第7章(热力学与统计物理) 玻耳兹曼统计解析

合集下载

热力学统计 第七章玻尔兹曼统计

热力学统计 第七章玻尔兹曼统计

al !
al lal ln ln N ! N ln N al ln al ! l l l x 1 ln x ! x ln x x S k ln S
0
设=1时,S=0 S0=0
ln Z S Nk (ln Z )
2.内能U与广义力Y的统计表达式
2.1 内能U的统计表达式
N N l U al l ll e Z Z l l N Z ln Z N Z
e l l
N al l e l Z Z l e l
配分函数Z :
l
Z l e l
l
分布在能级l 的粒子数:
N al l e l Z
已知(l, l),可求Z——并不容易!
经典粒子: 配分函数Z :
Z l e l
l
Z e
( q . p )
dqdp e D( )d r h
积分因子:
如果 X ( x, y )dx Y ( x, y )dy 不是全微分,但存在函数 ( x, y ) ,使得
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy 为全微分, 即
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy ds ( x, y )
S k ln
满足经典极限的非定域系统:
ln
l
la
l
al !
al S k N ln N al ln l l
S0
lal al ln ln N ln N al ln ln N ! l l al ! l

热力学统计物理第七章

热力学统计物理第七章

N N ln Z d ln Z ln Z
ln Z N d (ln Z ) d N ln Z d ln Z
只是T的函数,所 以k不是S的函数, 是一个常数。与系 统的性质无关,是 一个普适常数。
dS (k ) dQ Nk d ln Z ln Z
13
得到了dS与系统的配分 函数之间的关系式。
ln Z dS Nk d ln Z
U= a= e

--
N= a e--

注意: 分布 直接计算 U 和 N 均由 3

N al l e l e l e l
l
l l

Z l e
l l l l
l N ln N l ln l l l N ln N l ln l l N ln N N U
15
N l l
N ln N l l l
那么,如何得到系统的 熵S与配分函数Z之间的 关系呢?
根据热力学第二定律,微热量dQ有一个积分因子1/T:
1 dQ dS T
刚刚得到的系统微热量表达式的一个完整微分形式:
ln Z dQ Nd ln Z
1 令: kT 1 k T
玻尔兹曼关系式
熵是混乱度的量度。如果某个宏观状态的微观状态数目愈多, 它的混乱度就愈大,熵也愈大。在理想的绝对零度下,系统 处于基态,状态数很小,所以熵近似为0或者等于0。

第七章玻耳兹曼统计教案分析

第七章玻耳兹曼统计教案分析

第七章玻⽿兹曼统计教案分析热⼒学与统计物理课程教案第七章玻⽿兹曼统计 7.1 热⼒学量的统计表达式⼀、定域系统的内能、⼴义⼒和熵统计表达式在§6.8说过,定域系统和满⾜经典极限条件的玻⾊系统都遵从玻⽿兹曼分布。

本章根据玻⽿兹曼分布讨论这两类系统的热⼒学性质。

本节⾸先推导热⼒学量的统计表达式。

内能是系统中粒⼦⽆规则运动总能量的统计平均值.所以 ∑∑--==lβεαl l ll l l e ωεεa U ①引⼊函数1Z :∑-=lβεl l e εZ 1 ②名为粒⼦配分函数。

由式∑--=lβεαl l e ωN ②,得:1Z e e ωe N αlβεl αl ---==∑ ③上式给出参量α与N 和1Z 的关系,可以利⽤它消去式①中的α。

经过简单的运算,可得:11ln Z βZ N e ωβe e ωεe U l βεl αl βεl l αll ???? ????-=???? ????-==∑∑---- ④式④是内能的统计表达式。

在热⼒学中讲过,系统在程中可以通过功和热量两种⽅法与外界交换能量。

在⽆穷⼩过程中,系统在过程前后内能的变化dU 等于在过程中外界对系统所作的功W d 及系统从外界吸收的热量Q d 之和:Q d W d dU +=。

如果过程是准静态的, W d 可以表达为Ydy 的形式,其中dy 是外参量的改变量,Y 是外参量y 相应的外界对系统的⼴义作⽤⼒。

粒⼦的能量是外参量的函数。

由于外参量的改变,外界施于处于能级l ε的⼀个粒⼦的⼒为yεl。

因此,外界对系统的⼴义作⽤⼒Y 为: 11ln 11Z y βN Z y βe e ωy βe e ωy εa y εY αl βεl αβεαl ll l ll l l ??-=-= -===-----∑∑∑⑤式⑤是⼴义作⽤⼒的统计表达式。

它的⼀个重要例⼦是:1ln Z VβN P ??=在⽆穷⼩的准静态过程中,当外参量有dy 的改变时,外界对系统所作的功是:l ll l llεd a a y εdy Ydy ∑∑=??= 将内能∑=ll l εa U 求全微分,有:l ll ll l da εεd a dU ∑∑+=上式指出,内能的改变可以分成两项,第⼀项是粒⼦分布不变时由于能级改变⽽引起的内能变化,第⼆项是粒⼦能级不变时由于粒⼦分布改变所引起的内能变化。

第七章 玻尔兹曼统计

第七章 玻尔兹曼统计

1 宏观热力学量的统计表达式
1.1 单粒子配分函数 Z1 及其与参数 α 的关系
粒子数约束
N
al
w e l l
e
wl el
l
l
l
定义单粒子配分函数 Z1 为 Z1 wlel l
N e Z1 或
e N Z1
• 配分函数是统计物理的重要概念,甚至可以说是统计物理 的核心概念。如果知道某个系统的配分函数随热力学参量 (如温度 T ,压强 p 或体积 V )的函数,系统的物理量 都可以表达成为配分函数对某个参量的一次或高阶次偏微 分。
N
d
(
f1
)
(df1
f1d
)
Nd
f1
f1
(N const.)
即 也是 Q 的积分因子
概据微分方程关于积分因子的理论(参阅汪志诚书附录):
当微分方程有一个积分因子时,它就有无穷多个积分因 子,任意两个积分因子之比是 S 的函数(dS 是用积分因
子乘以变分 Q 后所得的完整微分)。
即有 1 k(S) 1
2.1 单粒子平均量与系统的宏观平均量的关系 由于整个系统是近独立系统
系统内能:U N : 一个粒子的平均能量
系统压强:p N p p : 一个粒子对器壁的压强贡献
2.2 近独立粒子玻尔兹曼系统的单粒子统计行为
微观状态由 μ 空间 (x, y, z, px , py , pz )的相格描述。
1
若将
V 3 N
理解为气体中分子的平均距离:d ave

则经典极限条件可以表述为:
d thermal _ ave
ave
若令 n N V
,则经典极限条件可以表述为:

第七章 玻尔兹曼统计

第七章 玻尔兹曼统计

7.8
固体热容量的爱因斯坦理论
由能量均分定理可得固体的定容摩尔热容量:
CV ,m 3R
(1818年得到实验验证)
存在的问题:固体的热容量在绝对零度下趋向于0. Einstein首先采用量子理论研究了固体的热容量问题,并成功解决了上述问题 假定固体中的原子的热运动为3维简谐振动,且每个振子具有相同的频率 则振子的能级: 假设原子的振动可以分辨,遵循玻尔兹曼分布,对应的配分函数为
平均速率 方均根速率
因此
讨论:碰壁数(单位时间内碰到单位面积器壁上的分子数)
在dt时间内,碰到器壁的dA面积上,速 度在dvxdvydvz范围内的分子数
分子数
体积
练习:289/7.13-14
7.4
能量均分定理
能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量中每 一个平方项均等于1/(2kT) 经典物理中的粒子动能:
固体的内能 其中第二项为温度为T时3N个振子的热激发能量
定容热容量 定义 Einstein 特征温度: 定容热容量可写为:
金刚石的热容量实验结果与 Einstein理论得出的曲线
其中的Einstein 温度取1320K
定容热容量可写为:
在高温区: 所以
所以
能级间隔远小于kT,所以能量的量子化效应可以忽略,经典统计理论是有效的
4. 对于封闭的空窖 空窖内的辐射场可以视为无穷多的单色平面波的叠加 单色平面波的电矢量 波矢的三个分量
考虑到辐射场的波矢和能量的对应关系
(考虑了偏振)
(瑞利-金斯 公式) 可得有限温度下平衡辐射的总能量
实验结果(也可从热力学理论推导出)
原因:由经典电动力学可得辐射场具有无穷多个振动自由度,经典统计 的能量均分定理可得每个振动自由度的平均能量为kT,故而一定 会出现紫外发散的结论。

《第七章玻耳兹曼统计》小结

《第七章玻耳兹曼统计》小结

《第七章 玻耳兹曼统计》小结一、基本概念: 1、1>>αe 的非定域系及定域系遵守玻耳兹曼统计。

2、经典极限条件的几种表示:1>>αe ;12232>>⎪⎭⎫ ⎝⎛⋅h m kT NVπ;m kTh N V π231>>⋅⎪⎭⎫⎝⎛;()λ>>⋅31n3、热力学第一定律的统计解释:Q d W d dU +=l ll l ll da d a dU ∑∑+=εεl ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能量引起内能变化;传热:通过改变粒子分布引起内能变化。

二、相关公式1、非定域系及定域系的最概然分布l e a l l βεαω--=2、配分函数:量子体系:∑-=ll leβεω1Z∑---==ll l l l ll le e e a βεβεβεωωωNZ N 1半经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,1Z ⎰⎰⎰==-βεβεω 经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,01Z ⎰⎰⎰==-βεβεω 3、热力学公式(热力学函数的统计表达式) 内能:β∂∂=1lnZ -NU物态方程:VlnZ N 1∂∂=βp定域系:自由能:1-NkTlnZ F = 熵:B M k .ln S Ω=或⎪⎪⎭⎫ ⎝⎛∂∂-=ββ11lnZ ln Nk S Z1>>αe 的非定域系(经典极限条件的玻色(费米)系统): 自由能:!ln -NkTlnZ F 1N kT += 熵:!ln kln S .N k BM Ω=Ω=或!ln lnZ ln Nk S 11N k Z -⎪⎪⎭⎫⎝⎛∂∂-=ββ三、应用: 1、求能量均分定理①求平均的方法要掌握:()dx x xp ⎰=x②能量均分定理的内容---能量均分定理的应用:理想气体、固体、辐射场。

第七章节-玻尔兹曼统计

第七章节-玻尔兹曼统计

在准静态过程中,系统从外界所吸收的热量等于 粒子在各能级重新分布所增加的内能. 根据热力学第二定律
dQ不是全微分,与过程有关,有一积分因子, 除以T后得全微分dS,dS是全微分
BEIJING NORMAL UNIVERSITY
BEIJING NORMAL UNIVERSITY
积分因子
熵的统计表达式
3 U = NkT 2
BEIJING NORMAL UNIVERSITY
麦克斯韦速度分布律
讨论气体分子作无规热运动时,气体分子质心的平移 运动速度所表现出来的统计分布规律。 一、麦克斯韦速度分布律 1859年,麦克斯韦在研究分子相互碰撞作无规则运 动时,得到了气体分子按其质心速度分布的统计规律 麦克斯韦速度分布律
物态方程
∂ ln Z 注:也可直接利用公式 p = NkT 计算 ∂V
⎛ ∂F ⎞ S = −⎜ ⎟ ⎝ ∂T ⎠V
2πmk 3 3 3 = Nk ln V + Nk ln 2 + Nk ln T + Nk 2 h 2 2
3 = Nk ln V + Nk ln T + S 0 2
BEIJING NORMAL UNIVERSITY
熵的统计表达式,Boltzmann 关系
BEIJING NORMAL UNIVERSITY
由于
特性函数,自由能
量子情况下,粒子不可分辨性带来的差别
BEIJING NORMAL UNIVERSITY
计算单原子分子理想气体的熵:
3 3 2πmkT S = Nk + Nk ln V + Nk ln( ) 2 2 2 h
(ⅰ)系统在热力学过程中的规律 (ⅱ)系统的基本热力学函数

第七章玻耳兹曼统计教学内容1、玻尔兹曼统计中粒子配分

第七章玻耳兹曼统计教学内容1、玻尔兹曼统计中粒子配分

第七章 玻耳兹曼统计教学内容:1、玻尔兹曼统计中粒子配分函数的量子和经典表达式、热力学量的统计表达式;2、由玻尔兹曼统计求理想气体的物态方程;3、由玻尔兹曼分布推求麦克斯韦速度、速率分布律,碰壁数;4、爱因斯坦固体热容量理论的假设和结论。

教学目的:1、理解玻耳兹曼分布是近独立粒子孤立系统在统计平衡态下处于热力学几率最大的宏观分布时粒子数按能量分布的规律。

粒子的配分函数是由和外参量等决定的状态函数。

理解玻耳兹曼关系式。

理解经典的能量均分定理应用于固体和双原子分子理想气体系统求热容量严重偏离实验结果的原因,并由能量的量子化定性解释实验结果。

2、简单应用:由玻耳兹曼分布律求其它分布律,由配分函数求理想气体(单原子分子)系统的热力学函数。

3、综合运用:应用压强的微观实质思想计算分子的碰壁数,用量子玻耳兹曼分布律求理想固体(爱因斯坦模型)的热容量。

玻耳兹曼统计:假设系统由大量定域的全同近独立粒子组成,具有确定的粒子数N ,能量E ,体积V 。

N 个粒子的在各能级的分布可以描述如下: 能 级 12,,,,l εεε … 简 并 度 12,,,,l ωωω … 粒 子 数 12,,,,l a a a … 约束条件:l la N =∑,l l la E ε=∑定域系统和满足经典极限条件的玻色和费米系统都遵从玻耳兹曼分布:l l l a e αβεω--=。

其中系数α与β由l la N =∑与l l la E ε=∑确定。

总能量是系统在某平衡态下的全部能量,包括系统作整体运动时的宏观动 能,在重力场中的势能,以及与系统整体运动和重力场存在无关的内能,是系统内部分子无规则热运动的全部能量。

因此在这里我们所说的总能量E 即总的内能U 。

§7.1 热力学量的统计表达式在§6.8说过,定域系统以及满足经典极限条件的玻色系统和费米系统都遵从玻耳兹曼分布。

本章根据玻耳兹曼分布讨论这两类系统的热力学性质。

本节首先推导热力学量的统计表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(V )1 3 h( 1 )1 2
N
2mkT
用分子的德布罗义波长
h p h 2m h 2mkT 分子数密度
N e Z1
U N ln Z1
Y
N
y
ln
Z1
S
Nk (ln
Z1
ln
Z1 )
k
ln
N!
S k ln M .B. N!
F NkT ln z1 kT ln N!
经典系统
Z1
l
el
l
h0r
el
d
h0r
e( p,q)
dq1dq2
dqrdp1dp2 h0r
dpr
N e Z1
U
N
ln
dW Ydy dy
l
l
y
al
l
al d l
考虑内能 U l al 的全微分 l
dU l dal al dl
l

ቤተ መጻሕፍቲ ባይዱ
与热力学第一定律
dU dQ dW dQ aldl
l
比较,有
dQ ldal
以上两式说明,在准静态过程中系统从外界吸收的热 量等于粒子在各能级重新分布所增加的内能:外界对系统 所作的功等于粒子分布不变时由于能级改变所引起的内能 变。 化。
l
与(6.6.4) ln N ln N al ln al al ln l
l
l
比较,有玻耳兹曼关系
S k ln
该关系反映了熵的统计意义。
自由能
由自由能的定义,
F U TS
N
ln
Z1
TNk (ln
Z1
ln
Z1 )
TNk ln Z1
满足经典极限条件的玻色(费米)系统
Z1
el l
四. 与熵的统计表达式
由内能、广义力的统计表达式和热力学第一定律,有
dQ
dU
Ydy
Nd (
ln
Z1)
N
ln Z1 y
dy
两边同乘以
dQ (dU Ydy)
Nd (
ln
Z1 )
N
ln Z1 y
dy

由热力学基本方程 dQ T (dU Ydy) T dS
说明 1 T 是积分因子,根据积分因子的理论, 应同为积分因子,
dp
x
)
3
由积分公式
I (0) ex2 dx 1
0
2
Z1
V h3
(
e
2m
p x2
dpx
)
3
V h3
( 2m
)3 2
V
(
2m h2
)3 2
根据广义力的统计表达式,求出理想气体的物态方程
p
N
V
ln
Z1
N
V
[ln V
3 2
ln(
2m h2
)]
N ln V N
V V

pV kTN
所以
(dU Ydy) N ln Z1 d d (N ln Z1 ) N ln Z1 dy
d(N
ln
Z1 )
d (N
ln Z1
)
d(N
ln
Z1
N
ln Z1
)
与热力学基本方程 (dU Ydy) T dS
比较,得熵的统计表达式
S
Nk (ln
Z1
ln
Z1 )
玻耳兹曼关系
利用 N al l
l
l
h3
1
h3
e
1 2m
(
p x2
p
2 y
p
2 z
)
dxdydzdpx
dp
y
dp
z
1 h3
V
dxdydz
e dp dp dp
1 2m
(
px2
p
2 y
pz2
)
xyz
e dp e dp
V h3
e dp
2m
p
2 x
x
2m
p
2 y
y
2m
p
2 z
z
V h3
(
e
2m
p x2
方程与单原子分子组成的理想气体具有相同 的形式。
经典极限条件对气体性质的要求
将单原子分子组成的理想气体的配分函数 Z1 代入经典 极限条件
e
Z1
N
V N
(
2mk
h2
T
)3
2
1
满足经典极限条件 e 1,意味着要求理想气体
(1)气体很稀薄; (2)温度很高; (3)分子质量大。
另外,满足经典极限条件 e 1 还可等价地表述为
两者相差一个常数 k ,称为玻耳兹曼常数 ,即
1 kT R N0

由于 Z1 是 y 的函数, ln Z1 的全微分为
d 考虑多项式
ln
Z1
ln Z1
d
ln Z1 y
dy
Nd ( ln Z1 ) N ln Z1 d Nd ( ln Z1 ) d (N ln Z1 )
移项得
Nd ( ln Z1 ) N ln Z1 d d (N ln Z1 )
Z1
N
Y
y ln Z1
S
Nk (ln
Z1
ln
Z1 )
S k ln
F NkT ln Z1
h0 对经典统计结果的影响
由于内能和物态方程的统计表达式中须对 配分函数取对数后再求导,因此结果与 h0 的选 择无关。但熵和自由能无求导运算,结果应含 有常数 h0 ,如果选取不同的 h0 ,数值将相差 一个常数。这说明绝对熵的概念是量子力学的 结果。
Y
l
l
y
al
l
l
y
e l l
e ( 1 )
y l
el l
N Z1
(
1
y )Z1
N
y
ln
Z1
当 y V Y p 时,对应的广义力为压强,
这时广义力的统计表达式简化为
N
p V ln Z1
广义功和热量的微观含义
在准静态过程中,外参量发生 dy 改变时,外界对系 统所作的功是
U l al
l
N e Z1 ln N ln Z1
ln N ln Z1

S
Nk (ln
Z1
ln
Z1 )
k(N ln N N U )
k[N ln N ( l )al ]
l
a e 又由玻耳兹曼分布 l
l
l
l
ln
al
l
l
ln
l
al

S k[N ln N al ln l al ln al ]
第七章 玻耳兹曼统计
§7.1 玻耳兹曼分布与热力学量的联系 定域系统
一. 配分函数
Z
el l
l
二.U与N 的统计表达式
N
al
e l l
e
el l
e Z
l
l
l
U
l al
e l ll
e
l lel
l
l
l
e (
l
el l
)
e
(
Z
)
N Z
(
Z
)
N
ln
Z
三.广义力的统计表达式
pV nkTN0
与热力学中根据实验定理推出的理想气体物态方程
pV nRT
比较,可得普适气体常数、阿伏加德罗常数和玻耳兹曼 常数之间的关系,
R kN0
对双原子分子组成的理想气体,单个粒子 的能量表达式中增加了转动能量和振动能量, 由于计及转动能量和振动能量后不改变配分 函数 对Z1 的依V 赖关系,所以求得的物态
7.2理想气体的物态方程
一般气体满足经典极限条件,遵从玻耳兹曼分布。 以下将理想气体看作满足经典极限条件的粒子,用玻 耳兹曼分布导出单原子分子理想气体的物态方程。组 成理想气体的单个粒子的能量,
配分函数
1 2m
(
p
2 x
p
2 y
p
2 z
)
Z1
el
l
dxdydzdpx dp y dpz el
相关文档
最新文档