常见干扰问题怎么解决

合集下载

路由器的无线信号干扰问题解析与解决方法

路由器的无线信号干扰问题解析与解决方法

路由器的无线信号干扰问题解析与解决方法无线网络已经成为我们生活中必不可少的一部分,而路由器作为无线网络的核心设备,承担着将有线网络转化为无线信号的重要任务。

然而,许多人在使用无线网络时常常会遇到无线信号干扰的问题,导致无法正常使用网络。

本文将对路由器的无线信号干扰问题进行解析,并提供相应的解决方法。

一、无线信号干扰问题的原因分析1. 信号冲突无线网络使用无线电波传输数据,当多个无线网络同时工作时,可能会出现信号冲突的问题。

比如,在一个小区内,因为邻居们都使用了无线网络,周围的信号就会相互干扰,导致无线信号质量下降。

2. 外部电器设备家庭中的一些电器设备,如微波炉、电视机等,可能会发出相同或相近频率的电磁波,与无线信号发生干扰,导致信号弱或者不稳定。

3. 建筑物和障碍物建筑物的墙壁、天花板和障碍物如金属结构、混凝土墙等也会减弱无线信号的传输,如果路由器与终端设备之间存在过多的障碍物,可能导致信号质量下降。

二、解决无线信号干扰的方法1. 更换信道路由器在传输数据时,会根据无线频率工作,而无线频率又被划分为多个信道。

如果你的无线网络在使用的信道上有太多的干扰,可以尝试更换一个空闲的信道,以减少干扰。

一般路由器的管理界面会提供信道设置选项,可以通过登录路由器后台管理界面来更换信道。

2. 调整路由器位置将路由器放置在离终端设备较近且没有障碍物的位置,可以提高信号的传输质量。

避免将路由器放置在家庭电器旁边或者与大型金属物体靠近。

3. 使用信号增强器如果路由器的信号穿透力不够强,可以考虑使用信号增强器来增加信号的覆盖范围和传输距离。

信号增强器可以在家庭中的死角或者弱信号区域提供更强的信号覆盖,提升无线网络的使用体验。

4. 避免干扰设备同时工作如果你发现某个电器设备与无线网络产生了较大的干扰,可以尝试避免这些设备与路由器同时工作。

比如,在使用无线网络时,可以暂时关闭微波炉或者电视机,避免干扰产生。

5. 更新路由器固件有时路由器的固件版本可能存在一些问题,导致无线信号干扰的出现。

简单的电磁干扰解决方案

简单的电磁干扰解决方案

简单的电磁干扰解决方案
电磁干扰是指电磁场中的无线电波或电磁辐射对电子设备的正常运行产生干扰。

以下是一些简单的电磁干扰解决方案:
1. 放置设备位置:将受干扰的设备尽可能远离潜在的干扰源,如高压电线、无线电设备等。

在布置设备时,尽量避免靠近可能引起干扰的电磁辐射源。

2. 使用屏蔽材料:对受干扰的设备进行屏蔽,可以使用金属屏蔽罩、屏蔽围栏或屏蔽材料,以减少外界电磁辐射对设备的影响。

3. 地线连接:确保设备和电源都有良好的地线连接。

良好的地线连接可以提供一个低阻抗路径,将电磁干扰导入地下,从而减少对设备的影响。

4. 滤波器:使用滤波器可以过滤掉电源线上的高频噪声,减少对设备的干扰。

可以考虑使用电源滤波器或信号线滤波器,根据具体情况选择适当的滤波器类型。

5. 立体布线:合理布置电缆和线束,尽量避免相互干扰。

使用屏蔽电缆或正确的绕线方法可以减少电磁干扰。

6. 使用抗干扰设备:对于关键设备,可以选择具有良好抗干扰性能的设备或元件。

这些设备通常具有较好的屏蔽性能和抗干扰设计,可以减少对外界电磁干扰的敏感度。

7. 降低信号传输功率:对于无线电设备或无线通信系统,降低传输功率可以减少电磁辐射范围,从而减少对其他设备的干扰。

这些是一些常见的简单电磁干扰解决方案,具体应根据实际情况和需求来选择和实施。

如果问题较为复杂或严重,建议咨询专业的电磁兼容性工程师进行详细的解决方案设计。

解决电磁干扰的常用方法

解决电磁干扰的常用方法

解决电磁干扰的常用方法
解决电磁干扰的常用方法
1. 电磁干扰产生的原因
•电磁波的辐射
•电子设备的互相干扰
•外部电磁场的干扰
2. 消除电磁干扰的常用方法
使用屏蔽材料
•在电子设备周围使用屏蔽材料,如电磁屏蔽罩、屏蔽膜等,阻挡外部电磁场对设备的干扰。

•屏蔽材料可以减少电磁波辐射,避免设备之间互相干扰。

优化电磁场布局
•合理规划电子设备的位置,避免电子设备之间距离过近而产生干扰。

•在设备周围设置适当的距离,减少电磁场间的相互影响。

使用滤波器和隔离器
•安装滤波器可以过滤电力供应中的电磁干扰,保证设备正常工作。

•使用隔离器可以将电子设备隔离开,避免互相干扰。

接地和屏蔽技术
•良好的接地系统能够有效降低电磁干扰的产生。

•使用合适的屏蔽技术,如屏蔽箱、屏蔽线等,阻断电磁波的传播路径。

选择抗干扰性能好的设备和材料
•在选购电子设备和材料时,优先选择具有抗干扰性能好的产品,以减少干扰的可能性。

3. 总结
•以上列举了解决电磁干扰的常用方法,包括使用屏蔽材料、优化电磁场布局、使用滤波器和隔离器、接地和屏蔽技术,以及选择抗干扰性能好的设备和材料。

•在实际应用中,可以根据具体情况综合运用这些方法,以达到降低电磁干扰的目的。

解决信号干扰的方法

解决信号干扰的方法

解决信号干扰的方法(原创实用版4篇)《解决信号干扰的方法》篇1信号干扰是指信号在传输过程中受到其他信号的影响,导致信号的质量下降或丢失。

以下是几种常见的解决信号干扰的方法:1. 屏蔽:通过使用屏蔽材料或屏蔽器件,如金属箔或信号隔离器,来防止信号被干扰。

2. 滤波:使用滤波器来滤除信号中的干扰信号。

滤波器可以是硬件滤波器或软件滤波器,如低通滤波器或高通滤波器。

3. 调制:通过改变信号的调制方式,如频率调制或相位调制,来降低信号干扰的影响。

4. 解调:通过解调信号,可以将干扰信号从原始信号中分离出来,从而减少信号干扰的影响。

5. 抗干扰技术:使用抗干扰技术,如自适应滤波器或自适应信道均衡器,来抵消信号干扰的影响。

6. 信号放大:通过放大信号,可以增加信号的强度,从而降低信号干扰的影响。

7. 信号隔离:通过使用信号隔离器,可以将信号与干扰信号隔离开来,从而减少信号干扰的影响。

《解决信号干扰的方法》篇2信号干扰是指信号在传输过程中受到其他信号的影响,导致信号的质量下降或丢失。

以下是几种解决信号干扰的方法:1. 信号隔离器:信号隔离器是一种电子元件,用于隔离电路中的信号,防止信号互相干扰。

信号隔离器可以将输入信号与输出信号隔离,从而减小信号干扰的影响。

2. 滤波器:滤波器是一种用于信号处理的电路元件,用于滤除信号中的干扰信号。

滤波器可以通过选择合适的滤波器类型和参数,来滤除特定频率范围内的干扰信号,从而提高信号的质量。

3. 屏蔽:屏蔽是指在信号传输的路径上添加屏蔽层或屏蔽网,以防止信号受到外部干扰。

屏蔽可以采用金属箔或金属网,覆盖在信号传输线的表面或包裹在信号传输设备的外部。

4. 接地:接地是指将电路中的金属部件连接到地面,以减小电路中的干扰信号。

接地可以有效地消除电磁干扰和静电干扰,从而提高信号的质量。

5. 调整信号传输路线:调整信号传输路线可以避免信号受到干扰信号的影响。

例如,可以将信号传输线远离干扰源或调整信号传输线的走向,以减小信号干扰的影响。

电磁干扰解决方案

电磁干扰解决方案

电磁干扰解决方案
《电磁干扰的解决方案》
随着现代科技的不断发展,电磁干扰问题也越来越突出。

电磁干扰指的是电磁场对设备或系统正常工作造成的影响,它可能导致通信中断、设备损坏甚至安全事故。

因此,如何解决电磁干扰成为了一个迫在眉睫的问题。

在面对电磁干扰问题时,我们可以采取以下解决方案:
1. 设备屏蔽:为了减少电磁干扰,可以在设备上采用屏蔽措施,如在电路板设计中添加屏蔽层、采用屏蔽壳体等,以阻隔外部电磁波的干扰。

2. 使用滤波器:在通信系统中,可以采用滤波器来削弱或者消除干扰信号,保证信号的稳定传输。

3. 地线布局优化:通过合理设计电子设备的地线布局,减少电磁干扰的传播,从而提高设备的抗干扰能力。

4. 电磁兼容性测试:在产品研发的早期阶段,进行电磁兼容性测试,及时发现并解决潜在的电磁干扰问题。

5. 频谱管理:在无线通信系统中,通过合理的频谱规划和管理,避免不同系统之间的频谱干扰,确保通信质量和可靠性。

总的来说,要解决电磁干扰问题,需要综合考虑设计、测试、
管理等多方面的因素。

通过合理的规划和技术手段,可以有效地解决电磁干扰问题,为现代科技的发展提供稳定的环境和保障。

电磁干扰解决方法

电磁干扰解决方法

电磁干扰解决方法
电磁干扰是指电子设备受到无线电波或电磁场的影响而产生的异常现象。

下面是一些常见的电磁干扰解决方法:
1. 距离远离干扰源:将受干扰的设备与干扰源保持一定的距离,可以减少干扰的程度。

2. 使用屏蔽材料:在受干扰的设备周围使用金属屏蔽材料,如铝箔、屏蔽罩等,可以减少干扰波的影响。

3. 地线连接良好:确保设备的地线连接良好,并与接地系统连接,可以有效地排除静电和电磁干扰。

4. 使用滤波器:在受干扰的设备上安装滤波器,可以过滤掉非关键的频率信号,减少干扰。

5. 使用屏蔽线缆:使用屏蔽线缆来连接设备,可以减少电磁波的传播和干扰。

6. 使用电磁屏蔽柜或屏蔽设备:对于一些特别敏感的设备,可以将其放置在电磁屏蔽柜或屏蔽设备中,以隔离外部的电磁干扰。

7. 避免共享电源线路:不同设备之间共享同一电源线路会造成相互干扰,尽量
避免这种情况。

8. 使用抗干扰技术:一些设备和电路板具有抗干扰能力,可以采用这些先进技术来减少电磁干扰的影响。

以上是一些常见的电磁干扰解决方法,具体的解决方法应根据具体的情况和设备进行选择和采取。

在解决电磁干扰问题时,可以请专业人员提供帮助或咨询相关技术人员。

有效的干扰处理方法

有效的干扰处理方法

有效的干扰处理方法在现代科技的快速发展之中,我们不断地享受着高效便捷带来的便利和舒适,同时也要承受着噪声与干扰带来的麻烦。

不同于自然噪声,干扰往往源自异类信号或错误行为而影响到目标信号的传输或接收效率,对于工作和生活产生着严重的负面影响。

因此,我们需要寻找并采取适当的干扰处理方法,应对不同类型的干扰所带来的困扰和影响,以保证数据和信号的传输质量,提高工作和生活的效率。

以下是几种有效的干扰处理方法:1. 信号调制与解调信号调制技术是利用不同类型的波形将数字信号转换为模拟信号,以便在模拟信号传输系统中进行传输。

例如,可以利用电磁波通过无线电波、微波、红外线等手段传输信号。

而在信号接收时则需要进行解调,即将模拟信号转换为数字信号,以便于计算机等数字系统的使用。

信号调制与解调技术不仅可以提高数字信号的传输距离和质量,而且在传输过程中具备着对噪声干扰的一定抵抗能力。

此外,合适的信号调制方式也可根据干扰类型进行选择和调整,以更好地适应干扰环境,提高信号传输的稳定性和可靠性。

2. 滤波滤波是一种常见的干扰处理方法,其主要作用是将信号中的高频、低频噪声以及其他不需要的信号部分去除或减弱,以保证想要的信号以最高质量传输到接收端。

滤波技术还可用于降低信号幅度、相位失真等问题的影响,以修正信号波形的形状和性质。

滤波技术也分为数字滤波和模拟滤波两种方式。

在数字滤波中,会采用数字信号处理技术实现对数字信号的实时滤波处理,具备了高精度、高速率和低成本等优点。

而模拟滤波则是在信号通过前会对信号进行模拟滤波,主要较为适合于模拟信号的处理。

此外,滤波技术还可与其他干扰处理方法结合使用,以实现更佳效果。

3. 频谱分析频谱分析技术是一种基于频域的分析,可将信号进行不同频段的分离和分析,展现信号在频域上的特征和变化规律。

在干扰处理方面,频谱分析可帮助我们快速定位和分析信号中存在的干扰信号和噪声,以便针对性地进行处理和消除。

频谱分析也可与其他技术结合,如FFT(快速傅里叶变换)等算法,以实现更高效、更精确的频率分析和干扰抑制处理。

电路中如何解决信号干扰问题

电路中如何解决信号干扰问题

电路中如何解决信号干扰问题信号干扰是电路中常见的问题之一,它会影响正常的信号传输和接收,导致电路性能下降甚至故障。

因此,在设计和应用电路时,解决信号干扰问题是至关重要的。

本文将介绍一些解决信号干扰问题的方法和技巧。

一、选择合适的信号线路布局方式信号线路的布局方式对信号干扰有很大影响。

如何选择合适的信号线路布局方式,以减少信号干扰,是一个关键的考虑因素。

1.1 单端布局单端布局是将信号线路与地线或电源线相隔较远,从而减少信号与其他线路的相互影响。

这种布局方式适用于信号干扰较小的情况。

1.2 差分布局差分布局是将两个相同的信号线路同时引出,通过比较两路之间的差异来接收信号。

差分布局可以抵消共模干扰,提高信号的抗干扰能力。

1.3 屏蔽布局屏蔽布局是在信号线路外部设置屏蔽层,将信号线路与外界隔离,有效降低外界干扰对信号的影响。

屏蔽布局适用于信号干扰较为严重的场合。

二、合理选择信号线路和接口的设计2.1 选择低阻抗信号线路低阻抗信号线路可以减少信号线路对干扰源的敏感度,提高信号的抗干扰能力。

因此,在设计信号线路时,应尽量选择低阻抗的线路材料,并采取相应的阻抗匹配措施。

2.2 选择抗干扰能力强的接口接口的抗干扰能力也是解决信号干扰问题的重要因素。

应选择抗干扰能力强的接口,例如差分信号接口、屏蔽接口等,以提高信号的稳定性和抗干扰能力。

三、采取合适的滤波措施滤波是解决信号干扰问题的常用手段之一。

通过对信号进行滤波可以滤除干扰信号,提高信号的纯净度。

3.1 使用带通滤波器带通滤波器可以选择性地过滤掉特定频段的信号干扰,只保留所需的信号,提高系统的抗干扰能力。

3.2 使用低通滤波器低通滤波器可以过滤掉高频干扰信号,保留低频信号,提高信号传输的准确性和稳定性。

四、地线设计和隔离地线设计和隔离也是解决信号干扰问题的重要手段之一。

合理的地线设计可以将干扰源的电流引导到地线上,减少对信号线路的干扰。

4.1 单点接地单点接地是将所有地线连接到同一个地点,避免形成环路,减少干扰信号的传播和影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见干扰问题怎么解决说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。

所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。

对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。

下面分析一下常见视频干扰现象及其原因。

1、工频干扰干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。

干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。

地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。

2、空间电磁波干扰干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。

干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。

由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。

3、低频干扰(20Hz-nKHz低频噪声干扰)干扰现象:图像出现静止水平条纹。

现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。

用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。

低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。

4、高频干扰干扰现象:图像出现雪花点或高亮点。

现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对图像的传输产生干扰。

大电荷负载启停、变频机及高频机等在工作时除了输出高强度基波外,同时还会产生高强度的二次谐波。

虽然谐波强度比基波低很多,但高次谐波频带很宽且成分复杂,所以基波的各次谐波都会对利用视频基带传输(即6MHZ带宽内)的视频信号造成不同程度的干扰。

经过多次精度实验,高频干扰信号的基波和谐波频率均在45MHz以内。

5、反射干扰干扰现象:图像出现重影。

干扰原因:视频信号在传输过程中色度、亮度及饱和度都会有相应衰减,当传输视频的同轴网络阻抗不匹配(也称失配)时,视频信号传输到终端会有部分色度、亮度及饱和度产生微反射,反射回来的信号会回到发射处形成再反射,与视频信号叠加经过延时和损耗到达终端。

多个反射信号将在接收端产生码间干扰(ISI),ISI会导致监视器收到错误的输入信号幅度和相位并显示出来,这就使传回来的图像看起来好象清楚的图像上又蒙上了一层模糊不清的图像现象,即重影现象。

6、静电干扰干扰现象:图像时有网纹时有噪点,且时有时无。

干扰原因:在发电场、煤矿和工业企业等存在高电压(1000V以上)输出、严重机械摩擦及高电磁环境场所接地时的对地电位差都在400VP-P~1500VP-P之间。

接地与大地之间存在电位差的现象就属于静电现象的一种,存在静电现象时,接地端(包括冷地和热地)和大地就相当于一个带正电荷和负电荷的电容器。

根据电容器的工作原理可知,当电荷容量达到一定程度时便会放电。

那么静电放电时便会在不同的接地端之间形成电位差,使传输线路上屏蔽层形成地电流,从而使干扰信号耦合进视频信号并送入监控设备中。

静电对视频传输干扰情况取决于静电电压差的大小,严重时会造成接口芯片的损伤或损坏。

1、脉冲干扰的抑制对于脉冲干扰,采取的解决办法就是加装滤波网。

在火线端和整流电源的输出端分别对地接入耐高压、大容量的电容器,形成低通滤波电路。

2、交流声干扰的抑制交流声干扰主要是由于地电流形成回路,通过传导方式作用于视频接收设备的。

为此可以通过传输线变压器隔离视频源和接收端。

传输线变压器的具体设计方法可以参照有关“高频电子线路”有关内容的书籍,在此不再敷述。

为抑制交流声干扰,应注意以下几点:避免将2个地电位可能不同的设备间的信号地线直接连通或形成地线环路。

尽量避免或减弱两设备间电的直接联系。

把电气连接的部分屏蔽在一个体系中,信号地线或屏蔽层在该体系一侧接地。

远距离传送信号采用平衡变压器传输方式。

两端都要有平衡变压器,屏蔽层一端接地,也可悬空不接。

接地可以起到屏蔽作用,也可防止明电搭接时发生触电事故。

不接地时,两端平衡变压器可起到绝缘隔离作用,平衡变压器中心接地,可泄放静电。

3、电磁辐射方式干扰的抑制电磁污染传递途径有两种:通过空间直接辐射和借助电磁耦合由线路传导。

对于通过空间直接辐射的电磁干扰,其主要防护手段是在电磁场传递的途径中安设电磁屏蔽装置,使有害的电磁场强度降低至容许范围以内。

电磁屏蔽装置一般为金属材料制成的封闭壳体。

当交变的电磁场传向金属壳体时,一部分被金属壳体表面所反射,一部分被壳体吸收,这样透过壳体的电磁场强度便大幅度衰减。

电磁屏蔽的效果与电磁波频率、壳体厚度和屏蔽材料特性等有关。

一般地说,频率越高,壳体越厚,材料导电性能越好,屏蔽效果也就越大。

电磁屏蔽可分有源场屏蔽和无源场屏蔽两类。

前者是把需保护设备用良好接地的屏蔽壳体包围起来,以防止外界环境对壳体内部环境的影响;后者不进行接地处理。

对于不同的屏蔽对象和要求,应采用不同的电磁屏蔽装置或措施。

主要有:(1)屏蔽罩。

对小型仪器或器件适用,一般为铜制或铝制的密实壳体。

对于低频电磁干扰,则往往用铁或铍钼合金等铁磁性材料制作壳体,以提高屏蔽效果。

在低温条件下进行精密电磁测量,用超导材料可以起完满的电磁屏蔽作用。

(2)屏蔽室。

对大型机组或控制室等适用,一般为铜板或钢板制成的六面体。

当屏蔽要求较低时,可用一层或双层金属细网来代替金属板。

为抑制借助电磁耦合由线路传导方式的干扰影响,通常采用接地措施,常用的接地方式有两种,分散接地和联合接地(目前基本采用联合接地方式)。

三、闭路电视监控系统抗干扰方法从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题。

下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。

1、频信号的干扰在图像上表现为地花点和50Hz横纹滚动,对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄像机与控制矩阵之间合理位置增加一个视频放大器,将信号的信噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。

2、较难解决的是50Hz横纹滚动及进一步加高频干扰的情况。

为了抑制上述干扰,首先分析一下造成上述问题的原因。

摄像机要求的供电电源一般有三种:直流12V、交流24V或220V,大多数工程应用中的供电电源是另外布设供电电源给摄像机供电,摄像机输出图像经过一条软性的视频电缆从管道的送出,视频电缆和供电电缆与其他的动力线捆绑在一起,当其他动力运行时牵引电机运行产生的电磁场沿照明动力线传播,显然会影响摄像机供电电缆和视频电缆,当视频电缆的屏蔽层不够严密时,高频干扰就经视频电缆传回监视器。

而对于50Hz的横纹滚动根据电磁学理论知道视频电缆的屏蔽层可完全消除50Hz工频干扰。

由此可以推断这部分干扰不是通过视频电缆耦合过来,而是来自电源线和不合理的视频线联结。

3、对于图像中的高频干扰,因它的频带仍在8MHz以内,采用空隙率为50%左右的屏蔽网可基本消防高频干扰,但要达到50%的空隙率屏蔽网根数需每个波长长度有60根以上,这样高的密度又会使电缆的柔韧性下降。

建议在设备的端口处安装相应的信号SPD(SC系列信号防雷器)。

4、视频电缆屏蔽层是接地的,如果视频信号“地”与显示器的“地”相对“电网地”的电位不同,即两处接地点相对电网“地”的电压差不同,那么通过电源在摄像机与显示器之间形成电源回路,这样50Hz的工频干扰进入显示器中,从它的电气联接可以看出消除50Hz工频干扰方法有两种,一是想办法使各处的“地”电位与“电网地”的电位差完全相同,或者切断形成地环流的路径。

由于工程环境比较复杂,使各处“地”完全等电位比较困难,只能通过加大摄像机供电线缆的线径,尽可能降低地回路的电阻。

或者采用切断地环流回路的方法,在摄像机或显示器端有一端不接地,通常在显示器端不接供电电源的地,这样虽不能完全消除干扰但可大减少50Hz的干扰。

从上面的分析中看到,如果电源线上耦合上高频噪声,即使视频电缆的屏蔽电缆的屏蔽再好,也会将噪声送至显示器,因此摄像机的供电电源线最好也要屏蔽。

系统调试时若发现干扰存在可采用调制和解调的方法将噪声滤除,在摄像机端设一调制器将视频信号搬移到几十兆赫兹的频度段上,在显示器端设一低通滤波器将低于8NHZ的信号全部滤除,再经过解调将视频图像还原。

5、监控系统的供电方式监控系统的供电方式只有两种:一种是集中供电方式即电源都引自一处,另一种是分布式供电,摄像机在安装位置附近取电源,从抗干扰效果的角度讲,集中供电方式更好一些,可以基本消除各处参考电位不等的情况。

总结在现在社会大量使用电子设备的今天,电磁浪涌对电子设备的干扰越来越多,合理的布线、屏蔽技术的应用、良好的接地、信号SPD使用,都是比较好的抗电磁干扰的办法。

但只有多种对电磁浪涌防护手段的联合使用才能够从根本上解决电磁干扰问题。

本文欢迎转载,转载请注明:转载自立方体[ ] 本文链接:/28.html。

相关文档
最新文档