高中数学必修1 《对数函数》教学设计

合集下载

高一数学北师大版必修1教学教案第三章5-1对数函数的概念(4)

高一数学北师大版必修1教学教案第三章5-1对数函数的概念(4)

对数的概念教学设计《对数的概念》本节内容是高中数学中相当重要的一个基础知识点,在此之前,学生已经学习了指数、指数函数的内容,了解了指数运算是已知底数和指数求幂值,而对数是已知底数和幂值求指数的运算,两者是互逆的关系,对数的概念是学习对数函数的入门课,对数函数对于学生来说又是一个全新的函数模型,它是在指数函数的基础上,对函数类型的扩展,是本章的重点内容。

一、设计思路1、指导思想本节内容是高中数学中相当重要的一个基础知识点,为学习对数函数作好准备,起到了承上启下的作用.同时,也对培养学生对立统一,相互联系、相互转化的思想有着很重要的意义。

2、教学目标根据教学大纲的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:(1)知识与技能①理解对数的概念;②掌握对数式与指数式的互化;③理解对数的性质.(2)过程与方法在概念理解的过程中,培养学生分析转化的意识和逆向思维能力.(3)情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、勇于发现的求知精神,激发学生的学习兴趣,让学生感受成果的喜悦.在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的好习惯.(4)现代教学手段:应用多媒体、几何画板等工具来展示对数与指数的关系,使学生对对数的概念有进一步的认识。

3、重难及难点重点:对数的概念;对数式与指数式的相互转化。

难点:对数概念的理解;对数性质的理解。

4、教法和学法:教法:游戏教学法;引导发现法;讲练结合法;借助多媒体课件。

学法:自主学习;合作交流;思考探究。

在新课改的理念下,教师和学生的主体地位已经发生了改变,为了更好地体现以学生为主体的课堂教学。

二、教学准备教学资源上,制作课件,导学案,准备几何画板,三角板,彩色粉笔。

课堂教学中,注重师生之间、生生之间相互作用的过程,强调多边互动,共同掌握知识,充分调动学生的参与的积极性。

三、教学过程(一)游戏引入比一比,看谁算的又对又快:那么 ()25=的值为多少?设计意图:以游戏的形式教学,低起点,让学生在生动活泼的气氛中,不知不觉地体会对数运算与幂运算是互逆的,同时在()25=中遇到了困难,会激发学生的求知欲望。

对数函数及其性质教案完整版

对数函数及其性质教案完整版

对数函数及其性质教案完整版对数函数及其性质一、教材分析《对数函数》出现在高中数学必修一第二章第二节第二课时。

对数函数是高中数学在指数函数之后的重要初等函数之一,无论从知识角度还是思想方法的角度对数函数与指数函数都有类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活、能力要求也更高。

而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

也为解决函数总和问题及其在实际中的应用奠定良好的基础。

二、学情分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.学生在高中有一定的形象思维和抽象思维能力,已经学习了三种基本函数:一次函数、二次函数、反比例函数,已经具有一定的函数基础知识,并且在对数函数之前学习了指数函数,这为过渡到本节的学习起着铺垫作用;具备通过类比指数函数学习来认识对数函数的性质。

因此本节对数函数既是对以前函数知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后学习提供了必要的基础知识.三、教学目标和重点难点依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,将对数函数及其性质此节课的教学目标、重点和难点设置为:(一)教学目标:1.知识与技能:进一步理解对数函数的定义,掌握对数函数的图像和性质;初步利用对数函数的图像与性质来解决简单问题(会求对数函数的定义域;会用对数函数的定义比较两个对数的大小)。

2.过程与方法目标:经过探究对数函数的图像和性质的过程,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力,培养学生严谨的思维和科学正确的计算能力;渗透类比、数形结合、分类讨论等基本数学思想方法。

3.情感态度与价值观目标:在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣,增强学好数学的信心。

高中数学对数函数备课教案

高中数学对数函数备课教案

高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。

教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。

教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。

教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。

教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。

二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。

三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。

四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。

五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。

教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。

同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。

在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。

《对数函数》教学设计

《对数函数》教学设计

对数函数教学设计知识目标1.学生理解对数函数的定义;2.学生掌握对数函数的性质、特点和图像;3.学生能够应用对数函数解决实际问题;4.学生提高数学思维和解决问题的能力。

教学内容第一节:对数函数的定义1.引入对数函数的概念;2.介绍对数函数的定义和性质;3.给出许多实际问题,让学生了解对数函数的意义。

第二节:对数函数的特点和图像1.讲解对数函数的图像特点;2.教学对数函数的反函数的图像特点;3.比较对数函数和指数函数图像。

第三节:对数函数的应用1.应用对数函数解决实际问题;2.教学对数函数运用在生活、科学和工程中的技术;3.补充许多实际问题的解决方法。

教学方法1.演讲法:引领学生入门,提供新知识给学生认识和理解;2.询问题:针对不同学生需要的信息而产生的对话修改;3.小组讨论:激发学生的合作意识和实际操作能力;4.集体探究:选取与对数函数教学相应的问题,鼓励学生在自愿的情况下查阅信息、发表观点、对问题进行探讨;5.实验教学:在本节课中使用实验设备,让学生实际操作,以便更好地了解对数函数的图像特点。

教学评估1.平时评估:针对学生的课堂表现和作业;2.综合测评:期末考试等大型考试;3.学生评估:以温馨的声音,收回学生的课后反馈。

教学资源1.《高中数学教育》;2.电子版教材;3.课程讲义;4.PPT幻灯片;5.示范视频。

总结在上述对数函数的教学设计中,我们可以看到选取实例和图像进行教学是非常重要的。

学生从实例中发现问题,从图像中看到模式,从逐渐深化不断理解,这些解决问题的策略和思考方式,都是通过对数函数的学习所获得的知识,也是对现实生活有用的技能。

对数函数及其性质(第1课时)教学设计

对数函数及其性质(第1课时)教学设计

对数函数及其性质(第1课时)教学设计柏秀芳沁县实验中学一、教材分析本节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

对数函数是以指数函数作为基础知识。

本节课的主要任务是抓住对数函数与指数函数的互为反函数的关键,掌握对数函数的概念、图像性质并由对数函数的图像归纳出性质,能运用性质解决比较对数值大小。

为了能使学生理解和掌握教学内容,培养学生自主学习能力和数学建构思想,本节课使用多媒体教学,通过计算机辅助教学课件和网络系统良好的交互性能,适时得到学生的反馈信息,实现教学目标。

二、学情分析对数函数的学习以对数运算和指数函数作为基础,部分学生前面知识不熟练,加之函数概念的抽象性,学生对函数的理解比较困难,对于对数函数学习或多或少有些恐惧感。

学生又是从初中升入高一不久,在学习方法上还保留着初中的学习方法,考虑问题常常以形象思维为主,在教学中,注意培养学生由特殊到一般的归纳能力,让学生多观察,通过数形结合,来感受对数函数的图像和性质的关系。

三、设计思想:本节是在学生已经学过对数,与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。

因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

对数函数及其性质教案1

对数函数及其性质教案1

对数函数及其性质(2)一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。

函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

高中数学教案《对数函数》

高中数学教案《对数函数》

教学计划:《对数函数》一、教学目标1.知识与技能:o学生能够理解对数函数的概念,掌握对数函数的一般形式及其性质。

o学生能够识别并绘制对数函数的图像,理解图像与函数性质之间的关系。

o学生能够运用对数函数解决简单的实际问题,如计算复利、对数增长等。

2.过程与方法:o通过与指数函数的对比,引导学生理解对数函数的概念和必要性。

o通过观察、分析对数函数图像,培养学生的数形结合能力和逻辑推理能力。

o通过小组合作探究,培养学生的协作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。

o培养学生的耐心和细心,提高解决复杂问题的毅力。

o引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。

二、教学重点和难点●重点:对数函数的概念、一般形式、性质及其图像特征。

●难点:理解对数函数图像与函数性质之间的关系,以及运用对数函数解决实际问题。

三、教学过程1. 复习旧知,引入新课(5分钟)●复习指数函数:简要回顾指数函数的概念、性质和图像特征,为学习对数函数做好铺垫。

●生活实例引入:通过介绍天文学中的星等计算、地震震级等实例,引导学生思考这些实例中隐藏的数学规律,从而引出对数函数的概念。

●明确学习目标:阐述本节课将要学习的内容——对数函数,并明确学习目标。

2. 对数函数概念与性质讲解(15分钟)●定义讲解:详细讲解对数函数的概念,强调其与指数函数的互逆关系,并给出对数函数的一般形式(如y=log a x,其中a>0且a≠1,x>0)。

●性质探讨:引导学生根据对数函数的定义,探讨其定义域、值域、单调性、奇偶性等基本性质。

●对比分析:将对数函数与指数函数进行对比分析,帮助学生更好地理解两者的联系与区别。

3. 对数函数图像分析(10分钟)●图像绘制:利用多媒体设备展示不同底数下对数函数的图像,引导学生观察图像特征。

●特征归纳:引导学生根据图像特征归纳出对数函数的图像特征,如底数大于1时图像上升缓慢,底数在0和1之间时图像下降迅速等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《对数函数》教学设计一、教材分析《对数函数》是在人教版高中数学第一册(上)第二章第2.8节。

函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用。

学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用。

“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、学情分析学生在初中已经学习过二次函数及其图象,又刚刚学习了指数函数的定义、图象的画法并掌握了相关的性质,有了一定的读图能力,能够根据函数图象抽象概括出一些简单的性质。

经过两个多月的教学观察,所教班级的学生数学能力及数学思想的形成还很欠缺,逻辑思维能力也有待加强训练。

本节课课前布置学生带着问题预习,让学生找出指数函数与对数函数之间的关系,采用多媒体,采取“诱思探究”的教学方法进行教学,充分发挥学生的积极性和主动性,在独立思考与讨论中获取知识,实现教学目标。

三、设计理念按照认知规律,从感性认识再到理性研究,由浅入深得出对数函数的概念。

然后引导学生利用对称作图法和描点作图法比较作出函数图像。

通过观察图象、分析图象特征,得出函数的基本性质。

整个教学过程始终贯彻学生为主体、教师为引导的教学理念,综合培养学生动手、动眼、动脑的能力,培养学生的探究合作意识和创新能力。

四、学习三维目标1、知识目标:⑴、通过求指数函数的反函数,了解对数函数的概念。

⑵、能画出具体对数函数的图像,掌握对数函数的图像和性质。

⑶、能应用对数函数的性质解有关问题。

2、能力目标:⑴、培养学生数形结合的意识。

⑵、让学生学会用比较和联系的观点分析问题,认识事物间的相互转化。

⑶、了解对数函数在实际问题中的简单应用。

⑷、通过学生相互讨论,培养学生合作学习,探究学习的能力。

3、情感、态度、价值观⑴、激发学生学习数学的兴趣,培养学生严谨的科学态度,训练学生的逻辑思维能力。

⑵、了解数学知识在实际生活中的应用,增强学生的求知欲。

五、教学重点和难点:重点:对数函数的图像和性质。

难点:数函数与指数函数的关系。

六、资源准备:多媒体课件、黑板。

七、教学过程(一)复习旧知,引入课题(1)前提诊测:问题1:什么叫指数函数?它的图像和性质是什么?多媒体展示:看图象,填表格a>1 0<a<1图象性质(1)定义域:(2)值域:(3)过定点:(4)在 R上是(4)在R上是设计意图:指数函数与对数函数互为反函数,而互为反函数的两个函数在图像以及性质方面都存在着很大的联系,因此,从指数函数的图像入手,直观地让学生回忆指数函数的性质,为下面学习对数函数的图像与性质作好铺垫。

简要实录:通过以上图像,学生能很快地进入独立思考的状态,遇到思维中断的时候,能自觉地通过翻阅课本,体现了自主学习、探究学习。

多媒体展示:动脑思考,口答。

问题2:互为反函数的两个函数的图象有什么关系?问题3:点(a,b)关于直线y=x对称点坐标是什么?点(0,1)关于直线y=x对称点坐标是什么?(2)对数函数的引入:多媒体展示:1、对数的定义。

2、当函数y =f (x )的反函数存在,求其反函数的步骤。

3、设问:求指数函数)1,0(≠>=a a a y x 的反函数。

设计意图:本节教学的关键是抓住对数函数是指数函数的反函数这一要领,学生已学过如何求反函数及指数式如何变对数式。

因此,这一小环节让学生通过求反函数的方法求出对数函数。

简要实录:解决以上两个小问题需要前面所学的知识,由于学生对前面所学知识的掌握较好,所以能很快地解决以上问题。

(二)理性研究,把握性质多媒体展示:(1)对数函数的定义设问:对数函数的定义域和值域分别是什么?(2)对数函数的图象和性质1、作出对数函数x y 2log =和x y 21log =的图象(对称法)。

2、用列表、描点、连线的方法作对数函数x y 2log =和x y 21log =的图象。

3、请同学们根据对数函数x y 2log =和x y 21log =的图像做出x y a log =(a >1)和x y a log =(0<a <1)的草图。

学生活动:分别用对称法和描点法动手作图。

设计意图:从特殊到一般,培养学生作图的能力,让学生通过作图发现对数函数的性质,为下一步学习对数函数的性质作铺垫。

通过两种作图方法的演练,培养学生用比较的观点分析问题。

简要实录:学生动手自主学习画图,然后由教师在多媒体上演示动态画图过程,帮助学生订正答案。

通过作图,学生要清楚地知道互为反函数间的两个函数的图像关系,图像解决了,通过观察图像,对数函数的性质即呼之欲出。

多媒体展示:(3)根据对数函数x y a log (a >1)和(0<a <1)这两种情况下的图象,写出对数函数的性质。

(4)请同学们运用联系和比较的观点对指数函数和对数函数进行分析、比较。

(提示:图像、定义域、值域、定点、单调性)学生活动:学生分小组讨论填写表格并对两种函数进行比较。

实物投影:展示学生所填的表格,分析,并用课件给出标准答案,并给时间学生记忆。

设计意图:通过现象得出本质是哲学上的问题,学习数学,我们经常利用数形结合,由图像得出性质。

鼓励学生运用联系、比较的观点,对数学知识进行分析和比较。

让学生自主学习,在独立思考的基础上进行小组讨论——合作性学习。

通过填写以上表格,让学生掌握对数函数的图像与性质。

通过对两种函数的对比,对数函数与指数函数之间的关系将在学生脑海里形成初步的印象。

简要实录:表格是这一节课的核心所在,老师给学生时间进行记忆,能让学生在脑海中对对数函数的性质有一个总体的印象。

(三)学以致用,迁移深化多媒体展示:例1:求下列函数的定义域(其中1,0≠>a a )()2log 1x y a = ()()x y a -=4log 2 ()()29log 3x y a -=请同学们合上课本,把以上题目的解答过程写在练习本上,写完后,请打开课本进行核对并小结做此类题的根据是什么。

设计意图:这一例题是课本中的例题,主要是运用对数函数中定义域:{}0>x x 这一性质进行做题,是对数函数性质的简单应用。

简要实录:有前面解不等式的基础,学生大部分都能做得出来,但解题过程书写的规范化还有待加强。

例2:求下列函数的值域(1) 函数)1(log 2≥=x x y 的值域为 ;(2)函数)410(log 21≤<=x x y 的值域为 ; 设计意图:这一例题主要是运用对数函数中当0>x 时,函数值域为R ,随着函数定义域的改变,则值域也发生改变。

简要实录:在黑板上演算,让学生纠正自己的错误,第二问提示学生可以借助图象来求值域。

例3:(1)函数)3(log -=x y a 恒过定点 ;(2)函数1)2(log +-=x y a 恒过定点 ;设计意图:让学生利用函数)1,0(log ≠>=a a x y a 恒过定点(1,0)的这一性质解决实际学习中遇到的过定点问题。

简要实录:学生对这两问都很容易回答出来,教师在学生练习完成后引导其归纳求定点问题的解题步骤。

例4:比较下列各组数的大小(1)4.3log 2,5.8log 2 (2)8.1log 3.0,7.2log 3.0(3)1.5log a ,)1,0(9.5log ≠>a a a (4)7log 6,6log 7(5)π3log ,8log 2设计意图:前三道练习主要是让学生利用对数函数的单调性来解题,后面两道练习是让学生利用1log =a a 和01log =a 这两个重要结论,借助其作为中间量来比较数的大小。

简要实录:对前三道题目学生很容易做得出来,后面两道题目需要老师适当的点拨引导其解答出来。

八、教学评价1、教学设计说明⑴、针对所教的是高一的学生,数学逻辑思维能力还很欠缺,采用以图象及联系比较的方法进行教学,让学生从已有的知识出发,进行延伸过渡,自然地接受新知识。

⑵、根据有效教学理念,教师首先需要确立学生的主体地位,树立“一切为了学生的发展的思想”,激发学生的学习动机,调动学生学习的积极性,让学生“跳一跳摘到桃子”。

因此,本节课主要尝试使用诱思探究的教学方法,尽量作到让学生满堂学,充分发挥学生的主体作用,使学生真正成为学习的主体,教师只是一个引导作用。

⑶、借助多媒体辅助教学,让课堂内容更加直观形象,增加学生学习兴趣,并让课堂容量有所提高。

⑷、增加小组合作性学习,引导学生学会合作,培养学生的团队精神。

2、课后反思本节课分感性认识、理性研究、迁移应用三步走,符合认知规律。

利用指数函数的图象和性质创设情境,激发学生探求新知的欲望。

由特殊到一般,加深对概念的理解。

学生通过自己作图和观察图象,小组讨论、补充,得出函数的性质。

同时训练学生数形结合思想在解决函数问题的应用意识。

课堂使用多媒体教学,能够及时纠正学生的练习中的解答错误,达到及时反馈学生学习情况的效果。

3、教学点评:本节课是比较成功的。

其最大的成功之处在于:教师知道要教会学生什么东西,课堂设计意图明确,课堂练习针对性强,学生上完课后,掌握了对数函数的定义、图象和性质,具备一定的解题能力,数学逻辑思维也得到一定的训练,让学生树立了数形结合的思想。

相关文档
最新文档