行了深入分析,扩大该系统的应用范围,为系统之后的应用提供理论基础。 关键词地铁;车载系统;研究;分析 1 地铁车载ATC系统运行模式 车载ATC系统(如图1所示)在运行过程中支持如下四种运行模式:第一,自动驾驶模式,即ATO模式。处于该模式下,ATP子系统确保列车运行的安全性以及稳定性。所有处于运行状态的列车,其启动、运行、加速以及制动的工作均交由ATO子系统予以控制,无需司机进行操作。若地铁处于自动驾驶模式,如系统设备未发生异常,且不存在人为干扰,则该模式可维持不变。第二,处于ATP防护状态下的人工驾驶,也可称为ATP模式。地铁处于该状态下,控制列车行驶的主要人员列司机,由司机按照列车当前形势速度以及同下一目标之间的距离提示驾驶列车。此时,ATP子系统同时对列车目前的行驶速度进行检测,若检测所得数据大于预设值,便会向工作人员提示,同时采用一定安全制动方式予以处理,以此确保列车行驶的安全性。第三,旁路模式,即Bypass模式。系统在正常运行过程中,往往存在大量检核机制,当系统当中检核机制出现故障,且故障在短时间内难以完全排出时,旁路模式便可令系统作业避让出现故障的检核机制,以便令系统可以持续保持作业模式。第四,切断模式,即OFF模式。当列车行驶过程中與出现故障或是部分关键性设备受损,该模式将电源切开,以保证列车的的安全性。此外,列车停止运行时,也处于该状态[1]。 2 车载ATC系统ATP子系统 2.1 ATP子系统主要功能 ATP具有如下功能:第一,ATP系统可以接收机车在运行过程中形成的信号以及数据,同时对其进行译码处理。第二,对当前列车行驶速度进行检测,确认当前行车速度点是否超过预设速度。若确认现行行车速度快于预设速度,便需对驾驶员提出警告。第三,若列车到站或是发生一定故障,该系统便将事实安全制动动作,或是实施非安全牵引操作。第四,该系统还可对车门进行控制,确保车本的安全,以免车门在开启或是关闭过程中出现故障。第五,车辆方向控制的需求。通过该系统,驾驶员能够及时对车辆行驶方向形成良好的控制[2]。 2.2 系统冗余 ATP子系统属于冗余系统,根据故障实际情况自行转化的方法形成。ATP 系统主要由两部分构成,分别为辅助ATP单元以及主要ATP单元。两者按照平

基于轨道电路的ATC系统概述

基于轨道电路的ATC系统概述 姓名:王晓玲学号:10050104 摘要:城市轨道交通信号设备是城市轨道的主要技术,它担负着指挥列车运行、保证行车安全、提高运输效率的重要任务,城市轨道交通信号系统通常由列车自动控制系统(ATC)和车辆段信号控制系统两大部分组成。为了使更多的人了解轨道交通ATC系统,本文将从轨道交通信号的发展史、城市轨道交通信号在城市轨道交通运输中的作用、基于轨道电路ATC的系统组成及每部分的作用等方面对基于轨道电路的ATC系统进行阐述,并通过对西屋ATC系统的组成及功能介绍加深对基于轨道电路的ATC系统的认识。 1、轨道交通信号的发展史 1.1、世界轨道交通信号发展历程 1863年世界上第一条地下铁道于1月10日在伦敦建成,由蒸汽机车作为 牵引动力。随着英国工业革命的不断发展和传播,自此各国相继开始了自己的 轨道交通的建设,轨道交通信号随之也有了相应的发展。 轨道交通信号最早起源于英国。最早的列车指挥是由一位戴绅士礼帽、穿 黑大衣和白裤子的铁路员工骑马在前引导运行的,他边跑边以各种手势发出信 号指挥列车的前进和停止。 随着人们慢慢意识到人工指挥的危险性,人们开始研究使用固定的信号设备:用一块长方形的板子,横向线路是停车信号,顺向线路是行车信号。实际 上顺向线路很难观察,故又在顶端加块圆板,当必须在夜间行车时,就以红色 灯光表示停车信号,白色灯光表示行车信号。1841年,英国人戈里高利提出用 长方形臂板作为信号显示,装设在伦敦车站,这就是铁路上首次臂板信号机的 出现。臂板信号机结构如下图。

随后,色灯信号机的出现代替了臂板信号机,使得信号系统的发展更进了 一步。色灯信号机以其灯光的颜色、数目和亮灯状态来表示信号,通常有三显 示和四显示信号机,以“红、黄、绿”三色为主要灯光颜色来表示不同的信号,同时辅以蓝色、月白色来完成各种任务命令的下达。 在轨道交通线路中,由于站间距小、运营线路条件差,仅以信号机信号显示、由司机来控制机车难以达到大密度运营,因此,列车自动控制系统(ATC)的应用大大解决了这个问题,尤其在线路条件不好、气候条件不好的情况下, 车载信号的作用是不可估量的。 1.2、我国轨道交通信号发展历程 就我国而言,轨道交通信号的发展大致经历了三个阶段:初期阶段、过渡 阶段和发展阶段。 1.2.1、初期阶段 我国地铁信号系统是随北京地铁的兴建而起步的。1965年7月1日,我国建成第一条地下铁道——北京地铁一期工程动工兴建,1971年通车。当时信号项目主要为复线自动闭塞(包括机车信号和自动停车)、调度集中、列车自动驾驶和继电联锁,从而实现列车集中调度、集中监控和列车运行自动化。自动闭塞采用的是我国自行开发并首次应用的由电子元器件制成的移频轨道电路,采用的是“红、红、黄、绿”的双红灯带保护区段的三显示方式,按照90s行车间隔设计;调度集中系统采用的我国自行开发的直流脉冲制调度集中系统;由于国内各种器件供应困难,加上当时车辆性能不够完全和稳定,列车自动驾驶从1969年10月起在北京地铁一期线路上试运行达4年之久,但未被全面采用和推广。 1.2.2、过渡阶段 早期的自主开发的行车指挥和列车运行自动化系统(ATC)由两部分组成,一部分是行车指挥自动化系统,也就是ATS系统,由控制计算机系统和调度集中子系统组成,继电联锁为其终端执行设备;另一部分是列车运行自动化系统。此时的ATC系统主要应用于北京地铁二期的环线,设备大多采用国产设备。 同时,北京地铁对环线调度集中进行绿技术改造,研制“微机调度集中系统”,并于1993年开通使用。该系统的主要功能有:辅助行车调度员调整运行计划;计划运行图和实迹运行图的显示和打印;显示全线线路和设备状况;车次追踪与显示;故障报警与检测;调度操作自动记录;系统自检;在线机故障自动复零启动。1998年对北京地铁的车载设备进行改造,新型的ATP车载系统于2000年在北京环线投入批量使用。 由于我国地铁建设速度缓慢,使得国产信号设备技术水平较低,不能提供一体化的完整系统,随着经济的发展和城市人口的膨胀,在建设地铁时由于技术和资金的需求不得不向外国引进先进的地铁信号设备。此次革新,使得中国地铁的整个技术水平上升绿一个台阶,实现了2min的运行间隔,大大提高了地铁列车的运行效率和运输能力。 1 .2.3、发展阶段 从1994年至今,我国轨道交通建设进入了飞速发展时期,伴之而来的是大规模的信号设备的引进。广州、上海、深圳、重庆和南京等轨道交通项目的信号系统先后采用了德国西门子公司、美国US&S公司、法国阿尔斯通公司和日本信号公司等各具特色的ATC系统,采用这些引进设备后,大大缩短了运行间隔,

相关主题
相关文档
最新文档