人教版数学五年级下册求最大公因数的3种方法
【学习资料】五年级下册数学第四单元知识点汇总(人教版+北师大+苏教版)(1)

人教版第四单元知识点汇总第四单元分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如4/5的分数单位是1/5。
4、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/55、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧1余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:(4)1等于任何分子和分母相同的分数。
如:7、分数的基本性质:8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数。
一位小数,分母是10;两位小数,分母是100……如:0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:3/10=0.3 3/5=6/10=0.61/4=25/100=0.25方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
五年级下册数学课件-4.9 最大公因数 人教版(共19张PPT)

4. 找出下列各分数中分子和分母的最大公因数,写在 括号里。
1
4
18
3
7
11
(选题源于教材P63第4题)
提示:点击 进入习题
1
2
3
4
5
6
7
知识点 1 最大公因数
1. 把16和24的因数、公因数分别填在相应的位置, 再圈出它们的最大公因数。
圈出略。 16和24的最大公因数是( 8 )。
知识点 2 求两个数的最大公因数的方法
(4) 12、30和36的公因数有( 1,2,3,6 ),最大公 因数是( 6 )。
易错点 没有理解公因数和最大公因数的意义
3.以下说法正确的有( A )个。 ①两个合数的最大公因数不可能是1。
②两个数的最大公因数一定比这两个数都小。
③两个质数没有最大公因错在忽略了两个合数是互质数的情况, 如8和9,14和15,它们的最大公因数都 是1。②错在忽略了当两个数是倍数关 系时,较小数就是它们的最大公因数。 ③两个质数的公因数是1,故它们的最 大公因数是1。
4 分数的意义和性质
第9课时 最大公因数
RJ 五年级下册
教材习题
1.填空。
(选题源于教材P63第1题)
(1)10和15的公因数有
1, 5
。
(2)14和49的公因数有
1, 7
。
2. 找出下面每组数的最大公因数。
3
3
6
15
9
1
17
16
1
13
(选题源于教材P63第2题)
3. 先用“√”画出第一列各个数的因数,再填空。
10 5 11 1 4
提升点 2 求两个数的最大公因数的两种特殊情况
五年级数学下册各单元知识点归纳(附常见题型

第二单元因数和倍数1、因数、倍数:①一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
②一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
③一个数的最大因数和最小倍数都是它本身。
如15的最大因数和最小倍数都是15。
2例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(),最小的是()②在能被3整除的数中,最大的是(),最小的是()③在能被5整除的数中,最大的是(),最小的是()2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能()种填法。
分别是。
3、质数和合数(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断题:①所有的奇数都是质数。
()如②所有的偶数都是合数()如③在1,2,3……自然数中,除了质数以外都是合数。
()如④两个质数的和是偶数。
()如(2)质数×质数=合数每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
(3)20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是就是合数,不是的就是质数。
4、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4最小的自然数是:0;连续的两个质数是2、3。
例题:猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数,又是4的因数 E ——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是附:判断(1)因为7×8=56,所以56是倍数,7和8是因数()因为(2)1是1,2,3,4,5…的因数()(3)14比12大,所以14的因数比12的因数多()(4)因为1.2÷0.6=2,所以1.2是0.6的倍数。
人教版小学数学五年级下册第四单元最大公因数的应用(新授)

的公因数和最大3,6
),最大公
因数是( 6 )。
答:可以选择边长为( 1,2,3或6 )dm的瓷砖,边
长最大是( 6 )dm。
2.五(1)班男生有27人,女生有18人,男、女生分别 分组做游戏,要使每组人数相同,每组最多有多少 人?此时可以分成几组? 3×3=9(人) 27÷9+18÷9=5(组) 答:每组最多有9人,此时可 以分成5组。
辨析:求最多有多少名同学,就 是求相关数的最大公因数
这节课你们都学会了哪些知识?
在铺地砖问题中,要使地面铺满且使用的地砖 是整块时,就是求长和宽的公因数;要求地砖的 边长最大是多少,就是求长和宽的最大公因数。
教材习题
1.有一张长方形纸,长 70 cm,宽 50 cm。如果要剪 成若干同样大小的正方形而没有剩余,剪出的正方 形的边长最大是几厘米?
3.有红花24朵,黄花36朵,现要用这两种花搭配扎成 一种花束,且正好扎完,最多扎几束?这时每束有 红花、黄花各多少朵?
24和36的最大公因数是12。 24÷12=2(朵) 36÷12=3(朵) 答:最多扎12束,这时每束有红花2朵,黄花3朵。
易错辨析
4.下面的做法对吗?若不对,请改正。 一张长方形纸片的长是30 cm,宽是20 cm,现要将 它裁成若干个相同的正方形纸片,且正方形的边长 是整厘米数,正方形的边长可能是多少厘米?有几 种裁法? 正方形的边长可能是2 cm,5 cm,10 cm,有三种裁 法。
人教版小学数学 五年级下册
第四单元:分数的意义和性质
第8课时 最大公因数的应用
如果要用边长是整 分米数的正方形地 砖把贮藏室的地面 铺满(使用的地砖 必须都是整块)。
12dm
?dm
小组合作探究
五年级下册数学教案-第四单元《最大公因数》(人教版)

同学们,今天我们将要学习的是《最大公因数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要找到两个数的最大公因数的情况?”比如,当你们需要将两块不同长度的木板拼接在一起时,就需要找到它们的最大公因数来简化长度。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最大公因数的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解最大公因数的基本概念。最大公因数是两个或多个整数共有的最大因数,它在简化分数、解决实际问题等方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,两个数12和18,我们可以通过列举法或短除法找到它们的最大公因数,并解释如何应用于实际问题。
二、核心素养目标
《最大公因数》核心素养目标:通过本节课的学习,培养学生以下核心素养能力:
1.数学抽象:使学生能够从具体的数对中抽象出最大公因数的概念,理解数学问题的本质;
2.逻辑推理:培养学生通过列举法、短除法等方法找出最大公因数,形成严密的逻辑思维;
3.数学建模:让学生学会运用最大公因数解决实际问题,培养数学建模能力;
五年级下册数学教案-第四单元《最大公因数》(人教版)
一、教学内容
《最大公因数》(人教版五年级下册数学教案-第四单元):本节课我们将学习最大公因数的概念,探讨如何求两个数的最大公因数。具体内容包括:
1.理解公因数和最大公因数的定义;
2.掌握寻找两个数的公因数及最大公因数的方法,包括列举法和短除法;
3.应用最大公因数解决实际问题,例如简化比、解决等实际问题。
五、教学反思
在今天的教学过程中,我发现学生在理解最大公因数的概念和应用方面存在一些困难。首先,对于最大公因数的定义,尽管我通过举例进行了解释,但部分学生仍然感到困惑。在今后的教学中,我需要再次强调最大公因数的概念,并尝试用更多生活中的实例来说明,以便让学生更好地理解。
五年级下册数学思维训练讲义-第六讲最大公因数人教版

第六讲 最大公因数第一部分:趣味数学马小跳的生日会今天是马小跳的生日,他请了许多朋友来和他一起庆祝生日。
不一会儿,大家都到齐了。
唉!原来所有人都被马小跳骗了。
说是来聚会,谁知道是来干活的呀!张达、毛超、唐飞、安琪儿都被马小跳安排了各种活计。
马小跳给安琪一根长74厘米的蓝彩带和一根长 66厘米的黄彩带,还说要剪成同样长的小段,要最长的。
最后还要给他每根剩下2厘米。
过了一会儿,安琪儿嘟着嘴来了。
“马小跳,我不知道这个该怎么剪。
我本来就不聪明,你还出个这么绕的问题。
你要是嫌我笨,不喜欢我就直说,不需要这样拐弯抹角的。
”安琪儿好像有点生气。
“没有,没有,我绝对没有那个意思。
”马小跳连忙解释。
“是8厘米!”在他们谈话的过程中,路曼曼已经把答案心算出来了。
“你,你怎么知道的啊?”路曼曼这个突然的答案惊住了马小跳。
“是这样的。
你要安琪儿把两根彩带各剩下2厘米,那咱们就先剪掉这2厘米。
74-2=72厘米,66-2=64厘米。
你还要她剪成同样长的最长小段,也就是求72和64的最大公因数,最大公因数是8。
所以每小段最长是8厘米。
”路曼曼就像老师一样给大家上了一课。
第二部分:奥数小练例题1 一张长方形的纸,长7分米5厘米,宽6分米。
现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?思路导航: 7分米5厘米=75厘米,6分米=60厘米。
因为裁成的正方形的边长必须能同时整除75和60,所以边长是75和60的公约数。
75和60的公约数有1、3、5、15,所以有4故事种裁法。
如果要使正方形面积最大,那么边长也应该最大,应该取75和60的最大公约数15作为正方形的边长,所以可以裁(75÷15)×(60÷15)=20块。
练习一1.把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?2.一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?3.将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?例题2 一个长方体木块,长2.7米,宽1.8分米,高1.5分米。
数学人教版五年级下册《最大公因数》教案

小学数学五年级下册:《最大公因数》教案授课人:步文新教学目标1.理解两个数的公因数和最大公因数的意义。
2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点理解公因数和最大公因数的概念。
教学难点理解并掌握两个数的最大公因数的方法。
教学准备ppt、学案、前置研究部分的练习(每人一张)教学基本过程(一)复习导入1.提问:什么是因数?什么是倍数师:将之前准备好的前置研究部分练习发给大家,学生回顾前面的知识,在小组中交流汇报(在除法算式中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
)2.写出8和12 的所有因数。
说一说你是怎么写的?学生独立练习,然后交流检查(师板书例1)师提问:你是怎样找一个数的因数的?组织学生在小组中交流,相互说一说。
方法一:用除数:8÷1=8,8÷2=4,8÷8=1。
方法二:用乘法:1×8=8,2×4=8。
因此,8的因数有1,2,4,8。
8的倍数有1,2,3,4,6,12。
(二)探究新知1.教学公因数和最大公因数(1)出示例1 。
(2)引导学生审题,理解题意。
在8的因数中,12的因数中找出公有因数的问题的答案。
(指出:1,2,4是8和12公有的因数,其中,4是最大公因数。
)2.巩固小练习(1)完成教材61页做一做第1,2题。
(填在书上)(2)完成教材63页练习十五第1题。
(填在书上)3.教学求两个数的最大公因数的方法。
师:什么叫公因数?什么叫最大公因数?师:出示例2。
怎样求18 和27 的最大公因数?(l)学生先独立思考,用自己想到的方法试着找出18 和27 的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
方法一:先分别写出18 和27 的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18 的因数:①,2 ,③,6 ,⑨,18。
人教版五年级下册数学《最大公因数和最小公倍数》知识点和精选练习题

人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除.(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除).因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1.(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b,最小公倍数是其中的较大数α.B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小。
( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求最大公因数的三种方法
2008年10月02日星期四 15:12
公因数、最大公因数(a,b)是学生学好分数的前提条件。
尤其是分数约分、求最小公倍数、化简比等内容的依据,熟练地找最大公因数,为以后分数的再认识起到事半功倍的效果。
求最大公因数有三种方法:
列举法:
分解质因数法:
短除法:
人教版求最大公因数有详细的讲解,北师大版由于是课改教材,它只有简单的列举法,因为列举法符合学生感知——观察——分析——结论的认识规律。
但是后两者操作比较简便、实用,学生往往喜欢。
一、列举法:就是把几个数的所有因数都写出来,通过对比、观察、找出公因数——最大公因数。
求(12,18)。
12的因数有:1、2、3、4、6、12.
18的因数有:1、2、3、6、9、18.
12和18的公因数有:1、2、3、6.
(12,18)=6
二、分解质因数法:就是将几个数各自分解成质因数的形式,把公因数相乘得出最大公因数。
求(12,18)。
12=2×2×3
18=2×3×3
(12,18)=2×3=6
三、短除法:
三种方法各有优缺点:
列举法容易理解、思路直接,但是写的较多、而且找因数有时容易遗漏;
分解质因数法直观、简便,但是理解有一些难。
短除法实用性强,但是有时找公因数不方便。
请同学们结合自身的特点选择之。