“三角形的内角和”教学方案_教案教学设计
三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
《三角形的内角和》教案(精选10篇)

《三角形的内角和》教案《三角形的内角和》教案(精选10篇)《三角形的内角和》教案篇1教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件、各种三角形等。
学具准备:三角形、剪刀、量角器等。
教学过程:一、出示课题,复习旧知1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的内角“和”。
【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知1、通过预习,认识结论,提出疑问2、验证三角形的内角和(1)用“量一量、算一算”的方法进行验证①汇报测量结果②产生疑问:为什么结果不统一?③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
四年级数学教案《三角形的内角和》

四年级数学教案《三角形的内角和》•相关推荐四年级数学教案《三角形的内角和》(精选10篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编帮大家整理的四年级数学教案《三角形的内角和》,欢迎大家借鉴与参考,希望对大家有所帮助。
四年级数学教案《三角形的内角和》篇1教学目标⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与教师活动:学生活动媒体应用设计意图目标达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
(揭题:三角形的内角和)由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、巩固知识。
关于《三角形内角和》的教学设计(通用15篇)

《三角形内角和》的教学设计关于《三角形内角和》的教学设计(通用15篇)作为一名教师,就不得不需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么什么样的教学设计才是好的呢?以下是小编帮大家整理的关于《三角形内角和》的教学设计(通用15篇),希望对大家有所帮助。
《三角形内角和》的教学设计篇1【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。
通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180。
【教学准备】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的好奇心。
然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。
教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。
4.导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探索交流新知1.分组活动,探索新知根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
《三角形的内角和》教学设计【优秀8篇】

《三角形的内角和》教学设计【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《三角形的内角和》教学设计【优秀8篇】教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。
三角形的内角和教学设计[五篇模版]
![三角形的内角和教学设计[五篇模版]](https://img.taocdn.com/s3/m/aa57e5f76037ee06eff9aef8941ea76e58fa4ad8.png)
三角形的内角和教学设计[五篇模版]第一篇:三角形的内角和教学设计《三角形的内角和》教学设计一、教学内容:人教版实验教科书四年级下册第85页《三角形的内角和》二、教学目标:1、知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
2、能力目标:培养学生主动探索、动手操作的能力;发展学生的空间观念和初步的逻辑思维能力;培养学生初步形成验证结论的意识。
3、情感目标:让学生感悟数学知识内在联系的逻辑之美,提高审美意识;培养学生之间良好的合作学习的习惯。
三、教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程:知识三角形的内角和是180度并且能应用。
四、教学难点:三角形内角和是180度的探索和验证。
五、设计理念:1、新课标明确指出:要联系生活讲数学,数学问题生活化,创设情境,激发学生的学习兴趣。
因此,我创设三角形玻璃破碎的情境,引导学生积极探究应该怎样配玻璃,从而学习三角形的内角和,并解决实际问题。
2、学习过程重视体验,注重知识的形成过程。
有效的数学学习活动不能单纯地依赖模仿与记忆,让学生动手实践、自主探究三角形的内角和是多少度,有利于学生对数学知识的掌握和应用。
3、运用多媒体,加强直观教学,丰富学生的直接经验,使学生更好地理解掌握三角形的内角和是180度。
六、教学对象分析:“三角形的内角和”是在学生认识了三角形的基本特征,学习三角形的分类等基础上进一步学习的。
学生已经具备一定的关于三角形的认识的直接经验,获得相应的知识与技能,知道了三角形按角分类可分三大类:锐角三角形、钝角三角形、直角三角形,并能运用量角器测量角的度数。
通过本节课的教学,主要让学生在猜测的基础上,引导学生验证,通过量一量、算一算、剪一剪、折一折、拼一拼、说一说一系列的学习活动,探究、掌握三角形的内角和是180度这一规律,并能实际应用。
七、教学过程设计:(一)创设情境,导入新课多媒体出示同学们踢球时不小心击碎三角形玻璃的情境(同学们踢球把学校花架上的一块三角形玻璃击碎了,一下子围上了许多同学。
三角形内角和教学设计(5篇)

《三角形内角和教学设计》三角形内角和教学设计(一):教学目标:1、透过操作活动探索发现和验证三角形的内角和是180度的规律。
2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。
并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证三角形的内角和180度这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
教学过程:一、创设情景,引出问题1、猜谜语:(课件)形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)2、猜三角形(课件)师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?师:提问第3个图形时问:被遮住的两个角是什么角?会是两个直角吗?为什么?(引导学生开始对三角形的内角和是多少进行思索。
)3、引出课题。
师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识三角形内角和。
(板书课题)二、探究新知1、三角形的内角、内角和(1)什么是三角形内角(课件)三角形里面的三个角都是三角形的内角。
为了方便研究,我们把每个三角形的3个内角分别标上1、2、3。
(2)三角形内角和师:内角和指的是什么?生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)2、猜一猜。
师:这个三角形的内角和是多少度?师:是不是所有的三角形的内角和都是180呢?你能肯定吗?预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?3操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三角形的内角和”教学方案
简要提示:
本课教学内容是国家课程标准苏教版小学《数学》四年级下册第28—29页的“三角形的内角和”。
本课教学先通过计算三角尺的3个内角的度数和,激发学生的好奇心,进而引发“三角形内角和是180o”的猜想,再通过组织操作活动验证猜想,得出结论。
最后让学生利用三角形内角和的知识求三角形中未知角的度数,并通过量角的度数的操作,进一步证实结论的正确性。
因此本课教学需要引导学生度量、计算和实验,在活动中感知三角形内的三个角的度数之和是定数为180度,并能运用它解决有关实际问题,激发学生主动参与、自主探索的意识,锻炼学生的动手操作能力,发展学生初步的逻辑推理能力和空间观念。
教学流程:
流程1:认识正方形的内角、内角和
流程2:认识长方形的内角、内角和
流程3:探索直角三角形的内角和
流程4:探索锐角三角形、钝角三角形的内角和
流程5:抢答游戏
流程6:完成“试一试”
流程7:完成“想想做做”第1题
流程8:完成“想想做做”第6题
流程9:拓展题
流程10:交流收获
第一段:认识内角、内角和
流程1:认识正方形的内角、内角和
师:同学们,这是一张正方形纸。
正方形有几个角?都是什么角?多少度?四个角的和呢?(学生活动)正方形有四个直角,都是90o,四个角的和是360o。
正方形的这四个角啊叫作它的内角,所以我们可以说正方形的内角和是360o。
流程2:认识长方形的内角、内角和
师:那长方形的内角和是多少度呢?(学生活动)长方形四个内角都是直角,内角和也是360o。
第二段:探索三角形的内角和
流程3:探索直角三角形的内角和
师:这是一把三角尺。
这个三角形有几个内角?内角和是多少度,你知道吗?(学生活动)
师:三个内角的度数分别是90o、60o、30o,内角和是180o。
再看这把三角尺,这个三角形的内角和又是多少度呢?90o+45o+45o=180o,内角和也是180o。
师:三角尺的形状是直角三角形,根据3个内角的度数,我们可以算出这两种直角三角形的内角和是180o,那其它的直角三角形内角和也是180o吗?
师:课前老师请每个同学准备了一个直角三角形,举起来相互看看,形状、大小可以不同,但必须是直角三角形。
你能想办法知道手里
的直角三角形的内角和吗?(学生活动)
师:我们一起来看一看有哪些好办法:(课件出示)把直角三角形的两个锐角拼到直角上,和直角完全重合,这说明直角三角形中两个锐角的和是90o,那么直角三角形的内角和就是180o。
也可以把直角三角形的三个角撕下来拼在一起,形成了一个平角,证明了直角三角形的内角和是180o。
还可以利用直角三角形和长方形、正方形的关系来推导,两个完全一样的直角三角形可以拼成一个长方形或正方形,长方形和正方形的内角和是180o,直角三角形的内角和是它们内角和的一半,180o。
同学们,这些方法你想到了吗?一定还有不少同学是先用量角器量内角的度数再求内角和,但是因为用量角器测量角的度数时,容易产生误差,所以得出的内角和有些可能不是180o,而用折、拼、转化推导的方法可以准确地证明直角三角形的内角和是180o。
流程4:探索锐角三角形、钝角三角形的内角和
师:我们证明了直角三角形的内角和是180o。
那其他三角形,它们的内角和呢?先猜测一下。
(学生交流)
师:当然我们还是要凭事实说话。
同学们,要验证你的想法,还需要证明哪几类三角形呢?对,三角形按角的大小分,还有锐角三角形和钝角三角形。
有办法知道这两类三角形的内角和吗?
师:同学们现在应该有经验了,知道测量的过程中容易产生误差,那么选用其他的方法来检验会更准确。
请拿出课前任意剪的一个锐角三角形或一个钝角三角形,这次只给你们2分钟的时间,比一比谁的动作最快,方法最巧。
(学生活动)
师:同学们可以用前面证明直角三角形内角和的方法:拼一拼、折一折。
把三个内角拼在一起是一个平角,说明内角和是180o。
还能想到别的方法吗?同学们可以尝试着把新问题转化成已经掌握的知识,利用已知去研究未知呀。
回忆一下,我们可以运用已经知道的长方形、正方形内角和来推导直角三角形内角和,那是不是也可以利用直角三角形的内角和,再去推导钝角三角形和锐角三角形的内角和呢?
师:以钝角三角形为例,作一条底边上的高,把钝角三角形分成两个直角三角形。
一个直角三角形的内角和是180o,两个就是360o。
而钝角三角形的内角和指的是它三个内角的度数和,所以要从两个直角三角形内角和360o中去掉一个平角180o,钝角三角形的内角和是180o。
锐角三角形也是如此。
师:刚才我们采用多种方法,证明了三角形内角和是180o。
同学们不仅知其然,而且知其所以然了。
当然也有的同学通过研究,否定了自己原来的猜想,形成了正确认识,也确认了三角形的内角和是180o。
其实,很多数学家的伟大发现都是从大胆猜想开始的,再通过锲而不舍的钻研,就取得了了不起的成就。
同学们,如果你们在学习上也能大胆猜想,发扬锲而不舍的精神,也一定会成功的!
流程5:抢答游戏
师:现在老师和同学们来玩一个抢答游戏。
请听清题目直接报得数。
1.这个三角形的内角和是多少度?(学生抢答)2.把这个三角形平均分成两个小三角形,每个小三角形的内角和都是多少度?(学生抢答)3.把这个小三角形再分成一大一小两个三角形,这两个三角形的
内角和分别是多少度?(学生抢答)4.把两个小三角形拼成一个大三角形,这个大三角形的内角和是多少度?(学生抢答)5.3个小三角形拼成一个更大的三角形,它的内角和呢?(学生抢答)
师:同学们,这个游戏对你有启发吗?(学生交流)
第三段:巩固应用,解决问题
流程6:完成“试一试”
师:了解了三角形的内角和,可以解决哪些数学问题呢?请同学们把课本翻到28页,看试一试,在书上独立完成。
(学生练习) 师:你们是这样考虑的吗?因为三角形的内角和是180o,所以∠3的度数等于180o减∠1的度数再减∠2的度数,或者用180o减去1和∠2的度数和。
流程7:完成“想想做做”第1题
师:请用这样的方法再试着练习三道题。
(学生活动)第三个三角形是直角三角形,在计算未知角的度数时有简便方法:因为直角三角形两个锐角的度数和是90o,因此可以直接用90o减55o。
流程8:完成“想想做做”第6题
师:请同学们考虑回答下面两个问题。
(1)一个直角三角形中最多有几个直角?为什么?(2)一个钝角三角形中最多有几个钝角?为什么?(学生思考)
师:这两个问题我们都可以用三角形的内角和的知识来回答。
同学们可以反过来推想,如果有两个直角或两个钝角,这个图形的内角和就大于180o了,不可能是三角形。
流程9:拓展题
师:同学们已经会根据三角形的内角和,求其中一个未知角的度数了,下面试着求出图中∠3的度数?(学生活动)
师:根据三角形的内角和我们可以先求出∠4是100o,∠3的度数等于180o减∠4的度数。
同学们算出得数后再留意会发现,∠3的度数正好等于∠1、∠2的度数和。
同学们∠3是三角形外面的一个角叫做三角形的外角。
在初中几何中有这样的概括:三角形的外角等于和它不相邻的两个内角的和。
随着同学们年级的增高,今后会遇到更多的用三角形内角和的知识来解决的几何问题。
师:同学们,我们已经用三角形内角和的知识解决了一些简单的数学问题,那么在生活中用得到它吗?当然了,工人师傅可以用它来检验零件是否合格,还可以用这个知识来考虑如何修补已经损坏了的三角形物品,感兴趣的同学课后可以再收集了解,做生活的有心人。
第四段:交流收获,全课总结
流程10:课堂总结
师:今天这节课同学们有什么收获,说出来和大家交流分享。
(学生交流)
师:对,我们知道了,一个三角形,不论在什么情况下,它的三个内角的和都是180度;利用这一知识,我们能够解答一些有关三角形角度的实际问题。
感谢您的阅读,本文如对您有帮助,可下载编辑,谢谢。